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Statistical model
Most good statistical analyses are based on a model for the data.

A statistical model is a set of assertions that partly specify the
probability distribution of the observable data. The
specification may be direct or indirect.

Let x1, . . . , xn be a random sample from a normal
distribution with expected value µ and variance σ2.

For i = 1, . . . , n, let yi = β0 +β1xi1 + · · ·+βkxik + εi, where

β0, . . . , βk are unknown constants.
xij are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables, not
observable.
σ2 is an unknown constant.
y1, . . . , yn are observable random variables.

A model is not the same thing as the truth.
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Statistical models leave something unknown
Otherwise they are probability models

The unknown part of the model is called the parameter.

Usually, parameters are (vectors of) numbers.

Usually denoted by θ or θ or other Greek letters.

In the non-Bayesian world, parameters are unknown
constants.
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Parameter Space

The parameter space is the set of values that can be taken on by
the parameter.

Let x1, . . . , xn be a random sample from a normal
distribution with expected value µ and variance σ2.
The parameter space is
Θ = {(µ, σ2) : −∞ < µ <∞, σ2 > 0}.
For i = 1, . . . , n, let yi = β0 +β1xi1 + · · ·+βkxik + εi, where

β0, . . . , βk are unknown constants.
xij are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.
y1, . . . , yn are observable random variables.

The parameter space is
Θ = {(β0, . . . , βk, σ2) : −∞ < βj <∞, σ2 > 0}.
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Parameters need not be numbers

Let X1, . . . , Xn be a random sample from a continuous
distribution with unknown distribution function F (x).

The parameter is the unknown distribution function F (x).

The parameter space is a space of distribution functions.

We may be interested only in a function of the parameter,
like

µ =

∫ ∞
−∞

xf(x) dx

The rest of F (x) is just a nuisance parameter.

6 / 90



Models MOM MLE Invariance Consistency Asymptotic Normality

General statement of a statistical model
d is for Data

d ∼ Pθ, θ ∈ Θ

Both d and θ could be vectors

For example,

d = (y1, . . .yn) independent multivariate normal.
θ = (µ,Σ).
Pθ is the joint distribution function of y1, . . .yn, with joint
density

f(y1, . . .yn) =

n∏
i=1

f(yi;µ,Σ)

7 / 90



Models MOM MLE Invariance Consistency Asymptotic Normality

Estimation
For the model d ∼ Pθ, θ ∈ Θ

We don’t know θ.

We never know θ.

All we can do is guess.

Estimate θ (or a function of θ) based on the observable
data.

t is an estimator of θ (or a function of θ): t = t(d)

t is a statistic, a random variable (vector) that can be
computed from the data without knowing the values of any
unknown parameters.

For example,

d = x1, . . . , xn
i.i.d∼ N(µ, σ2) t = (x, S2).

For an ordinary multiple regression model, t = (β̂,MSE)
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Parameter estimation
For the model d ∼ Pθ, θ ∈ Θ

Estimate θ with t = t(d).

How do we get a recipe for t? Guess?

It’s good to be systematic. Lots of methods are available.

We will consider two: Method of moments and maximum
likelihood.
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Moments
Based on a random sample like (x1, y1), . . . , (xn, yn)

Moments are quantities like E{xi}, E{x2i }, E{xiyi},
E{Wix

2
i y

3
i }, etc.

Central moments are moments of centered random
variables:

E{(xi − µx)2}
E{(xi − µx)(yi − µy)}
E{(xi − µx)2(yi − µy)3(Zi − µz)2}

These are all population moments.
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Population moments and sample moments

Population moment Sample moment

E{xi} 1
n

∑n
i=1 xi

E{x2i } 1
n

∑n
i=1 x

2
i

E{xiyi} 1
n

∑n
i=1 xiyi

E{(xi − µx)2} 1
n

∑n
i=1(xi − xn)2

E{(xi − µx)(yi − µy)} 1
n

∑n
i=1(xi − xn)(yi − yn)

E{(xi − µx)(yi − µy)2} 1
n

∑n
i=1(xi − xn)(yi − yn)2
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Estimation by the Method of Moments (MOM)
For the model d ∼ Pθ, θ ∈ Θ

Population moments are a function of θ.

Find θ as a function of the population moments.

Estimate θ with that function of the sample moments.

Symbolically,

Let m denote a vector of population moments.

m̂ is the corresponding vector of sample moments.

Find m = g(θ)

Solve for θ, obtaining θ = g−1(m).

Let θ̂ = g−1(m̂).

It doesn’t matter if you solve first or put hats on first.
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Example: x1, . . . , xn
i.i.d∼ U(0, θ)

f(x) = 1
θ

for 0 < x < θ

First, find the moment (expected value).

E(xi) =

∫ θ

0
x

1

θ
dx

=
1

θ

∫ θ

0
x dx

=
1

θ

x2

2

∣∣∣∣θ
0

=
1

2θ
(θ2 − 0)

=
θ

2

So m = θ
2 ⇐⇒ θ = 2m, and θ̂ = 2x.
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Small numerical example

Let x1, . . . , xn be a random sample from a uniform distribution
on (0, θ). Estimate θ by the Method of Moments for the
following data. Your answer is a number. Show some work.

4.09 0.13 0.84 3.83 2.13 4.67 4.61 0.40 4.19 0.71

x = 2.56 so θ̂ = 2x = 2 ∗ 2.56 = 5.12.
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Method of moments estimators are not unique
What moments you use are up to you.

E(x2i ) =
1

θ

∫ θ

0
x2 dx =

θ2

3

So set m = θ2

3 ⇔ θ =
√

3m, and

θ̂ =

√√√√3

n

n∑
i=1

x2
i

Compared to 2x.

15 / 90



Models MOM MLE Invariance Consistency Asymptotic Normality

Compare θ̂1 = 2x and θ̂2 =
√

3
n

∑n
i=1 x

2
i

For the numerical example

x 4.09 0.13 0.84 3.83 2.13 4.67 4.61 0.40 4.19 0.71

x^2 16.7281 0.0169 0.7056 14.6689 4.5369 21.8089 21.2521 0.16 17.5561 0.5041

θ̂1 = 5.12 θ̂2 = 5.42

Expressions for lower order moments tend to be simpler, and
are preferable if only for that reason.
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Method of Moments estimator for normal
Let x1, . . . , xn

i.i.d∼ N(µ, σ2)

From the moment-generating function or a textbook, E(xi) = µ
and E(x2i ) = σ2 + µ2. Solving for the parameters,

µ = E(xi)

σ2 = E(x2i )− (E(xi))
2

so

µ̂ = x

σ̂2 =
1

n

n∑
i=1

x2i − x2

=
1

n

n∑
i=1

(xi − x)2
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A regression example
Independently for i = 1, . . . , n,

yi = β0 + β1xi + εi, where

E(xi) = µx, V ar(xi) = σ2x

E(εi) = 0, V ar(εi) = σ2ε

xi and εi are independent.

The distributions of xi and εi are unknown.

What’s the parameter?

The parameter is (β0, β1, Fε(ε), Fx(x) ).

We want to estimate β0 and β1, a function of the
parameter.
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Calculate some moments
yi = β0 + β1xi + εi

E(xi) = µx

V ar(xi) = σ2x

E(yi) = β0 + β1µx

Cov(xi, yi) = β1σ
2
x

Cov(xi, yi) = Cov(xi, β0 + β1xi + εi)

= Cov(xi, β1xi) + Cov(xi, εi))

= β1Cov(xi, xi) + 0

= β1σ
2
x
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Solve for β0 and β1
Have E(xi) = µx, V ar(xi) = σ2

x, E(yi) = β0 + β1µx, Cov(xi, yi) = β1σ
2
x

Putting hats on first, solve

y = β̂0 + β̂1x

σ̂xy = β̂1σ̂
2
x

⇒

β̂1 =
σ̂xy
σ̂2x

=

∑n
i=1(xi − xn)(yi − yn)∑n

i=1(xi − xn)2
and

β̂0 = y − β̂1x

These happen to be the same as the least-squares estimates.
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Multivariate multiple regression
Multivariate means more than one response variable

X
1

X
3

X
2

Y
1

Y
2

ε
1

ε
2

We will obtain method of moments estimation for this.
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One regression equation for each response variable
Give the equations in scalar form.

X
1

X
3

X
2

Y
1

Y
2

ε
1

ε
2

yi,1 = β1,0 + β1,1xi,1 + β1,2xi,2 + β1,3xi,3 + εi,1

yi,2 = β2,0 + β2,1xi,1 + β2,2xi,2 + β2,3xi,3 + εi,2
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yi = β0 + β1xi + εi
That’s matrix form

In scalar form, had

yi,1 = β1,0 + β1,1xi,1 + β1,2xi,2 + β1,3xi,3 + εi,1

yi,2 = β2,0 + β2,1xi,1 + β2,2xi,2 + β2,3xi,3 + εi,2

In matrix form,

yi = β0 + β1 xi + εi

(
yi,1
yi,2

)
=

(
β1,0
β2,0

)
+

(
β1,1 β1,2 β1,3
β2,1 β2,2 β2,3

)  xi,1
xi,2
xi,3

 +

(
εi,1
εi,2

)

Note different order from yi = x>i β + εi
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Statement of the model in general form

Independently for i = 1, . . . , n,

yi = β0 + β1xi + εi, where

yi is an q × 1 random vector of observable response variables, so the
regression is multivariate; there are q response variables.

xi is a p× 1 observable random vector; there are p explanatory
variables. E(xi) = µx and cov(xi) = Φp×p. The vector µx and the
matrix Φ are unknown parameters.

β0 is a q × 1 vector of unknown constants.

β1 is a q × p matrix of unknown constants. These are the regression
coefficients, with one row for each response variable and one column
for each explanatory variable.

εi is a q × 1 unobservable random vector with expected value zero and
unknown variance-covariance matrix cov(εi) = Ψq×q.

εi is independent of xi.
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A Method of Moments estimate of β1
yi = β0 + β1xi + εi

Denote the p× q matrix of (population) covariances between xi
and yi by

Σxy = cov(xi,yi)

= cov(xi, β0 + β1xi + εi)

= cov(xi, β1xi) + cov(xi, εi)

= cov(xi)β
>
1 + 0

= Φβ>1
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Solve for β1
In terms of moments of the observable data

Φβ>1 = Σxy

⇒ Φ−1Φβ>1 = Φ−1Σxy

⇒ β>1 = Φ−1Σxy

⇒ β1 = Σ>xy(Φ
−1)>

= ΣyxΦ
−1

= ΣyxΣ
−1
x ,

Where Φ = cov(xi) is written Σx.
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MOM estimate of β1 based on β1 = ΣyxΣ
−1
x

Just put hats on.

β̂1 = Σ̂yxΣ̂
−1

x ,
where

Σ̂yx =
1

n

n∑
i=1

(yi − y)(xi − x)>

Σ̂x =
1

n

n∑
i=1

(xi − x)(xi − x)>
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Method of Moments is Least Squares in this case

β̂1 = Σ̂yxΣ̂
−1

x

This is (x>x)−1x>y

Transposed

With both x and y variables centered by subtracting off
the sample means.
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Maximum likelihood estimation
A great idea from R. A. Fisher (1890-1962)

Given a model and a set of observed data, how should we
estimate θ?

Find the value of θ that makes the data we observed have
the highest probability.

If the model is continuous, maximize the probability of
observing data in a little region surrounding the observed
data vector.

In either case, let f(d; θ) denote the joint probability
density function or probability mass function evaluated at
the observed data vector.

Maximize L(θ) = f(d; θ) over all θ ∈ Θ.

L(θ) is called the likelihood function.
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Maximum likelihood estimation for independent
random sampling

d1, . . . , dn
i.i.d.∼ Pθ, θ ∈ Θ.

L(θ) =

n∏
i=1

f(di; θ),

where f(di; θ) is the density or probability mass function
evaluated at di.

Find the value of θ for which L(θ) is maximum.

Or equivalently, maximize `(θ) = lnL(θ).
The elementary approach:

Take derivatives,
Set derivatives to zero,
Solve for θ,
Put a hat on the answer.
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Example
Maximum likelihood for the univariate normal

Let x1, . . . , xn
i.i.d∼ N(µ, σ2).

`(θ) = ln
n∏
i=1

1

σ
√

2π
e−

1
2

(xi−µ)2

σ2

= ln
(
σ−n(2π)−

n
2 e−

1
2σ2

∑n
i=1(xi−µ)2

)
= −n lnσ − n

2
ln(2π)− 1

2σ2

n∑
i=1

(xi − µ)2

31 / 90



Models MOM MLE Invariance Consistency Asymptotic Normality

Differentiate with respect to the parameters
`(θ) = −n lnσ − n

2
ln(2π)− 1

2σ2

∑n
i=1(xi − µ)2

∂`

∂µ
= − 1

2σ2

n∑
i=1

2(xi − µ)(−1)
set
= 0

⇒ µ = x

∂`

∂σ
= − n

σ
− 1

2

n∑
i=1

(xi − µ)2(−2σ−3)

= −n
σ

+
1

σ3

n∑
i=1

(xi − µ)2
set
= 0

⇒ σ2 =
1

n

n∑
i=1

(xi − µ)2
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Substituting

Setting derivaties to zero, we have obtained

µ = x and σ2 =
1

n

n∑
i=1

(xi − µ)2, so

µ̂ = x

σ̂2 =
1

n

n∑
i=1

(xi − x)2
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Gamma Example

Let x1, . . . , xn be a random sample from a Gamma distribution

with parameters α > 0 and β > 0

f (x;α, β) =
1

βαΓ(α)
e−x/βxα−1

Θ = {(α, β) : α > 0, β > 0}
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Log Likelihood
f(x;α, β) = 1

βαΓ(α)
e−x/βxα−1

`(α, β) = ln

n∏
i=1

1

βαΓ(α)
e−xi/βxα−1i

= ln

β−nα Γ(α)−n exp(− 1

β

n∑
i=1

xi)

(
n∏
i=1

xi

)α−1
= −nα lnβ − n ln Γ(α)− 1

β

n∑
i=1

xi + (α− 1)

n∑
i=1

lnxi
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Differentiate with respect to the parameters
`(θ) = −nα lnβ − n ln Γ(α)− 1

β

∑n
i=1 xi + (α− 1)

∑n
i=1 lnxi

∂`

∂β

set
= 0 ⇒ αβ = x

∂`

∂α
= −n lnβ − n ∂

∂α
ln Γ(α) +

n∑
i=1

lnxi

=

n∑
i=1

lnxi − n lnβ − nΓ′(α)

Γ(α)

set
= 0
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Solve for α

n∑
i=1

lnxi − n ln β − nΓ′(α)

Γ(α)
= 0

where

Γ(α) =

∫ ∞
0

e−ttα−1 dt.

Nobody can do it.
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Maximize the likelihood numerically with software
Usually this is in high dimension

θ

L(θ)

It’s like trying to find the top of a mountain by walking
uphill blindfolded.
You might stop at a local maximum.
The starting place is very important.
The final answer is a number (or vector of numbers).
There is no explicit formula for the MLE.
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There is a lot of useful theory
Even without an explicit formula for the MLE

θ

L(θ)

MLE is asymptotically normal.

Variance of the MLE is deeply related to the curvature of the log
likelihood at the MLE.

The more curvature, the smaller the variance.

The variance of the MLE can be estimated from the curvature (using
the Fisher Information).

Basis of tests and confidence intervals.
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Comparing MOM and MLE

Sometimes they are identical, sometimes not.

If the model is right they are usually close for large
samples.

Both are asymptotically normal, cenered around the true
parameter value(s).

Estimates of the variance are easy to obtain for both.

Small variance of an estimator is good.

As n→∞, nothing can beat the MLE.

Except that the MLE depends on a very specific
distribution.

And sometimes the dependence matters.

In such cases, MOM may be preferable.
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Gamma Example

f(x;α, β) =
1

βαΓ(α)
e−x/βxα−1

`(α, β) = −nα lnβ − n ln Γ(α)− 1

β

n∑
i=1

xi + (α− 1)

n∑
i=1

lnxi
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R function for the minus log likelihood

gmll = function(theta,datta)

{

aa = theta[1]; bb = theta[2]

nn = length(datta); sumd = sum(datta)

sumlogd = sum(log(datta))

value = nn*aa*log(bb) + nn*lgamma(aa) + sumd/bb - (aa-1)*sumlogd

return(value)

} # End function gmll
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Simulated Data
n = 50, True α = 2, β = 3

> d

[1] 20.87 13.74 5.13 2.76 4.73 2.66 11.74 0.75 22.07 10.49 7.26 5.82

[13] 13.08 1.79 4.57 1.40 1.13 6.84 3.21 0.38 11.24 1.72 4.69 1.96

[25] 7.87 8.49 5.31 3.40 5.24 1.64 7.17 9.60 6.97 10.87 5.23 5.53

[37] 15.80 6.40 11.25 4.91 12.05 5.44 12.62 1.81 2.70 3.03 4.09 12.29

[49] 3.23 10.94
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Where should the numerical search start?

How about Method of Moments estimates?

E(x) = αβ, V ar(x) = αβ2

Solve for α and β, replace population moments by sample
moments and put a ∼ above the parameters.

∼
α=

x2

s2
and

∼
β=

s2

x

> # MOM for starting values

> momalpha = mean(d)^2/var(d); momalpha

[1] 1.899754

> mombeta = var(d)/mean(d); mombeta

[1] 3.620574
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Numerical search using the optim function

> # Error message says: "Bounds can only be used with method

> # L-BFGS-B (or Brent)"

> gsearch = optim(par=c(momalpha,mombeta), fn = gmll,

+ method = "L-BFGS-B", lower = c(0,0), hessian=TRUE, datta=d)
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> gsearch

$par

[1] 1.805930 3.808674

$value

[1] 142.0316

$counts

function gradient

9 9

$convergence

[1] 0

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

$hessian

[,1] [,2]

[1,] 36.69402 13.127928

[2,] 13.12793 6.224773
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Meaning of the output

Output Meaning

$par

[1] 1.805930 3.808674
θ̂

$value

[1] 142.0316
−`(θ̂)

$hessian

[,1] [,2]

[1,] 36.69402 13.127928

[2,] 13.12793 6.224773

H =
[
∂2(−`)
∂θi∂θj

]
θ=θ̂
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Second Derivative test
H =

[
∂2(−`)
∂θi∂θj

]

If the second derivatives are continuous, H is symmetric.

If the gradient is zero at a point and |H| 6= 0,

If H is positive definite, local minimum
If H is negative definite, local maximum
If H has both positive and negative eigenvalues, saddle
point
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MLE

> thetahat = gsearch$par

> names(thetahat) = c("alpha-hat","beta-hat"); thetahat

alpha-hat beta-hat

1.805930 3.808674

> # Second derivative test

> eigen(gsearch$hessian)$values

[1] 41.569998 1.348796 $
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The Invariance principle of maximum likelihood
estimation

The Invariance Principle of maximum likelihood estimation
says that the MLE of a function is that function of the
MLE.2

2Provided the function is one-to-one.
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Example of the invariance principle

Let d1, . . . , dn be a random sample from a Bernoulli distribution
(1=Yes, 0=No) with parameter θ, 0 < θ < 1.

The parameter space is Θ = (0, 1)

MLE is θ̂ = d, the sample proportion.

Write the model in terms of the odds of di = 1, a
re-parameterization that is often useful in categorical data
analysis.

Denote the odds by θ′ = θ
1−θ .

θ′ = θ
1−θ ⇐⇒ θ = θ′

1+θ′ .

As θ ranges from zero to one, θ′ ranges from zero to infinity.

So there is a new parameter space: θ′ ∈ Θ′ = (0,∞).
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MLE of the odds

θ′ = θ
1−θ ⇐⇒ θ = θ′

1+θ′

Because the re-parameterization is one-to-one, θ̂′ = d
1−d

without any calculation.
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Theorem
See text for a proof. The one-to-one part is critical.

Let g : Θ→ Θ′ be a one-to-one re-parameterization, with the
maximum likelihood estimate θ̂ satisfying L(θ̂) > L(θ) for all
θ ∈ Θ with θ 6= θ̂. Then L′(g(θ̂)) > L′(θ′) for all θ′ ∈ Θ′ with
θ′ 6= g(θ̂).

In other words

The MLE of g(θ) is g(θ̂).

ĝ(θ) = g(θ̂).

The MLE of θ′ is g(θ̂).

θ̂′ = g(θ̂).
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Re-parameterization in general

The parameters of common statistical models are written in a
standard way, but other equivalent parameterizations are
sometimes useful.

Suppose xi ∼ N(µ, σ2). Have

θ̂ = (x,
1

n

n∑
i=1

(xi − x)2)

Write xi ∼ N(µ, σ).
g(θ) = (θ1,

√
θ2)

θ̂′ =
(
x,
√

1
n

∑n
i=1(xi − x)2

)
Write xi ∼ N(µ, τ), where τ = 1/σ2 is called the precision.

g(θ) = (θ1, 1/θ2)

θ̂′ =
(
x, n∑n

i=1(xi−x)2

)
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Consistency

The idea is large-sample accuracy.

As n→∞, you get the truth.

It’s a kind of limit, but with probability involved.
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The setting

Let t1, t2, . . . be a sequence of random variables.

Main application: tn is an estimator of θ based on a sample
of size n.

Think tn = xn = 1
n

∑n
i=1 xi.
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Definition of Convergence in Probability

We say that tn converges in probability to the constant θ, and

write tn
p→ θ if for all ε > 0,

lim
n→∞

P{|tn − θ| < ε} = 1

Convergence in probability to θ means no matter how small the
interval around θ, the probability distribution of tn becomes
concentrated in that interval as n→∞.
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Picture it

P{|tn − t| < ε} = P{−ε < tn − θ < ε}
= P{θ − ε < tn < θ + ε}

                                                                                                                                                                   
              

         
       
     
     
    
    
    
   
   
   
   
   
   
   
   
  
  
  
  
  
  
  
  
  
  
  
   
   
   
   
   
   
    
     
       
                                                                                                                                                                                                                                                                                                                  
θ(θ − ε θ + ε)

.

58 / 90



Models MOM MLE Invariance Consistency Asymptotic Normality

Picture it

P{|tn − t| < ε} = P{−ε < tn − θ < ε}
= P{θ − ε < tn < θ + ε}
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.
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The Law of Large Numbers
We will use this a lot

Let x1, x2, . . . be independent random variables from a

distribution with expected value µ and variance σ2. The Law of

Large Numbers says

xn
p→ µ
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Roadmap

Markov’s Inequality
⇓

Variance Rule
⇓

Law of Large Numbers
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Markov’s Inequality

For g(x) ≥ 0 and a ≥ 0,

E{g(x)} ≥ aPr{g(x) ≥ a}
To prove, split up the integral.
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Variance Rule

Let t1, t2, . . . be a sequence of random variables

With E(tn) = µn and V ar(tn) = σ2n

If lim
n→∞

µn = θ and lim
n→∞

σ2n = 0, then

tn
p→ θ

To prove, let g(x) = (x− µ)2 and a = ε2 in Markov’s inequality.
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Proving the Law of Large Numbers

The Variance Rule says

Let t1, t2, . . . be a sequence of random variables

With E(tn) = µn and V ar(tn) = σ2n

If lim
n→∞

µn = θ and lim
n→∞

σ2n = 0, then tn
p→ θ.

Let tn = xn and θ = µ.

E(xn) = µ and V ar(xn) = σ2

n → 0

Conclude

xn
p→ µ
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The Change of Variables formula: Let y = g(x)

E(y) =

∫ ∞
−∞

y fy(y) dy =

∫ ∞
−∞

g(x) fx(x) dx

Or, for discrete random variables

E(y) =
∑
y

y py(y) =
∑
x

g(x) px(x)

This is actually a big theorem, not a definition.
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Applying the change of variables formula
To approximate E[g(x)]

Have x1, . . . , xn from the distribution of x. Want E(y), where

y = g(x).

1

n

n∑
i=1

g(xi) =
1

n

n∑
i=1

yi
p→ E(y)

= E(g(x))
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So for example

1

n

n∑
i=1

xki
p→ E(xk)

1

n

n∑
i=1

U 2
i ViW

3
i

p→ E(U 2VW 3)

That is, sample moments converge in probability to
population moments.

Central sample moments converge to central population
moments as well.
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Population moments and sample moments
Repeating an earlier slide

Population moment Sample moment

E{xi} 1
n

∑n
i=1 xi

E{x2i } 1
n

∑n
i=1 x

2
i

E{xiyi} 1
n

∑n
i=1 xiyi

E{(xi − µx)2} 1
n

∑n
i=1(xi − xn)2

E{(xi − µx)(yi − µy)} 1
n

∑n
i=1(xi − xn)(yi − yn)

E{(xi − µx)(yi − µy)2} 1
n

∑n
i=1(xi − xn)(yi − yn)2
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Convergence in Probability for Random Vectors

Let t1, t2, . . . be a sequence of k-dimensional random vectors.

We say that tn converges in probability to θ ∈ Rk, and write

tn
p→ θ if for all ε > 0,

lim
n→∞

P{||tn − θ|| < ε} = 1,

where ||a− b|| denotes Euclidian distance in Rk.
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Two more Theorems

The “stack” theorem and continuous mapping.

Often used together.
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The “Stack” Theorem
Because I don’t know what to call it.

Let xn
p→ a and yn

p→ b. Then the partitioned random vector(
xn
yn

)
p→
(

a
b

)
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Continuous mapping
One of the Slutsky lemmas: See Appendix A

Let tn
p→ c, and let the function g(x) be continuous at x = c.

Then

g(tn)
p→ g(c)

Note that the function g could be multidimensional, for
example mapping R5 into R2.

72 / 90



Models MOM MLE Invariance Consistency Asymptotic Normality

Definition of Consistency

The random vector (of statistics) tn is said to be a consistent

estimator of the parameter vector θ if

tn
p→ θ

for all θ ∈ Θ.
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Consistency of the Sample Variance
This answer gets full marks.

σ̂2
n =

1

n

n∑
i=1

(xi − x)2 =
1

n

n∑
i=1

x2i − x2

By LLN, xn
p→ µ and 1

n

∑n
i=1 x

2
i
p→ E(x2i ) = σ2 + µ2.

By continuous mapping,

σ̂2
n =

1

n

n∑
i=1

x2i − x2
p→ σ2 + µ2 − µ2 = σ2

Note the silent use of the Stack Theorem.

74 / 90



Models MOM MLE Invariance Consistency Asymptotic Normality

Method of Moments Estimators are Consistent
For most practical cases

Recall

Let m denote a vector of population moments.

m̂ is the corresponding vector of sample moments.

Find m = g(θ)

Solve for θ, obtaining θ = g−1(m).

Let θ̂n = g−1(m̂n).

If g is continuous, so is g−1. Then by continous mapping,
m̂

p→ m⇒ θ̂n = g−1(m̂n)
p→ g−1(m) = θ.
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Maximum Likelihood Estimators are Consistent
If the model is correct, and given some additional “regularity conditions.”

θ̂n
p→ θ
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Consistency is great but it’s not enough.

It’s the least we can ask. Estimators that are not
consistent are completely unacceptable for most purposes.

Think of an = 1/n as a sequence of degenerate random
variables with P{an = 1/n} = 1.

So, an
p→ 0.

Suppose

tn
p→ θ ⇒ Un = tn +

100, 000, 000

n

p→ θ.
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Convergence in Distribution
Sometimes called Weak Convergence, or Convergence in Law

Denote the cumulative distribution functions of t1, t2, . . . by
F1(x), F2(x), . . . respectively, and denote the cumulative
distribution function of t by F (x).

We say that tn converges in distribution to t, and write tn
d→ t if

for every point x at which F is continuous,

lim
n→∞

Fn(x) = F (x)

We will seldom use this definition directly.

78 / 90



Models MOM MLE Invariance Consistency Asymptotic Normality

Connections among the Modes of Convergence

tn
p→ t⇒ tn

d→ t.

If a is a constant, tn
d→ a⇒ tn

p→ a.
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Univariate Central Limit Theorem

Let x1, . . . , xn be a random sample from a distribution with
expected value µ and variance σ2. Then

zn =

√
n(xn − µ)

σ

d→ z ∼ N(0, 1)
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Sometimes we say the distribution of the sample mean
is approximately normal, or asymptotically normal.

This is justified by the Central Limit Theorem.

But it does not mean that xn converges in distribution to a
normal random variable.

The Law of Large Numbers says that xn converges in
probability to a constant, µ.

So xn converges to µ in distribution as well.
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Why would we say that for large n, the sample mean is

approximately N(µ, σ
2

n )?

Have zn =
√
n(xn−µ)
σ

d→ z ∼ N(0, 1).

Pr{xn ≤ x} = Pr

{√
n(xn − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
zn ≤

√
n(x− µ)

σ

}
≈ Φ

(√
n(x− µ)

σ

)

Suppose y is exactly N(µ, σ
2

n ):

Pr{y ≤ x} = Pr

{√
n(y − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
zn ≤

√
n(x− µ)

σ

}
= Φ

(√
n(x− µ)

σ

)
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Asymptotic Normality

We say xn is asymptotically normal, with asymptotic mean
µ and asymptotic variance σ2

n .

Write xn
·∼ N(µ, σ

2

n )

In tests and confidence intervals, σ̂2

n may be used in place

of σ2

n , where σ̂2 is any consistent estimator of σ2.
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Asymptotic Multivariate Normality

Multivariate central limit theorem

Central limit theorem for vectors of MLEs
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Multivariate central limit theorem

Let x1, . . . ,xn be i.i.d. p-dimensional random vectors with

expected value vector µ and covariance matrix Σ. Then

√
n(xn − µ)

d→ x ∼ Np(0,Σ)

Say xn is asymptotically Np(µ,
1
nΣ).

Write xn
·∼ Np(µ,

1
nΣ).

The asymptotic covariance matrix of xn is 1
nΣ.

Σ may be estimated by the sample variance-covariance
matrix Σ̂ = 1

n

∑n
i=1(xi − x)(xi − x)>.
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Central limit theorem for vectors of MLEs
θ = (θ1, . . . , θk)

If the model is correct and under some technical conditions that

always hold for the models used in this class,

√
n(θ̂n − θ)

d→ t ∼ Nk(0, I(θ)−1),

where (for the record) I(θ) is the Fisher information matrix.

I(θ) =

[
E[− ∂2

∂θi∂θj
log f(y;θ)]

]
See Appendix A.
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Asymptotic Multivariate Normality of the MLEs

Say θ̂n is asymptotically Nk(θ,Vn), where Vn = 1
nI(θ)−1.

Write θ̂n
·∼ Nk(θ,Vn).

For tests and confidence intervals replace Vn by either

V̂n = 1
nI(θ̂)−1, or

V̂n = the inverse of the Hessian of the minus log likelihood,
evaluated at the MLE.
For numerical MLEs, the second choice is usually more
convenient.
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Back to the Gamma Example
gsearch = optim(par=c(momalpha,mombeta), fn = gmll,

method = "L-BFGS-B", lower = c(0,0), hessian=TRUE, datta=d)

Output Meaning

$par

[1] 1.805930 3.808674
θ̂ = (α̂, β̂)

$value

[1] 142.0316
−`(θ̂)

$hessian

[,1] [,2]

[1,] 36.69402 13.127928

[2,] 13.12793 6.224773

H =
[
∂2(−`)
∂θi∂θj

]
θ=θ̂
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> # Asymptotic variance-covariance matrix is the inverse of the

> # Fisher Information

> Vhat_n = solve(gsearch$hessian); Vhat_n $

[,1] [,2]

[1,] 0.1110190 -0.2341369

[2,] -0.2341369 0.6544386

> # Confidence interval for alpha (true value is 2)

> thetahat

alpha-hat beta-hat

1.805930 3.808674

> se_alphahat = sqrt(Vhat_n[1,1])

> lower95 = thetahat[1] - 1.96*se_alphahat

> upper95 = thetahat[1] + 1.96*se_alphahat

> c(lower95,upper95)

alpha-hat alpha-hat

1.152868 2.458992
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23
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