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Preparation

Change of Variables
A big theorem

E(g(X)) =
∑
x

g(x) pX (x)

E(g(x)) =
∑
x1

· · ·
∑
xp

g(x1, . . . , xp) px(x1, . . . , xp)

E(g(X)) =

∫ ∞
−∞

g(x) fX (x) dx

E(g(x)) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xp) fx(x1, . . . , xp) dx1 . . . dxp
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Preparation

Indicator functions
Conditional expectation and the Law of Total Probability

IA(x) is the indicator function for the set A. It is defined by

IA(x) =

{
1 for x ∈ A
0 for x /∈ A

Also sometimes written I(x ∈ A)

E(g(X)) = E(IA(X))

=
∑
x

IA(x)p(x), or∫ ∞
−∞

IA(x)f(x) dx

= P{X ∈ A}

So the expected value of an indicator is a probability.
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Preparation

Applies to conditional probabilities too
Y given X, like regression

E(IA(Y )|X = x) =
∑
y

IA(y)p(y|x), or∫ ∞
−∞

IA(y)f (y|x) dy

= Pr{Y ∈ A|X = x}

So the conditional expected value of an indicator is a conditional
probability.
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Preparation

Double expectation

E (Y ) = E {E(Y |X)}
= Ex {Ey(Y |X)}
= Ex {g(X)}
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Preparation

Showing E (Y ) = E {E(Y |X)}
Again note E {E(Y |X)} is an example of E(g(X))

E {E(Y |X)} =

∫
E[Y |X = x]fx(x) dx

=

∫ (∫
yfy|x(y|x) dy

)
fx(x) dx

=

∫ (∫
y
fx,y(x, y)

fx(x)
dy

)
fx(x) dx

=

∫ ∫
y fx,y(x, y) dy dx

= E(Y )
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Preparation

Double expectation: E (Y ) = E {E(Y |X)}

Pr{Y ∈ A} = E (E[IA(Y )|X])

= E (Pr{Y ∈ A|X})

=

∫ ∞
−∞

Pr{X ∈ A|X = x}fx(x) dx, or∑
x

Pr{Y ∈ A|X = x}px(x)

This is known as the Law of Total Probability
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Random Explanatory Variables

Random Explanatory Variables

in Regression
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Random Explanatory Variables

Example: Multivariate Regression
These are all vectors and matrices.

Independently for i = 1, . . . , n,

yi = β0 + β1xi + εi, where

yi is an q × 1 random vector of observable response variables, so the regression
is multivariate; there are q response variables.

xi is a p× 1 observable random vector; there are p explanatory variables.
E(xi) = µx and cov(xi) = Φp×p. The vector µx and the matrix Φ are
unknown parameters.

β0 is a q × 1 vector of unknown constants.

β1 is a q × p matrix of unknown constants. These are the regression
coefficients, with one row for each response variable and one column for each
explanatory variable.

εi is a q × 1 unobservable random vector with expected value zero and
unknown variance-covariance matrix cov(εi) = Ψq×q.

εi is independent of xi.
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Random Explanatory Variables

Three explanatory variables and two response variables

X
1

X
3

X
2

Y
1

Y
2

ε
1

ε
2
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Random Explanatory Variables

Regression Equations

In scalar form,

yi,1 = β1,0 + β1,1xi,1 + β1,2xi,2 + β1,3xi,3 + εi,1

yi,2 = β2,0 + β2,1xi,1 + β2,2xi,2 + β2,3xi,3 + εi,2

In matrix form,

yi = β0 + β1 xi + εi

(
yi,1
yi,2

)
=

(
β1,0
β2,0

)
+

(
β1,1 β1,2 β1,3
β2,1 β2,2 β2,3

)  xi,1
xi,2
xi,3

 +

(
εi,1
εi,2

)
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Random Explanatory Variables

Simulate Multivariate Regression

> # Set parameter values

> # Regression coefficients

> beta10 = 1; beta11 = 1; beta12 = 0; beta13 = 3

> beta20 = 2; beta21 = 0; beta22 = 4; beta23 = 0

> # Expected values of x variables

> mux = c(10,20,10)

> # Variance-covariance matrix of x variables

> Phi = rbind(c(25, 25, 15),

+ c(25, 100, 35),

+ c(15, 35, 25))

> # Variance-covariance matrix of error terms

> Psi = rbind(c(500, 750),

+ c(750, 2000))

> source("https://www.utstat.toronto.edu/~brunner/openSEM/fun/rmvn.txt")
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Random Explanatory Variables

First an experiment

> x = rmvn(nn=100000, mu=mux, sigma=Phi)

> dim(x)

[1] 100000 3

> head(x)

[,1] [,2] [,3]

[1,] 8.956959 7.537267 8.256174

[2,] 21.678814 21.764190 20.103837

[3,] 10.340543 28.986937 17.104511

[4,] 3.760735 10.528940 7.981938

[5,] 9.916082 24.939210 10.681681

[6,] 7.001012 21.927595 16.729394
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Random Explanatory Variables

Estimation should be very good with n = 100, 000

> apply(x,MARGIN=2,FUN=mean) # Column sample means

[1] 10.00862 19.96847 10.00400

> mux # Population means, for comparison

[1] 10 20 10

> var(x) # Sample variance-covariance matrix with n-1

[,1] [,2] [,3]

[1,] 24.95666 25.07949 14.95961

[2,] 25.07949 100.16989 35.05957

[3,] 14.95961 35.05957 24.95647

> Phi # Population variance-covariance matrix, for comparison

[,1] [,2] [,3]

[1,] 25 25 15

[2,] 25 100 35

[3,] 15 35 25
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Random Explanatory Variables

Simulate data from the model

> n = 500

> x = rmvn(nn=n, mu=mux, sigma=Phi)

> epsilon = rmvn(nn=n, mu=c(0,0), sigma=Psi)

> # Extract variables (for clarity)

> x1 = x[,1]; x2 = x[,2]; x3 = x[,3]

> epsilon1 = epsilon[,1]; epsilon2 = epsilon[,2]

> # Generate y

> y1 = beta10 + beta11*x1 + beta12*x2 + beta13*x3 + epsilon1

> y2 = beta20 + beta21*x1 + beta22*x2 + beta23*x3 + epsilon2

> length(y1)

[1] 500
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Random Explanatory Variables

Calculate MOM estimate of β1 (the slopes)

β̂1 = Σ̂yxΣ̂
−1

x

> # Calculate MOM estimate of beta1 (the slopes)

> y = cbind(y1,y2)

> Sigmahat_x = var(x) * (n-1)/n

> Sigmahat_xy = var(x,y) * (n-1)/n

> beta1hat = t(Sigmahat_xy) %*% solve(Sigmahat_x)

> round(beta1hat,3)

[,1] [,2] [,3]

y1 0.707 0.130 2.967

y2 -0.300 4.194 0.228
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Random Explanatory Variables

True β1 for Comparison

> # True beta1

> beta1 = rbind(c(beta11, beta12, beta13),

+ c(beta21, beta22, beta23))

> beta1

[,1] [,2] [,3]

[1,] 1 0 3

[2,] 0 4 0

> # Estimated beta1

> round(beta1hat,3)

[,1] [,2] [,3]

y1 0.707 0.130 2.967

y2 -0.300 4.194 0.228
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Random Explanatory Variables

MOM = Least Squares

> # MOM estimate of slopes

> round(beta1hat,3)

[,1] [,2] [,3]

y1 0.707 0.130 2.967

y2 -0.300 4.194 0.228

> # Least squares estimate

> LSbetahat = lsfit(x,y)$coefficients #$

> t(round( LSbetahat ,3))

Intercept X1 X2 X3

Y1 0.658 0.707 0.130 2.967

Y2 -2.440 -0.300 4.194 0.228
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Random Explanatory Variables

But this is not how the standard theory goes

Don’t you think its strange?

In the general linear regression model, the X matrix is supposed
to be full of fixed constants.

This is convenient mathematically. Think of E(β̂).

But in any non-experimental study, . . .

View the usual model as conditional on X = X.

All the probabilities and expected values in the typical regression
course are conditional probabilities and conditional expected
values.

Does this make sense?
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Random Explanatory Variables

β̂ is (conditionally) unbiased

E(β̂|X = X) = β for any fixed X

It’s unconditionally unbiased too.

E{β̂} = E{E{β̂|X}} = E{β} = β
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Random Explanatory Variables

Conditional size α test, Critical value fα

Pr{F > fα|X = X} = α

Pr{F > fα} =

∫
· · ·
∫
Pr{F > fα|X = X}f(X) dX

=

∫
· · ·
∫
αf(X) dX

= α

∫
· · ·
∫
f(X) dX

= α
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Random Explanatory Variables

The moral of the story

Don’t worry.

Even though the explanatory variables are often random, we can
apply the usual fixed X model without fear.

Estimators are still unbiased.

Tests have the right Type I error probability.

Similar arguments apply to confidence intervals and prediction
intervals.

And it’s all distribution-free with respect to X .
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Random Explanatory Variables

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23
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