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Random Vectors and Matrices

Random Vectors and Matrices
See Section A.3 in Appendix A.

o A random matriz is just a matrix of random variables.

@ Their joint probability distribution is the distribution of
the random matrix.

e Random matrices with just one column (say, p X 1) may be
called random vectors.
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Expected Value

The expected value of a random matrix is defined as the matrix
of expected values.

Denoting the p x ¢ random matrix X by [z; ;]

E(X) = [E(z:;)]-
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Immediately we have natural properties like

If the random matrices X and Y are the same size,
EX+Y) = E(zij+vijl)

[E (i + yij)]

[E(zi5) + E(yi,j)]

[E(zig)] + [E(yi;)]

= E(X)+E(Y).
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Moving a constant matrix through the expected value

sign

Let A = [a; ;] be an r x p matrix of constants, while X is still a
p X ¢ random matrix. Then

E(AX) = E<

Similar calculations yield E(AXB) = AE(X)B.
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Variance-Covariance Matrices

Let x be a p x 1 random vector with E(x) = p. The
variance-covariance matriz of x (sometimes just called the
covariance matriz), denoted by cov(x), is defined as

cov(x) = E{(x— p)(x— )" }.
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cov(x) = E{(x—p)(x—p)"}

cov(x) = { xz,uz) T1— M1 T2 — p2 T3~ U3 )}
T3 — 43

(z1 — M1)2 (w1 —p1)(we — p2) (w1 — pa) (w3 — p3)
(w2 — p2)(z1 — p1) (w2 — Hz) (w2 — #2)(13 - p3)
Y@z —p2)  (z3 — p3)?

(w3 —p3)(z1 —p1)  (x3 — s

—~ o~

E{(z1 — pm1)?} E{(z1 —p1) (w2 —p2)}  E{(z1 —p1)(zs —p3)}
= E{(m - M2)( —m)}t E{(w2— M2)2} E{(z2 — u2)(x3 —p3)}
E{(z3 — p3)(z1 — p1)}  E{(zs — ps)(z2 — p2)}  E{(zs — us)?}

Var(z1) Cov(z1,z2) Cov(z1,x3)
= Cov(z1,z2) Var(zz) Cov(z2,x3)
Cov(z1,23) Cov(ze,z3) Var(zs)

So, the covariance matrix cov(x) is a p X p symmetric matrix with variances on the main

diagonal and covariances on the off-diagonals.
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Covariance matrix of a 1 x 1 random vector

That is, a scalar random variable

cov(x) = E{(x—p)(x—p)'}
= E{(z — p)(z — p)}
= E{(z—p)}
= Var(z)



Let x be a p x 1 random vector with F(x) = p and cov(x) = X,
while A is an r X p matrix of constants. Then

cov(Ax)

E {(Ax —Ap)(Ax — AN)T}
B{A(x-p)(Ax-w)}
B

Alx—p)(x— ) AT}
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Positive definite is a natural assumption

For covariance matrices

Let cov(x) =X

3 positive definite means a’ $a > 0 for all a # 0.

Yy = a'x=ar1+ -+ apxy is a scalar random variable.

°

o Var(y) =a'cov(x)a=a'Za

e X positive definite just says that the variance of any
(non-trivial) linear combination is positive.

This is usually what you want.
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Matrix of covariances between two random vectors

Let x be a p x 1 random vector with E(x) = p, and let y be a
q x 1 random vector with E(y) = p,,.

The p X ¢ matrix of covariances between the elements of x and
the elements of y is

cov(x,y) = E{(x = 1)y — 1) "}

Note cov(x,x) = cov(x).
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Adding a constant has no effect

On variances and covariances

It’s clear from the definitions

o cov(x)=E{(x—p)(x—p)"}

o cou(x,y) = E{(x — p,)(y — )" }
That

e cov(x + a) = cov(x)

e cov(x+a,y +b)=cov(x,y)

For example, F(x+a) = u + a, so

cov(x + a)

E{(x+a—(u+a))(x+a—(u+a))T}

= B{x-mx-m"}

= cov(x)



Random Vectors and Matrices

Here’s a useful formula

Let E(y) = p, cov(y) = X, and let A and B be matrices of
constants. Then

cov(Ay,By) = AXB'.
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Centering

Denote the centered version of the random vector x by
X=X — WU, so that
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Linear combinations of random vectors

L = Axxy+---+A,x,+b
L = L-E(L)
= Aixi+--+Anx,+Db
—A1py == Ampy, — b

= Ai(x1—py) + o+ An(Xm — )
= Al)ccl ++Am§(m

So that

cov(L) = E(LL
cov(Li,Ly) = E(Li1L2)
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cT

cov(Ly, Ly) = E(L L)

Let

Li = Arxy +--+ A, X,
C c
Lo =B Yi1+---+B,Y,
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A better rule for covariances of linear combinations

cov(Ly,La) = L

c c c c T
(A1X1+"'+Amxl) (B1Y1+"'+Bnyn> }
(A1X1+ -+ A, X1)<Y1Bl+ +yn n)}

= E{Al X1Y1 B, + A, X1§’2 By +--+An §myn BI}
c cT

- AlE{xlyl}BlT+A1E{§1§;}B;+~~+AmE{§m }B

= Ajcov(x1,y1)B] 4+ Ajcov(x1,y2) Bs + -+ Ay cov(Xm, yn) B,

m

= ZiAl cov(xi,yj)BjT

i=1 j=1

That is, calculate the covariance of each term in L; with each
term in Lo, and add them up.
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Example: cov(x +y)

cov(x+y) = cov(x+y,x+Yy)
= cov(x,x) + cov(x,y) + cov(y,x) + cov(y,y)
= cov(x) + cov(y) + cov(x,y) + cov(y, x)

e cov(y,x) # cov(X,y)

o cov(y,x) = cov(x,y)"



Normal

The Multivariate Normal Distribution

The p x 1 random vector x is said to have a multivariate normal
distribution, and we write x ~ Np(u, X), if x has (joint) density

xzéex —lx— T x—
S SRR

where p is p X 1 and X is p X p symmetric and positive definite.
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The Bivariate Normal Density

Multivariate normal with p = 2 variables

fysued
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Analogies

Multivariate normal reduces to the univariate normal when
p=1.

@ Univariate Normal
o f(z)= 5 exp{—%(ﬁé‘)2}
o E(x) =p,Var(x) = o?
o EZ ~x2(1)

@ Multivariate Normal
o f(x)= m exp{—3(x—p) =7 (x— p)}
o E(x)=p, cov(x) =
o (x—p) =7 (x—p)~x*(p)

N
N
1



Multivariate Normal

More properties of the multivariate normal

e If ¢ is a vector of constants, x + ¢ ~ N(c + pu, X)

o If A is a matrix of constants, Ax ~ N(Au,AZAT)

e Linear combinations of multivariate normals are
multivariate normal.

o All the marginals (dimension less than p) of x are
(multivariate) normal.

o For the multivariate normal, zero covariance implies
independence. The multivariate normal is the only
continuous distribution with this property.



Multivariate Normal

Multivariate Normal Likelihood
xn X N (s, 3)
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Simulating from a multivariate norrmal

Simulation of univariate normals is built-in. Use rnorm().

Say you want to simulate from x ~ N,(u,3).
o Generate z ~ Np,(0,I).
o Calculate 2 using spectral decomposition.

o Let x = N2z +p ~ Np(p, X).



rmvn Function

> source("https://www.utstat.toronto.edu/ brunner/openSEM/fun/rmvn.txt")
> A = rbind(c(1.0,0.5),
+ c(0.5,1.0))
> A
[,11 [,2]
[1,] 1.0 0.5
[2,] 0.5 1.0
> datta = rmvn(10,mu=c(0,0),sigma=A); datta
[,1] [,2]
[1,] -2.643825316 -0.69926774
[2,] -1.572814887 -0.21980248
[3,] -0.387355643 -0.75080547
[4,] -0.168534571 -1.28075830
[5,] -0.716922363 -0.06556707
[6,] -0.272368211 -0.15602646
[7,] -0.007593983 0.59682941
[8,]1 0.436463462 1.02248006
[9,] -0.193334362 -1.23877080
[10,] -0.859909183 -0.36091445
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For the Record

# rmvn: Simulate from multivariate normal
rmvn <- function(nn,mu,sigma)
# Returns an nn by kk matrix, rows are independent MVN(mu,sigma)
{
kk <- length(mu)
dsig <- dim(sigma)
if(dsig[1] !'= dsig[2]) stop("Sigma must be square.")
if(dsigl[1] !'= kk) stop("Sizes of sigma and mu are inconsistent.")
ev <- eigen(sigma)
if (min(eigen(sigma)$values) < 0)
stop("Sigma must have non-negative eigenvalues.")
sqrl <- diag(sqrt(ev$values))
PP <- ev$vectors
ZZ <- rnorm(nn*kk) ; dim(ZZ) <- c(kk,nn)
out <- t(PPY%*Ysqrli*%ZZ+mu)
return(out)
}# End of function rmvn
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The IXTEX source code is available from the course
website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23
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