
Things you already know Trace Spectral decomposition Positive definite Square root matrices Extras R

More Linear Algebra1

STA 431: Fall 2023

1See Appendix A for more detail. This slide show is an open-source
document. See last slide for copyright information.
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You already know about

Matrices A = [aij ]

Matrix addition and subtraction A + B = [aij + bij ]

Column vectors v = [vj ]

Scalar multiplication aB = [a bij ]

Matrix multiplication AB =

[∑
k

aikbkj

]
In words: The i, j element of AB is the inner product of
row i of A with column j of B.

Inverse A−1A = AA−1 = I

Transpose A> = [aji]

Symmetric matrices A = A>

Determinants

Linear independence
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Inverses: Proving B = A−1

B = A−1 means AB = BA = I.

It looks like you have two things to show.

But if A and B are square matrices of the same size, you
only need to do it in one direction.
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Theorem

If A and B are square matrices and AB = I, then A and B are
inverses.

Proof : Suppose AB = I

A and B must both have inverses, for otherwise
|AB| = |A| |B| = 0 6= |I| = 1. Now,

AB = I⇒ ABB−1 = IB−1 ⇒ A = B−1.

AB = I⇒ A−1AB = A−1I⇒ B = A−1. �
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How to show A−1> = A>−1

Let B = A−1.

Want to prove that B> is the inverse of A>.

It is enough to show that B>A> = I.

AB = I⇒ B>A> = I> = I �
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Three mistakes that will get you a zero
Numbers are 1 × 1 matrices, but larger matrices are not just numbers.

You will get a zero if you

Write AB = BA. It’s not true in general.

Write A−1 when A is not a square matrix. The inverse is
not even defined.

Represent the inverse of a matrix (even if it exists) by

writing it in the denominator, like a>B−1a = a>a
B .

Matrices are not just numbers.

If you commit one of these crimes, the mark for the question (or
part of a question, like 3c) is zero, regardless of what else you
write.
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Half marks off, at least

You will lose at least half marks for writing a product like AB
when the number of colmns in A does not equal the number of
rows in B.
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Linear combination of vectors

Let x1, . . . ,xp be n× 1 vectors and a1, . . . , ap be scalars. A
linear combination is

c = a1x1 + a2x2 + · · · + apxp

= a1



x11

x21

...

xn1


+ a2



x12

x22

...

xn2


+ · · · + ap



x1p

x2p

...

xnp


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Linear independence

A set of vectors x1, . . . ,xp is said to be linearly dependent if
there is a set of scalars a1, . . . , ap, not all zero, with

a1


x11
x21

...
xn1

+ a2


x12
x22

...
xn2

+ · · ·+ ap


x1p
x2p

...
xnp

 =


0
0
...
0


If no such constants a1, . . . , ap exist, the vectors are linearly
independent. That is,

If a1x1 + a2x2 + · · ·+ apxp = 0 implies a1 = a2 · · · = ap = 0,
then the vectors are said to be linearly independent.
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Bind the vectors x1, . . . ,xp into a matrix

a1x1 + a2x2 + · · · + apxp

=


x11

x21

...
xn1

 a1 +


x12

x22

...
xn2

 a2 + · · · +


x1p

x2p

...
xnp

 ap

=


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
...

xn1 xn2 · · · nnp




a1

a2

...
ap


= Xa
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A more convenient definition of linear independence
a1x1 + a2x2 + · · · + apxp = Xa

Let X be an n× p matrix of constants. The columns of X are
said to be linearly dependent if there exists a 6= 0 with Xa = 0.
We will say that the columns of X are linearly independent if
Xa = 0 implies a = 0.

For example, show that B−1 exists implies that the columns of
B are linearly independent.

Ba = 0⇒ B−1Ba = B−10⇒ a = 0.

�
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Trace of a square matrix: Sum of the diagonal elements

tr(A) =

n∑
i=1

ai,i.

Obvious: tr(A + B) = tr(A) + tr(B).

Not obvious: tr(AB) = tr(BA)

Even though AB 6= BA
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tr(AB) = tr(BA)
Let A be p× q and B be q × p, so that AB is p× p and BA is q × q.

First, agree that
∑n

i=1 xi =
∑n

j=1 xj .

tr(AB) = tr(

(
q∑

k=1

aikbkj

)
)

=

p∑
i=1

q∑
k=1

aikbki

=

q∑
k=1

p∑
i=1

bkiaik

=

q∑
i=1

p∑
k=1

bikaki

= tr(

(
p∑

k=1

bikakj

)
)

= tr(BA)
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Example

Let A =

(
2 1 0
5 −4 3

)
and B =

 1 0
2 3
−1 3



AB =

(
4 3
−6 −3

)

BA =

 2 1 0
19 −10 9
13 −13 9


And tr(AB) = tr(BA).
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Eigenvalues and eigenvectors

Let A = [ai,j ] be an n× n matrix, so that the following applies
to square matrices.
A is said to have an eigenvalue λ and (non-zero) eigenvector x
corresponding to λ if

Ax = λx.

Eigenvalues are the λ values that solve the determinantal
equation |A− λI| = 0.

The determinant is the product of the eigenvalues:
|A| =

∏n
i=1 λi
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Spectral decomposition of symmetric matrices

The Spectral decomposition theorem says that every square and
symmetric matrix A = [ai,j ] may be written

A = CDC>,

where the columns of C (which may also be denoted x1, . . . ,xn)
are the eigenvectors of A, and the diagonal matrix D contains
the corresponding eigenvalues.

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


The eigenvectors may be chosen to be orthonormal, so that C is
an orthogonal matrix. That is, CC> = C>C = I.
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Positive definite matrices

The n× n matrix A is said to be positive definite if

y>Ay > 0

for all n× 1 vectors y 6= 0.

It is called non-negative definite (or sometimes positive
semi-definite) if y>Ay ≥ 0.
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Example: Show X>X non-negative definite

Let X be an n× p matrix of real constants and let y be p× 1.
Then z = Xy is n× 1, and

y> (X>X)y

= (Xy)>(Xy)

= z>z

=

n∑
i=1

z2i ≥ 0 �
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Some properties of symmetric positive definite matrices
Variance-covariance matrices are often assumed positive definite.

For a symmetric matrix,

Positive definite

⇓
All eigenvalues positive

⇓
Inverse exists ⇔ Columns (rows) linearly independent.

If a real symmetric matrix is also non-negative definite, as a
variance-covariance matrix must be, Inverse exists ⇒ Positive
definite
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Showing Positive definite ⇒ Eigenvalues positive

Let the p× p matrix A be positive definite, so that y>Ay > 0
for all y 6= 0.

λ an eigenvalue means Ax = λx, with x>x = 1.

Positive definite means 0 < x>Ax = x>λx = λx>x = λ.
�
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Inverse of a diagonal matrix
To set things up

Suppose D = [di,j ] is a diagonal matrix with non-zero diagonal
elements. It is easy to verify that

d1,1 0 · · · 0
0 d2,2 · · · 0
...

...
. . .

...
0 0 · · · dn,n




1/d1,1 0 · · · 0
0 1/d2,2 · · · 0
...

...
. . .

...
0 0 · · · 1/dn,n

 = I

So D−1 exists.
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Showing Eigenvalues positive ⇒ Inverse exists
For a symmetric, positive definite matrix

Let A be symmetric and positive definite. Then A = CDC>,
and its eigenvalues are positive.

Let B = CD−1C>. Show B = A−1.

AB = CDC> CD−1C> = I

So

A−1 = CD−1C>
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Square root matrices
For symmetric, non-negative definite matrices

To set things up, define

D1/2 =


√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λn


So that

D1/2D1/2 =


√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λn



√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λn



=


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = D
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For a non-negative definite, symmetric matrix A
So that A = CDC>

Define

A1/2 = CD1/2C>

Calculate

A1/2A1/2 = CD1/2C>CD1/2C>

= CD1/2 ID1/2C>

= CD1/2D1/2C>

= CDC>

= A

25 / 41



Things you already know Trace Spectral decomposition Positive definite Square root matrices Extras R

The square root of the inverse is the inverse of the
square root

Let A be symmetric and positive definite, with A = CDC>.

Let B = CD−1/2C>. What is D−1/2?

Show B =
(
A−1

)1/2
.

BB = CD−1/2C>CD−1/2C>

= CD−1C> = A−1

Show B =
(
A1/2

)−1
A1/2B = CD1/2C> CD−1/2C> = I

Just write A−1/2 = CD−1/2C>
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Extras
You may not know about these, and we may use them occasionally

Rank

Partitioned matrices
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Rank

Row rank is the number of linearly independent rows.

Column rank is the number of linearly independent
columns.

Rank of a matrix is the minimum of row rank and column
rank.

rank(AB) = min (rank(A), rank(B)).
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Partitioned matrix

A matrix of matrices [
A B

C D

]
Row by column (matrix) multiplication works, provided
the matrices are the right sizes.
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Matrix calculation with R

> is.matrix(3) # Is the number 3 a 1x1 matrix?

[1] FALSE

> treecorr = cor(trees); treecorr

Girth Height Volume

Girth 1.0000000 0.5192801 0.9671194

Height 0.5192801 1.0000000 0.5982497

Volume 0.9671194 0.5982497 1.0000000

> is.matrix(treecorr)

[1] TRUE
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Creating matrices
Bind rows into a matrix

> # Bind rows of a matrix together

> A = rbind( c(3, 2, 6,8),

+ c(2,10,-7,4),

+ c(6, 6, 9,1) ); A

[,1] [,2] [,3] [,4]

[1,] 3 2 6 8

[2,] 2 10 -7 4

[3,] 6 6 9 1

> # Transpose

> t(A)

[,1] [,2] [,3]

[1,] 3 2 6

[2,] 2 10 6

[3,] 6 -7 9

[4,] 8 4 1
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Matrix multiplication
Remember, A is 3 × 4

> # U = A A^t (3x3), V = A^t A (4x4)

> U = A %*% t(A)

> V = t(A) %*% A; V

[,1] [,2] [,3] [,4]

[1,] 49 62 58 38

[2,] 62 140 -4 62

[3,] 58 -4 166 29

[4,] 38 62 29 81
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Determinants

> # # U = A A^t (3x3), V = A^t A (4x4)

> # So rank(V) cannot exceed 3 and det(V)=0

> det(U); det(V)

[1] 1490273

[1] -3.622862e-09

Inverse of U exists, but inverse of V does not.
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Inverses

The solve function is for solving systems of linear
equations like Mx = b.

Just typing solve(M) gives M−1.

> # Recall U = A A^t (3x3), V = A^t A (4x4)

> solve(U)

[,1] [,2] [,3]

[1,] 0.0173505123 -8.508508e-04 -1.029342e-02

[2,] -0.0008508508 5.997559e-03 2.013054e-06

[3,] -0.0102934160 2.013054e-06 1.264265e-02

> solve(V)

Error in solve.default(V) :

system is computationally singular: reciprocal condition

number = 6.64193e-18
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Eigenvalues and eigenvectors

> # Recall U = A A^t (3x3), V = A^t A (4x4)

> eigen(U)

$values

[1] 234.01162 162.89294 39.09544

$vectors

[,1] [,2] [,3]

[1,] -0.6025375 0.1592598 0.78203893

[2,] -0.2964610 -0.9544379 -0.03404605

[3,] -0.7409854 0.2523581 -0.62229894
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V should have at least one zero eigenvalue
Because A is 3× 4, V = A>A, and the rank of a product is the minimum rank of the
matrices.

> eigen(V)

$values

[1] 2.340116e+02 1.628929e+02 3.909544e+01 -1.012719e-14

$vectors

[,1] [,2] [,3] [,4]

[1,] -0.4475551 0.006507269 -0.2328249 0.863391352

[2,] -0.5632053 -0.604226296 -0.4014589 -0.395652773

[3,] -0.5366171 0.776297432 -0.1071763 -0.312917928

[4,] -0.4410627 -0.179528649 0.8792818 0.009829883
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Spectral decomposition V = CDC>

> eigenV = eigen(V)

> C = eigenV$vectors; D = diag(eigenV$values); D

[,1] [,2] [,3] [,4]

[1,] 234.0116 0.0000 0.00000 0.000000e+00

[2,] 0.0000 162.8929 0.00000 0.000000e+00

[3,] 0.0000 0.0000 39.09544 0.000000e+00

[4,] 0.0000 0.0000 0.00000 -1.012719e-14

> # C is an orthoganal matrix

> C %*% t(C)

[,1] [,2] [,3] [,4]

[1,] 1.000000e+00 5.551115e-17 0.000000e+00 -3.989864e-17

[2,] 5.551115e-17 1.000000e+00 2.636780e-16 3.556183e-17

[3,] 0.000000e+00 2.636780e-16 1.000000e+00 2.558717e-16

[4,] -3.989864e-17 3.556183e-17 2.558717e-16 1.000000e+00
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Verify V = CDC>

> V; C %*% D %*% t(C)

[,1] [,2] [,3] [,4]

[1,] 49 62 58 38

[2,] 62 140 -4 62

[3,] 58 -4 166 29

[4,] 38 62 29 81

[,1] [,2] [,3] [,4]

[1,] 49 62 58 38

[2,] 62 140 -4 62

[3,] 58 -4 166 29

[4,] 38 62 29 81
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Square root matrix V1/2 = CD1/2C>

> sqrtV = C %*% sqrt(D) %*% t(C)

Warning message:

In sqrt(D) : NaNs produced

> # Multiply to get V

> sqrtV %*% sqrtV; V

[,1] [,2] [,3] [,4]

[1,] NaN NaN NaN NaN

[2,] NaN NaN NaN NaN

[3,] NaN NaN NaN NaN

[4,] NaN NaN NaN NaN

[,1] [,2] [,3] [,4]

[1,] 49 62 58 38

[2,] 62 140 -4 62

[3,] 58 -4 166 29

[4,] 38 62 29 81
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What happened?

> D; sqrt(D)

[,1] [,2] [,3] [,4]

[1,] 234.0116 0.0000 0.00000 0.000000e+00

[2,] 0.0000 162.8929 0.00000 0.000000e+00

[3,] 0.0000 0.0000 39.09544 0.000000e+00

[4,] 0.0000 0.0000 0.00000 -1.012719e-14

[,1] [,2] [,3] [,4]

[1,] 15.29744 0.00000 0.000000 0

[2,] 0.00000 12.76295 0.000000 0

[3,] 0.00000 0.00000 6.252635 0

[4,] 0.00000 0.00000 0.000000 NaN

Warning message:

In sqrt(D) : NaNs produced
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23
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