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Features of Structural Equation Models

@ Multiple equations.
o All the variables are random.

e An explanatory variable in one equation can be the response
variable in another equation.

@ Models are represented by path diagrams.
o Identifiability is always an issue.

@ The statistical models are models of influence. They are causal
models.
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Modest changes in notation

Yii = o +mXi1+7Xi2+e
Yio = a2+ 8Yi1+¢€p

e Regression coefficients (links between exogenous variables and
endogenous variables) are now called gamma instead of beta.

@ Betas are used for links between endogenous variables.

o Intercepts will soon disappear.
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Example: A Path Model with Measurement Error

€1 €2 €3
L
w Vi Vs

o1 +7X; + €

as + BY;1 + 72X + €
v+ X +ein

vo+ XYl + €2

vs+ A3Yio +ei3
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The General (original) Model: Independently for i = 1,...,n, let

yi = oa+Byi+TIxi+e€
F, = (2
Yi

d, = v+ AF; +e;, where
y; is a ¢ X 1 latent random vector.
o is a ¢ X 1 vector of constants.
B is a ¢ X ¢ matrix of constants with zeros on the main diagonal.
T is a ¢ X p matrix of constants.
X; is a p X 1 latent random vector with expected value p, and positive definite
covariance matrix ®.
€; is a ¢ X 1 latent random vector with expected value zero and positive definite
covariance matrix W.
F; (F for Factor) is a partitioned vector with x; stacked on top of y;. It is a
(p + ¢) x 1 latent random vector whose expected value is denoted by pp, and whose
variance-covariance matrix is denoted by ®.
d; is a k x 1 observable random vector. The expected value of d; will be denoted by
p, and the covariance matrix of d; will be denoted by X.
v is a k X 1 vector of constants.
A is a k x (p+ q) matrix of constants.
e; is a k x 1 latent random vector with expected value zero and covariance matrix €2,
which need not be positive definite.
x;, €; and e; are independent. 5/
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Surrogate Models

Truth =~ Original Model — Surrogate Model 1 — Surrogate Model 2 ...

e We more or less accept the original model, but we can’t identify
the parameters.

@ So we re-parameterize, obtaining a surrogate model. Repeat.

o We will carefully keep track of the meaning of the new parameters
in terms of the parameters of the original model.



e
The Original Model

yi = a+Byi+Ixi+e€

o= (5
Yi

d;, = v+ AF,;+e;

where ...
e Carefully count the parameters that appear only in E(d;) = p and
not in cov(d;).
@ There are more of these parameters than elements of E(d;).

e Parameter count rule.



Center the model

@ There are too many expected values and intercepts to identify.

@ Center all the random variables in the model by adding and
subtracting expected values.
e Obtain a centered surrogate model

C
Yi = BYi+TX; +€;

X
c )
F, = cl

Yi

C
di = AF; +e;

e Same G, I and A, same variances and covariances.
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Change of variables

o Centering is a change of variables.

o Expected values and intercepts are gone, and the dimension of the
parameter space is reduced.

@ Drop the little ¢ over the random vectors.
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The General Centered Model

Independently for i = 1,...,n,

yi = Byi+TIx;te

- (3)
Yi

di = AF;+e;

d; (the data) are observable. All other variables are latent.
yvi: = By; + I'x; + €; is called the Latent Variable Model.

o The latent vectors x; and y; are collected into a factor F;.
o d; = AF; + e; is called the Measurement Model.

10 /23



yi=Byi+Ixi+¢€ F;= (};2) d; = AF; + e

e y; is a ¢ x 1 latent random vector.

@ (3 is a g X g matrix of constants with zeros on the main diagonal.
@ x; is a p x 1 latent random vector.

o I' is a ¢ X p matrix of constants.

@ ¢; is a ¢ x 1 vector of error terms.

o F; (F for Factor) is just x; stacked on top of y;. Itisa (p+¢q) x 1
latent random vector.

. ) —
@ d; is a k x 1 observable random vector. Sometimes, d; = ( vZ )
i
e Ais ak x (p+ ¢) matrix of constants: “factor loadings.”
@ ¢; is a k x 1 vector of error terms.

® Xx;, € and e; are independent.



Parameters

More notation

yi = Byit+Ixi +e€
R o= (3
Yi
dl = AF,L + €e;
cov(x;) = @,
cov(e;)) = W
cov(x;)  cov(x;,yi) ) ( P, Do >
cov(F;) = &= _
(Fs) ( cov(yi,x;)  cov(y;) o, Dy
cov(e;)) = €
cov(d;) pi
@ Collect the unique elements of 3, I'; A, ®,, ¥ and €2 into a parameter
vector 6.

@ 0 is a function of the original model parameters.
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Matrix Form

Yii = mXi+te

Yio = BYii+yXites Y0 Byi +I'xi + €
W, = MXi+ein F, = ( ;Z )

Vii = XYii+ein d, — AF,+e,

Vie = XYia+eis

&
I
>
=
+

€;
W; A O 0 X; €il
Via = 0 X O Y;, + €i2

Vi 0 0 X3 Yio €3

( At > XZ + < €i,1 )
72 €i,2
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Observable variables in the “latent” variable model
yi = Byi +I'x; + €

Fairly common

@ These present no problem.

Let P(e; =0) =1, so Var(ej) = 0.
And Cov(e;,e5) =0

Because if P(e; =0) =1,

Cov(ei, ej) = El(eie;) — E(e;)E(ej)
E(ei-0) — E(e;) - 0
= 0—-0=0

In © = cov(e;), column j (and row j) are all zeros.

 singular, no problem.
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What should you be able to do?

e Given a path diagram, write the model equations and say which
exogenous variables are correlated with each other.

e Given the model equations and information about which exogenous
variables are correlated with each other, draw the path diagram.

o Given either piece of information, write the model in matrix form
and say what all the matrices are.

o Calculate model covariance matrices.
@ Check identifiability.



Recall the notation

yi = Byi+Ixi+e

w o= (5
Yi

cov(x;) = P,
cov(e;)) = W

N _ cov(x;)  cov(x4,yi) \ [ Pun P2
covte) = ¢_<COU(}’¢,X:') cov(yi) >_<<I>1Tz P2
cov(e;) =
cov(D;) = X

Calculate a general expression for 3(8).



For the latent variable model, calculate ® = cov(F;)

Have cov(x;) = ®, need cov(y;) and cov(xi,y;)

yi=Byi +T'x; + €

= vi—-Byi=TIx+e€
= Iy, - Byi=Txi+¢
= (I-PB)y;=TIx; +¢
= I-8)'I-Byi=I-8)""(Txi+e)
= yi=I-8)"YIxi+€)
So,
cov(y;)) = (I—08)"teov(Tx; +€)I—pB)7 LT
= (I—P8)"!(cov(I'x;) + cov(e;)) (I—BT)1

= (1-p)! (I‘<I>mI‘T n \I/) 1-pHt
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Theorem: If the original model holds, (I — 3)~! exists.

vi=a+ By, + I'x; + ¢; yields (I - B)y; = a+ I'x; + €;.
Suppose (I — 3)~! does not exist.

Then the rows of I — 3 are linearly dependent, and there is a ¢ X 1
non-zero vector of constants a with a’ (I — 3) = 0. So,

aT(I - By; = 0= a'at+a'I'x;+a'e
= Var(0) = Var(a'T'x;)+ Var(a'e)
=0 = aI'd,Ia+a Ta>0.

Contradicts I — 3 singular.



A hole in the parameter space

[T — 8| # 0 can create a hole in the parameter space.
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More calculations

o Have cov(y;) = (I-8)"! (T®, I + %) (I-8")"".

e Know cov(x;) = @,

e Easy to get cov(x;,y;).



For the measurement model, calculate 3 = cov(d;)

d; = AF;+e
= cov(d;) = cov(AF; +e;)
= cov(AF;) + cov(e;)
= Acov(F))A" + cov(e;)
= ADPAT+Q
= X
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Two-stage Proofs of Identifiability

Stage 1 is the latent variable model and Stage 2 is the measurement model.

e Show the parameters of the latent variable model (3,T", ®,, ¥)
can be recovered from ® = cov(F;).

couv(x;)  cov(x;,y;) > < P P2 >
e Solve =P = f
( cov(yi,x;)  cov(y;) o/, Py o

(B, T, ®,,¥)?

e Show the parameters of the measurement model (A, ®,Q) can be
recovered from ¥ = cov(d;).

e This means all the parameters can be recovered from X.

@ Break a big problem into two smaller ones.

@ Develop rules for checking identifiability at each stage.

o Just look at the path diagram.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The I¥TEX source
code is available from the course website:

http://www.utstat.toronto.edu/brunner/oldclass/431s23
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