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Measurement Error

Measurement Error

Snack food consumption

Exercise

Income

Cause of death (classification error)

Even amount of drug that reaches animals blood stream in an
experimental study.

Is there anything that is not measured with error?
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Measurement Error

Additive measurement error
A very simple model

W = X + e

Where E(X) = µx, E(e) = 0, V ar(X) = σ2x, V ar(e) = σ2e , and
Cov(X, e) = 0.
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Measurement Error

Variance and Covariance
W = X + e

V ar(W ) = V ar(X) + V ar(e)

= σ2x + σ2e

Cov(X,W ) = Cov(X, X + e)

= Cov(X,X) + Cov(X, e)

= σ2x
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Measurement Error

Explained Variance

Variance is an index of unit-to-unit variation in a measurement.

Explaining unit-to-unit variation is an important goal of Science.

How much of the variation in an observed variable comes from
variation in the latent quantity of interest, and how much comes
from random noise?
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Reliability

Definition of Reliability

Reliability is the squared correlation between the observed variable and
the latent variable (true score).
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Reliability

Calculation of Reliability
Squared correlation between observed and true score

ρ2 =

(
Cov(X,W )

SD(X)SD(W )

)2

=

(
σ2x√

σ2x
√
σ2x + σ2e

)2

=
σ4x

σ2x(σ2x + σ2e)

=
σ2x

σ2x + σ2e
.

Reliability is the proportion of the variance in the observed variable
that comes from the latent variable of interest, and not from random
error.
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Reliability

How to estimate reliability from data

Correlate usual measurement with “Gold Standard?”

Not very realistic, except maybe for some bio-markers.

One answer: Measure twice.
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Reliability

Measure twice
Called “equivalent measurements” because error variance is the same

W1 = X + e1

W2 = X + e2,

where E(X) = µx, V ar(X) = σ2x, E(e1) = E(e2) = 0,
V ar(e1) = V ar(e2) = σ2e , and X, e1 and e2 are all independent.
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Reliability

Reliability equals the correlation between two
equivalent measurements
This is a population correlation

Corr(W1,W2) =
Cov(W1,W2)

SD(W1)SD(W2)

=
Cov(X + e1, X + e2)

σ2
x + σ2

e

=
Cov(X,X) + 0 + 0 + 0

σ2
x + σ2

e

=
σ2
x

σ2
x + σ2

e

,

which is the reliability.
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Reliability

Estimate the reliability: Measure twice for a sample of
size n
With a well-chosen time gap

Calculate r =
∑n
i=1(Wi1−W 1)(Wi2−W 2)√∑n

i=1(Wi1−W 1)2
√∑n

i=1(Wi2−W 2)2
.

Test-retest reliability

Alternate forms reliability

Split-half reliability
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Reliability

Omitted variables can cause correlated measurement
error
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W1 W2
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Leading to an over-estimate of reliability.
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Consequences of Ignoring Measurement Error

Measurement error in regression analysis

Mostly we are interested in relationships between latent (true)
variables.

But all we have at best are the true variables measured with error.

Models like Yi = β0 + β1Xi1 + · · ·+ βkXik + εi are mis-specified.

The most common way of dealing with measurement error in
regression is to ignore it.

What effect does this have on estimation and inference?

First consider ignoring measurement error just in the response
variable.
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Consequences of Ignoring Measurement Error

Measurement error in the response variable

Y����
X

β1

V
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True model:

Yi = β0 + β1Xi + εi

Vi = ν + Yi + ei

Naive model: Vi = β0 + β1Xi + εi
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Consequences of Ignoring Measurement Error

Is β̂1 consistent?
Ignoring measurement error in Y

First calculate Cov(Xi, Vi). Under the true model

Yi = β0 + β1Xi + εi

Vi = ν + Yi + ei,

Cov(Xi, Vi) = Cov(X, β1Xi + εi)

= β1σ
2
x
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Consequences of Ignoring Measurement Error

Target of β̂1 as n→∞
Have Cov(Xi, Vi) = β1σ

2
x and V ar(Xi) = σ2

x

β̂1 =

∑n
i=1(Xi −X)(Vi − V )∑n

i=1(Xi −X)2

=
σ̂x,v
σ̂2x

p→ Cov(Xi, Vi)

V ar(Xi)

=
β1σ

2
x

σ2x
= β1
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Consequences of Ignoring Measurement Error

Why did it work?

Yi = β0 + β1Xi + εi

Vi = ν + Yi + e

= ν + (β0 + β1Xi + εi) + ei

= (ν + β0) + β1Xi + (εi + ei)

= β′0 + β1Xi + ε′i

This is a re-parameterization.

Most definitely not one-to-one.

(ν, β0) is absorbed into β′0.

(εi, ei) is absorbed into ε′i.

Can’t know everything, but all we care about is β1 anyway.
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Consequences of Ignoring Measurement Error

Don’t Worry

If a response variable appears to have no
measurement error, assume it does have
measurement error but the problem has been
re-parameterized.

Measurement error in Y is part of ε.
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Consequences of Ignoring Measurement Error

Measurement error in a single explanatory variable

X����
β1

W Y
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True model:

Yi = β0 + β1Xi + εi

Wi = Xi + ei,

Naive model: Yi = β0 + β1Wi + εi
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Consequences of Ignoring Measurement Error

Target of β̂1 as n→∞
Yi = β0 + β1Xi + εi and Wi = Xi + ei

Have Cov(Wi, Yi) = β1σ
2
x and V ar(Wi) = σ2x + σ2e

β̂1 =

∑n
i=1(Wi −W )(Yi − Y )∑n

i=1(Wi −W )2

=
σ̂w,y
σ̂2w

p→ Cov(Wi, Yi)

V ar(Wi)

= β1

(
σ2x

σ2x + σ2e

)
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Consequences of Ignoring Measurement Error

β̂1
p→ β1

(
σ2
x

σ2
x+σ2

e

)
Wi = Xi + ei

β̂1 converges to β times the reliability of Wi.

It’s inconsistent.

Because the reliability is less than one, it’s asymptotically biased
toward zero.

The worse the measurement of Xi, the more the asymptotic bias.

Sometimes called “attenuation” (weakening).

If a good estimate of reliability is available from another source,
one can “correct for attenuation.”

When H0 : β1 = 0 is true, it’s not a serious problem.

False sense of security?
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Consequences of Ignoring Measurement Error

Measurement error in two explanatory variables

β
1

Y
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X
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12

β
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Want to assess the relationship of X2 to Y , controlling for X1 by
testing H0 : β2 = 0.
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Consequences of Ignoring Measurement Error

Statement of the model
Independently for i = 1, . . . , n

Yi = β0 + β1Xi,1 + β2Xi,2 + εi

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,2 + ei,2,

where

E(Xi,1) = µ1, E(Xi,2) = µ2, E(εi) = E(ei,1) = E(ei,2) = 0,

V ar(εi) = ψ, V ar(ei,1) = ω1, V ar(ei,2) = ω2,

The errors εi, ei,1 and ei,2 are all independent,

Xi,1 and Xi,2 are independent of εi, ei,1 and ei,2, and

cov

(
Xi,1
Xi,1

)
=

(
φ11 φ12

φ12 φ22

)
.

Note

Reliability of W1 is φ11
φ11+ω1

.

Reliability of W2 is φ22
φ22+ω2

.
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Consequences of Ignoring Measurement Error

True Model versus Naive Model

True model:

Yi = β0 + β1Xi,1 + β2Xi,2 + εi

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,2 + ei,2,

Naive model: Yi = β0 + β1Wi,1 + β2Wi,2 + εi

Fit the naive model.

See what happens to β̂2 as n→∞ when the true model holds.

Start by calculating cov(di) = cov

 Wi,1

Wi,2

Yi

.
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Consequences of Ignoring Measurement Error

Covariance matrix of the observable data

Σ = cov

 Wi,1

Wi,2

Yi



=

 ω1 + φ11 φ12 β1φ11 + β2φ12

φ12 ω2 + φ22 β1φ12 + β2φ22

β1φ11 + β2φ12 β1φ12 + β2φ22 β2
1φ11 + 2β1β2φ12 + β2

2φ22 + ψ


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Consequences of Ignoring Measurement Error

What happens to β̂2 as n→∞?
Interested in H0 : β2 = 0

β̂2 =
σ̂11σ̂23 − σ̂12σ̂13

σ̂11σ̂22 − σ̂2
12

p→ σ11σ23 − σ12σ13

σ11σ22 − σ2
12

=
β1ω1φ12 + β2(ω1φ22 + φ11φ22 − φ2

12)

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

6= β2

Inconsistent.
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Consequences of Ignoring Measurement Error

When H0 : β2 = 0 is true

β̂2
p→ β1ω1φ12

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

So β̂2 goes to the wrong target unless

There is no relationship between X1 and Y , or

There is no measurement error in W1, or

There is no correlation between X1 and X2.

Also, the t statistic for H0 : β2 = 0 goes to plus or minus ∞ and the
p-value

p→ 0. Remember, H0 is true.

28 / 42



Consequences of Ignoring Measurement Error

How bad is it for finite sample sizes?
β̂2

p→ β1ω1φ12

(φ1,1+ω1)(φ2,2+ω2)−φ2
12

A big simulation study (Brunner and Austin, 2009) with six factors

Sample size: n = 50, 100, 250, 500, 1000

Corr(X1, X2): φ12 = 0.00, 0.25, 0.75, 0.80, 0.90

Proportion of variance in Y explained by X1: 0.25, 0.50, 0.75

Reliability of W1: 0.50, 0.75, 0.80, 0.90, 0.95

Reliability of W2: 0.50, 0.75, 0.80, 0.90, 0.95

Distribution of latent variables and error terms: Normal, Uniform,
t, Pareto.

There were 5× 5× 3× 5× 5× 4 = 7,500 treatment combinations.
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Consequences of Ignoring Measurement Error

Simulation study procedure

Within each of the 5× 5× 3× 5× 5× 4 = 7,500 treatment
combinations,

10,000 random data sets were generated

For a total of 75 million data sets

All generated according to the true model, with β2 = 0.

Fit naive model, test H0 : β2 = 0 at α = 0.05.

Proportion of times H0 is rejected is a Monte Carlo estimate of the
Type I Error Probability.

It should be around 0.05.
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Consequences of Ignoring Measurement Error

Look at a small part of the results

Both reliabilities = 0.90

Everything is normally distributed

β0 = 1, β1 = 1 and of course β2 = 0.
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Consequences of Ignoring Measurement Error

Table 1 of Brunner and Austin (2009, p.39)
Canadian Journal of Statistics, Vol. 37, Pages 33-46, Used without permission

2009 INFLATION OF TYPE I ERROR 39 

Table 1: Estimated Type I error rates when independent variables and measurement errors are all normal, 

and reliability of W\ and W2 both equal 0.90. 

Correlation between X\ and X2 

N 0.0 0.2 0.4 0.6 0.8 

25% of variance in Fis explained by Xi 

50 0.0476+ 0.0505+ 0.0636 

100 0.0504+ 0.0521+ 0.0834 

250 0.0467+ 0.0533+ 0.1402 

500 0.0468+ 0.0595+ 0.2300 

1,000 0.0505+ 0.0734 0.4094 

50% of variance in Y is explained by X\ 

50 0.0460+ 0.0520+ 0.0963 

100 0.0535+ 0.0569+ 0.1461 

250 0.0483+ 0.0625 0.3068 

500 0.0515+ 0.0780 0.5323 

1,000 0.0481+ 0.1185 0.8273 

75% of variance in Fis explained by X] 

50 0.0485+ 0.0579+ 0.1727 

100 0.0541+ 0.0679 0.3101 

250 0.0479+ 0.0856 0.6450 

500 0.0445+ 0.1323 0.9109 

1,000 0.0522+ 0.2179 0.9959 

+Not significantly different from 0.05, Bonferroni corrected for 7,500 tests. 

www. utstat. toronto . edu/ ~brunner/MeasurementError for the rest. On the Web, 

the full set of results is available in the form of a six-dimensional table with 7,500 cells, and also 
in the form of a plain text file with 7,500 lines, suitable as input data for further analysis. Complete 
source code for our special-purpose Fortran programs is also available for download, along with 
other supporting material. 

Table 1 shows the results when all the variables are normally distributed and the reliabilities 
of both independent variables equal 0.90; that is, only 10% of the variance of the independent 
variables arises from measurement error. In the social and behavioural sciences, a reliability of 

0.90 would be considered impressively high, and one might think there was little to worry about. 
In Table 1, we see that except when the latent independent variables Xi and X2 are uncorrelated, 

applying ordinary least squares regression to the corresponding observable variables W\ and W2 
results in a substantial inflation of the Type I error rate. As one would predict from Expression (3) 
with 0i,2 = 0, the problem becomes more severe as X\ and X2 become more strongly related, 
as Xi and Y become more strongly related, and as the sample size increases. We view the Type 
I error rates in Table 1 as shockingly high, even for fairly moderate sample sizes and modest 

relationships among variables. 
This same pattern of results holds for all four base distributions, and for all twenty-five 

combinations of reliabilities of the independent variables. In addition, the Type I error rates 

0.0715 0.0913 

0.0940 0.1294 

0.1624 0.2544 

0.2892 0.4649 

0.5057 0.7431 

0.1106 0.1633 

0.1857 0.2837 

0.3731 0.5864 

0.6488 0.8837 

0.9088 0.9907 

0.2089 0.3442 

0.3785 0.6031 

0.7523 0.9434 

0.9635 0.9992 

0.9998 1.00000 

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique 

This content downloaded from 142.150.190.39 on Mon, 21 Oct 2013 21:32:33 PM
All use subject to JSTOR Terms and Conditions
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Consequences of Ignoring Measurement Error

Estimated Type I Error Rates: 
Base Distribution Normal, both reliabilities = 0.90

Weak Relationship between X1 and Y:  Var = 25%

               Correlation Between X 1 and X 2
   N      0.00     0.25     0.75     0.80     0.90   
   
   50   0.04760  0.05050  0.06360  0.07150  0.09130  
  100   0.05040  0.05210  0.08340  0.09400  0.12940  
  250   0.04670  0.05330  0.14020  0.16240  0.25440  
  500   0.04680  0.05950  0.23000  0.28920  0.46490  
 1000   0.05050  0.07340  0.40940  0.50570  0.74310  
  

Moderate Relationship between X 1 and Y:  Var = 50%

               Correlation Between X 1 and X 2
   N      0.00     0.25     0.75     0.80     0.90   
   
   50   0.04600  0.05200  0.09630  0.11060  0.16330 
  100   0.05350  0.05690  0.14610  0.18570  0.28370  
  250   0.04830  0.06250  0.30680  0.37310  0.58640  
  500   0.05150  0.07800  0.53230  0.64880  0.88370  
 1000   0.04810  0.11850  0.82730  0.90880  0.99070  
  
Strong Relationship between X 1 and Y:  Var = 75%

               Correlation Between X 1 and X 2
   N      0.00     0.25     0.75     0.80     0.90   
   
   50   0.04850  0.05790  0.17270  0.20890  0.34420 
  100   0.05410  0.06790  0.31010  0.37850  0.60310  
  250   0.04790  0.08560  0.64500  0.75230  0.94340  
  500   0.04450  0.13230  0.91090  0.96350  0.99920  
 1000   0.05220  0.21790  0.99590  0.99980  1.00000 
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Consequences of Ignoring Measurement Error
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Consequences of Ignoring Measurement Error

Estimated Type I Error Rates: 
Base Distribution Normal, both reliabilities = 0.90
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Consequences of Ignoring Measurement Error

Marginal Mean Type I Error Probabilities
                   Marginal Mean Type I Error Rates
        

              Base Distribution
normal        Pareto     t Distr     uniform
0.38692448  0.36903077  0.38312245  0.38752571  

        Explained Variance
0.25         0.50         0.75         
0.27330660   0.38473364   0.48691232   

     Correlation between Latent Independent Variables
0.00         0.25         0.75         0.80         0.90         
0.05004853   0.16604247   0.51544093   0.55050700   0.62621533        

                      Sample Size n
50           100          250          500          1000         
0.19081740   0.27437227   0.39457933   0.48335707   0.56512820     

                      Reliability of W1

0.50         0.75         0.80         0.90         0.95         
0.60637233   0.46983147   0.42065313   0.26685820   0.14453913          

                      Reliability of W2

0.50         0.75         0.80         0.90         0.95         
0.30807933   0.37506733   0.38752793   0.41254800   0.42503167                

2
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Consequences of Ignoring Measurement Error

Summary

Ignoring measurement error in the explanatory variables can
seriously inflate Type I error probabilities.

The poison combination is measurement error in the variable for
which you are “controlling,” and correlation between latent
explanatory variables.

If either is zero, there is no problem.

β̂2
p→ β1ω1φ12

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

Factors affecting severity of the problem are (next slide)
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Consequences of Ignoring Measurement Error

Factors affecting severity of the problem
Problem of inflated Type I error probability

As the correlation between X1 and X2 increases, the problem gets
worse.

As the correlation between X1 and Y increases, the problem gets
worse.

As the amount of measurement error in X1 increases, the problem
gets worse.

As the amount of measurement error in X2 increases, the problem
gets less severe.

As the sample size increases, the problem gets worse.

Distribution of the variables does not matter much.
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Consequences of Ignoring Measurement Error

As the sample size increases, the problem gets worse

For a large enough sample size, no amount of measurement error in the
explanatory variables is safe, assuming that the latent explanatory
variables are correlated.
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Consequences of Ignoring Measurement Error

Other kinds of regression, other kinds of measurement
error

Logistic regression

Proportional hazards regression in survival analysis

Log-linear models: Test of conditional independence in the
presence of classification error

Median splits

Even converting X1 to ranks inflates Type I Error probability.
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Consequences of Ignoring Measurement Error

Moral of the story

Use models that allow for measurement error in the explanatory
variables.
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Consequences of Ignoring Measurement Error

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23
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