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Original and Surrogate Models

Original model has expected values, intercepts, and slopes that
need not equal one.

Re-parameterization via a change of variables yields a surrogate
model.

Centered surrogate model has the same covariance matrix as the
original.
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Why should the variance of the factors equal one?

Inherited from exploratory factor analysis, which was mostly a
disaster.

The standard answer is something like this: “Because its arbitrary.
The variance depends upon the scale on which the variable is
measured, but we can’t see it to measure it directly. So set it to
one for convenience.”

But saying it does not make it so. If F is a random variable with
an unknown variance, then

V ar(F ) = φ is an unknown parameter.
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Centered Model
One factor, four observed variables

d1 = λ1F + e1

d2 = λ2F + e2

d3 = λ3F + e3

d4 = λ4F + e4

e1, . . . , e4, F all independent
V ar(ej) = ωj V ar(F ) = φ
λ1, λ2, λ3 6= 0

Σ =


λ21φ+ ω1 λ1λ2φ λ1λ3φ λ1λ4φ
λ1λ2φ λ22φ+ ω2 λ2λ3φ λ2λ4φ
λ1λ3φ λ2λ3φ λ23φ+ ω3 λ3λ4φ
λ1λ4φ λ2λ4φ λ3λ4φ λ24φ+ ω4


Passes the Counting Rule test with 10 equations in 9 unknowns
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But for any c 6= 0

θ1 φ λ1 λ2 λ3 λ4 ω1 ω2 ω3 ω4

θ2 φ/c2 cλ1 cλ2 cλ3 cλ4 ω1 ω2 ω3 ω4

Both yield

Σ =


λ21φ+ ω1 λ1λ2φ λ1λ3φ λ1λ4φ
λ1λ2φ λ22φ+ ω2 λ2λ3φ λ2λ4φ
λ1λ3φ λ2λ3φ λ23φ+ ω3 λ3λ4φ
λ1λ4φ λ2λ4φ λ3λ4φ λ24φ+ ω4


The choice φ = 1 just sets c =

√
φ: convenient but seemingly arbitrary.
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Lack of identifiability

For any set of true parameter values, there are infinitely many
untrue sets of parameter values that yield the same Σ and hence
the same probability distribution of the observable data (assuming
multivariate normality).

There is no way to know the full truth based on the data, no
matter how large the sample size.

But there is a way to know the partial truth.
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Certain functions of the parameter vector are
identifiable

At points in the parameter space where λ1, λ2, λ3 6= 0,
σ12σ13
σ23

= λ1λ2φλ1λ3φ
λ2λ3φ

= λ21φ

And so if λ1 > 0, the function λjφ
1/2 is identifiable

for j = 1, . . . , 4.

σ11 − σ12σ13
σ23

= ω1, and so ωj is identifiable for j = 1, . . . , 4.

σ13
σ23

= λ1λ3φ
λ2λ3φ

= λ1
λ2

, so ratios of factor loadings are identifiable.
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Reliability

Reliability is the squared correlation between the observed score
and the true score.

The proportion of variance in the observed score that is not error.

For D1 = λ1F + e1 it’s

ρ2 =

(
Cov(D1, F )

SD(D1)SD(F )

)2

=

(
λ1φ√

λ21φ+ ω1
√
φ

)2

=
λ21φ

λ21φ+ ω1

λ21φ and ω1 are both identifiable, so we’ve got it.
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For completeness

ρ2 =
λ21φ

λ21φ+ ω1
Σ =


λ21φ+ ω1 λ1λ2φ λ1λ3φ λ1λ4φ
λ1λ2φ λ22φ+ ω2 λ2λ3φ λ2λ4φ
λ1λ3φ λ2λ3φ λ23φ+ ω3 λ3λ4φ
λ1λ4φ λ2λ4φ λ3λ4φ λ24φ+ ω4



σ12σ13
σ23σ11

=
λ1λ2φλ1λ3φ

λ2λ3φ(λ21φ+ ω1)

=
λ21φ

λ21φ+ ω1

= ρ2
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What can we successfully estimate?

Error variances are knowable.

Factor loadings and variance of the factor are not knowable
separately.

But both are knowable up to multiplication by a non-zero
constant, so signs of factor loadings are knowable (if one sign is
known).

Relative magnitudes (ratios) of factor loadings are knowable.

Reliabilities are knowable.
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Re-parameterization

The choice φ = 1 is a very smart re-parameterization.

It re-expresses the factor loadings as multiples of the square root
of φ.

That is, in standard deviation units.

It preserves what information is accessible about the parameters of
the original model.

Much better than exploratory factor analysis, which lost even the
signs of the factor loadings.

This is the second major re-parameterization. The first was losing
the the means and intercepts.
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Re-parameterizations

Original model → Surrogate model 1 → Surrogate model 2 . . .
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Add a factor to the centered original model
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Model Equations

d1 = λ1F1 + e1

d2 = λ2F1 + e2

d3 = λ3F1 + e3

d4 = λ4F2 + e4

d5 = λ5F2 + e5

d6 = λ6F2 + e6

cov

(
F1

F2

)
=

(
φ11 φ12

φ12 φ22

) e1, . . . , e6 independent of each other and of F1, F2

λ1, . . . λ6 6= 0
V ar(ej) = ωj
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Parameters are not identifiable

Σ =
λ21φ11 + ω1 λ1λ2φ11 λ1λ3φ11 λ1λ4φ12 λ1λ5φ12 λ1λ6φ12
λ1λ2φ11 λ22φ11 + ω2 λ2λ3φ11 λ2λ4φ12 λ2λ5φ12 λ2λ6φ12
λ1λ3φ11 λ2λ3φ11 λ23φ11 + ω3 λ3λ4φ12 λ3λ5φ12 λ3λ6φ12
λ1λ4φ12 λ2λ4φ12 λ3λ4φ12 λ24φ22 + ω4 λ4λ5φ22 λ4λ6φ22
λ1λ5φ12 λ2λ5φ12 λ3λ5φ12 λ4λ5φ22 λ25φ22 + ω5 λ5λ6φ22
λ1λ6φ12 λ2λ6φ12 λ3λ6φ12 λ4λ6φ22 λ5λ6φ22 λ26φ22 + ω6


θ1 = (λ1, . . . , λ6, φ11, φ12, φ22, ω1, . . . , ω6)

θ2 = (λ′1, . . . , λ
′
6, φ
′
11, φ

′
12, φ

′
22, ω

′
1, . . . , ω

′
6)

λ′1 = c1λ1 λ′2 = c1λ2 λ′3 = c1λ3 φ′11 = φ11/c
2
1

λ′4 = c2λ4 λ′5 = c2λ5 λ′6 = c2λ6 φ′22 = φ22/c
2
2

φ′12 = φ12
c1c2

ω′j = ωj for j = 1, . . . , 6
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Variances and covariances of factors

Are knowable only up to multiplication by positive constants.

Since the parameters of the latent variable model will be recovered
from Φ = cov(F), they also will be knowable only up to
multiplication by positive constants – at best.

Luckily, in most applications the interest is in testing
(pos-neg-zero) more than estimation.
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cov(F1, F2) is un-knowable, but

Easy to tell if its zero.

Sign is known if one factor loading from each set is known – say
λ1 > 0, λ4 > 0.

And,

σ14√
σ12σ13
σ23

√
σ45σ46
σ56

=
λ1λ4φ12

λ1
√
φ11λ4

√
φ22

=
φ12√

φ11
√
φ22

= Corr(F1, F2)

The correlation between factors is identifiable!
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The correlation between factors is identifiable

Furthermore, it is the same function of Σ that yields φ12 under the
surrogate model with V ar(F1) = V ar(F2) = 1.

Therefore, Corr(F1, F2) = φ12 under the surrogate model is
actually Corr(F1, F2) under the original model.

Estimation is very meaningful.
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Setting variances of factors to one

Is a very smart re-parameterization.

Is excellent when the interest is in correlations between factors.
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Re-parameterization as a change of variables

dj = λjFj + ej

= (λj
√
φjj)

(
1√
φjj

Fj

)
+ ej

= λ′jF
′
j + ej
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Covariances

Cov(F ′j , F
′
k) = Cov

(
1√
φjj

Fj,
1√
φkk

Fk

)

=
Cov(Fj, Fk)√
φjj
√
φkk

=
φjk√
φjj
√
φkk

= Corr(Fj, Fk)
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Cascading effects

Understand the re-parameterization as a change of variables.

Not just an arbitrary restriction of the parameter space.

It shows there are widespread effects throughout the model.

Especially if there is a detailed latent variable model.

Also shows how the meanings of other model parameters are
affected.
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The other standard trick

Setting variances of all the factors to one is an excellent
re-parameterization in disguise.

The other standard trick is to set a factor loading equal to one for
each factor.

d = F + e is hard to believe if you take it literally.

It’s actually a re-parameterization.

Every model you’ve seen with a factor loading of one is a surrogate
model.
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Back to a single-factor model with λ1 > 0

d1 = λ1F + e1

d2 = λ2F + e2

d3 = λ3F + e3
...

dj =

(
λj
λ1

)
(λ1F ) + ej

= λ′jF
′ + ej

d1 = F ′ + e1

d2 = λ′2F
′ + e2

d3 = λ′3F
′ + e3

...
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Σ under the surrogate model
Covariance structure equations

Σ =

 φ+ ω1 λ2φ λ3φ
λ2φ λ22φ+ ω2 λ2λ3φ
λ3φ λ2λ3φ λ23φ+ ω3


Solutions assuming λ2 and λ3 non-zero:

λ2 =
σ23
σ13

λ3 =
σ23
σ12

φ =
σ12σ13
σ23

We have another three-variable rule.
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Combined three-variable identification rule
For the record

For a centered factor analysis model with a single factor, the
parameters will be identifiable provided that

There are at least three reference variables.

Either the factor is standardized and the sign one factor loading is
known, or else at least one factor loading equals one.

Errors are independent of one another and of the factors.

Add more variables and more factors using other rules.
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Two Versions of Σ
For the surrogate model with a factor loading set to one

Under the Surrogate Model φ+ ω1 λ2φ λ3φ
λ22φ+ ω2 λ2λ3φ

λ23φ+ ω3


Under the Original Model λ21φ+ ω1 λ1λ2φ λ1λ3φ

λ22φ+ ω2 λ2λ3φ
λ23φ+ ω3



Value under model
Function of Σ Surrogate Original

σ23
σ13

λ2
λ2
λ1

σ23
σ12

λ3
λ3
λ1

σ12σ13
σ23

φ λ21φ
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Under the surrogate model

It looks like λj is identifiable, but actually it’s λj/λ1.

Estimates of λj for j 6= 1 are actually estimates of λj/λ1.

It looks like φ is identifiable, but actually it’s λ21φ.

φ is being expressed as a multiple of λ21.

Estimates of φ are actually estimates of λ21φ.

Make d1 the clearest representative of the factor.
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Add an observable variable to the surrogate model

Parameters are all identifiable, even if the factor loading of the
new variable equals zero.

Equality restrictions on Σ are created, because we are adding
more equations than unknowns.

These equality restrictions apply to the original model.

It is straightforward to see what the restrictions are, though the
calculations can be time consuming.
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Finding the equality restrictions

Calculate Σ(θ).

Solve the covariance structure equations explicitly, obtaining θ as
a function of Σ.

Substitute the solutions back into Σ(θ).

Simplify.
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Example: Add a 4th variable

d1 = F + e1

d2 = λ2F + e2

d3 = λ3F + e3

d4 = λ4F + e4

e1, . . . , e4, F all independent
V ar(ej) = ωj V ar(F ) = φ
λ1, λ2, λ3 6= 0

There are 8 parameters.
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Covariance Matrix

Σ(θ) =


φ+ ω1 λ2φ λ3φ λ4φ
λ2φ λ22φ+ ω2 λ2λ3φ λ2λ4φ
λ3φ λ2λ3φ λ23φ+ ω3 λ3λ4φ
λ4φ λ2λ4φ λ3λ4φ λ24φ+ ω4


Solutions

λ2 = σ23
σ13

λ3 = σ23
σ12

λ4 = σ24
σ12

φ = σ12σ13
σ23

Substitute

σ12 = λ2φ

=
σ23
σ13

σ12σ13
σ23

= σ12
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Substitute solutions into expressions for the covariances

Σ(θ) =


φ+ ω1 λ2φ λ3φ λ4φ
λ2φ λ22φ+ ω2 λ2λ3φ λ2λ4φ
λ3φ λ2λ3φ λ23φ+ ω3 λ3λ4φ
λ4φ λ2λ4φ λ3λ4φ λ24φ+ ω4



Solutions

λ2 = σ23
σ13

λ3 = σ23
σ12

λ4 = σ24
σ12

φ = σ12σ13
σ23

σ12 = σ12

σ13 = σ13

σ14 =
σ24σ13
σ23

σ23 = σ23

σ24 = σ24

σ34 =
σ24σ13
σ12
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Equality Constraints
There should be 4(4+1)/2 - 8 = 2

σ14σ23 = σ24σ13

σ12σ34 = σ24σ13

These hold regardless of whether factor loadings are zero (1234).

σ12σ34 = σ13σ24 = σ14σ23
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Add another 3-variable factor

Identifiability is maintained.

σ14 = Cov(d1, d4) = Cov(F1 + e1, F2 + e4) = Cov(F1, F2) = φ12

Actually, σ14 = λ1λ4φ12 under the original model.

The covariances of the surrogate model are just those of the
surrogate model, multiplied by un-knowable positive constants.

As more variables and more factors are added, all this remains
true.
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Comparing the surrogate models

Either set variances of factors to one, or set one loading per factor
to one.

Both arise from a similar change of variables.

F ′j = λjFj or F ′j = 1√
φjj
Fj .

Meaning of surrogate model parameters in terms of the original
model is different except for the signs.

Both surrogate models share the same equality constraints, and
hence the same goodness of fit results for any given data set.

These constraints are also true of the original model.
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The Equivalence Rule
See text for proof

For a centered factor analysis model with at least one reference
variable for each factor, suppose that surrogate models are obtained by
either standardizing the factors, or by setting the factor loading of a
reference variable equal to one for each factor. Then the parameters of
one surrogate model are identifiable if and only if the parameters of the
other surrogate model are identifiable.

37 / 74



Which re-parameterization is better?

Technically, they are equivalent.

Interpretation of the surrogate model parameters is different.

Standardizing the factors (Surrogate model 2A) is more convenient for
estimating correlations between factors.

But it’s not robust to normality, so bootstrap it.

Setting one loading per factor equal to one (Surrogate model 2B) is more
convenient for estimating the relative sizes of factor loadings.

Hand calculations and identifiability proofs with Surrogate model 2B can
be easier.

If there is a serious latent variable model, Surrogate model 2B is much
easier to specify with lavaan.

Mixing Surrogate model 2B with double measurement is natural.

Don’t do both restrictions for the same factor!
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Why are we doing this? To buy identifiability.

The parameters of the original model cannot be estimated directly.
For example, maximum likelihood will fail because the maximum
is not unique.

The parameters of the surrogate models are identifiable
(estimable) functions of the parameters of the true model.

They have the same signs (positive, negative or zero) as the
corresponding parameters of the true model.

Hypothesis tests mean what you think they do.

Parameter estimates can be useful if you know what the new
parameters mean.
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Crossover Patterns

It is unfortunate when variables can only be infuenced by one
factor. In fact, its unbelievable most of the time.
A pattern like this would be nicer.

The	Crossover	Rule	
•  It	is	unfortunate	that	variables	can	only	be	
caused	by	one	factor.		In	fact,	it’s	unbelievable	
most	of	the	time.	

•  A	pattern	like	this	would	be	nicer.	

45	
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The Extra Variables Rule

A set of observable variables may be added to a measurement model
whose parameters are already identifiable, provided

There is a reference variable for each factor in the existing model.

Error terms of the additional variables have zero covariance with
the error terms of the reference variables in the existing model.

Error terms of the additional variables have zero covariance with
the factors.

Under these conditions,

Straight arrows with factor loadings on them may point from each
existing factor to each new variable.

Error terms for the new set of variables may have non-zero
covariances with each other, and with the error terms in the
original model that do not belong to the reference variables.

You don’t need to include all such links.

All parameters of the new model are identifiable.
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Adding Variables
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Proof of The Extra Variables Rule
Extra variables are in d3

d1 = F + e1

d2 = Λ2F + e2

d3 = Λ3F + e3

cov

 e1

e3

e3

 =

 Ω11 Ω12 0

Ω22 Ω23

Ω33


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Solving for Λ3, Ω23 and Ω33

Σ = cov

 d1

d2

d3

 =

 Σ11 Σ12 Σ13

Σ22 Σ23

Σ33



=

 Φ + Ω11 ΦΛ>2 ΦΛ>3
Λ2ΦΛ>2 + Ω22 Λ2ΦΛ>3 + Ω23

Λ3ΦΛ>3 + Ω33


Solve for a parameter and it becomes black.

Λ3 = Σ>13Φ
−1

Ω33 = Σ33 −Λ3ΦΛ>3

Ω23 = Σ23 −Λ2ΦΛ>3 �
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It’s not so easy to put in all possible blue links
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Error terms of e2, e3, e4 and e5, can have covariances with e7 . . . e14.

Also, the Factor Model Combination Rule says e2 may have covariances with
e4 and e5, and e3 may have covariances with e4 and e5.

But there still cannot be covariances between e2 and e3, or between e4 and e5.

It’s hard to draw.
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We can do a bit better
Adding d3 with the Extra Variables Rule

Instead of

d1 = F + e1

d2 = Λ2F + e2

d3 = Λ3F + e3

Could have

d1 = Λ1F + e1

d2 = Λ2F + e2

d3 = Λ3F + e3,

with the Λ1 matrix p× p and invertable.
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We have some identifiability rules for the measurement
model

Double Measurement rule.

Scalar three-variable rule(s).

The equivalence rule.

Factor combination rule.

Extra variable rule.

Error-free rule.

Need the 2-variable rules.

Need the vector 3-variable rule.
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Two-variable Rule

The parameters of a factor analysis model are identifiable provided

There are two factors.

There are two reference variables for each factor.

For each factor, either the variance equals one and the sign of one
factor loading is known, or the factor loading of at least one
reference variable is equal to one.

The two factors have non-zero covariance.

Errors are independent of one another and of the factors.
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Two-variable Rule
Two factors and two reference variables per factor

d1 = F1 + e1

d2 = λ2F1 + e2

d3 = F2 + e3

d4 = λ4F2 + e4,

with all expected values zero, cov

(
F1

F2

)
= Φ = [φij ], V ar(ej) = ωj ,

and the error terms independent of the factors and each other. An
additional critical stipulation is that Cov(F1, F2) = φ12 6= 0.
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Covariance matrix

Σ = cov


d1
d2
d3
d4

 =


σ11 σ12 σ13 σ14

σ22 σ23 σ24
σ33 σ34

σ44



=


φ11 + ω1 λ2φ11 φ12 λ4φ12

λ22φ11 + ω2 λ2φ12 λ2λ4φ12
φ22 + ω3 λ4φ22

λ24φ22 + ω4


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Two-variable Addition Rule

A factor with just two reference variables may be added to a
measurement model whose parameters are identifiable, and the
parameters of the combined model will be identifiable provided

The errors for the two additional reference variables are
independent of one another and of the error terms already in the
model.

Either the variance of the additional factor equals one and the sign
of one factor loading is known, or the factor loading of at least one
reference variable is equal to one.

In the existing model with identifiable parameters,

There is at least one reference variable for each factor, and
At least one factor has a non-zero covariance with the new factor.
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Brand Awareness Model 1
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Brand Awareness Model 2
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Brand Awareness Model 3
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Brand Awareness Model 4
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Brand Awareness Model 5
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A big complicated measurement model
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Vector 3-variable Rule

Let

d1 = F + e1

d2 = Λ2F + e2

d3 = Λ3F + e3

where

F, d1 and d2 and d3 are all p× 1.

Λ2 and Λ3 have inverses.

cov(F, ej) = cov(ei, ej) = O

Then all the parameters are identifiable.
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Proof of Vector 3-variable Rule
Need to identify Φ, Λ2, Λ3, Ω11, Ω22, Ω33

d1 = F + e1

d2 = Λ2F + e2

d3 = Λ3F + e3

Σ = Φ + Ω11 ΦΛ>2 ΦΛ>3

Λ2ΦΛ>2 + Ω22 Λ2ΦΛ>3

Λ3ΦΛ>3 + Ω33


Λ2 = Σ23Σ

−1
13

Φ = Σ12

(
Λ>2

)−1
Λ3 =

(
Φ−1Σ13

)>
Ω11,Ω22,Ω33 by subtraction.

�
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Don’t need to include all possible links between error
terms

By omitting certain permissible links between error terms, you can
apply the Vector 3-variable Rule and the Additional Variables Rule to
get some useful models that can be identified visually.
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Vector 3-variable Rule
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Vector 3-variable Rule and Additional Variables Rule
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Drop some covariances between errors
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Moral of the Story

With a reference variable for each factor, you can have a classical
unrestricted exploratory factor analysis model for a set of additional
observable variables.

Factors may be correlated.

Errors of reference variables may be correlated.
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Student Mental Health Study Design
Factors are Anxiety and Depression

Social variables

Academic variables

Psychological assessment variables
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Social Variables

Using security camera recordings of students eating lunch in the
cafeteria (with everyone’s permission, of course), the investigators
record four social behaviour variables during a designated
twenty-minute period. Correlated errors within this set are very likely.

d1: Speaking time (not on phone).

d2: Listening time (head turned toward speaker).

d5: Number of smiles/laughs while not on cell phone solo2.

d6: Time solo on cell phone.

2If two people are looking at a phone together, it’s not “solo,” and if they smile
or laugh it would be counted

66 / 74



Academic variables

The following variables are obtained from school records. Measurement
errors may not be correlated within this set, but we will be
conservative, and assume they might be. In any case, it will be
testable.

d3: Grade point average last academic session.

d4: Attendance last academic session.

d7: Hours per week playing school sports.

d8: Hours per week spent on extra-curricular activities, not including
school sports.
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Psychological Assessment Variables
These are the reference variables

d9: Clinical rating of anxiety.

d10: Clinical rating of depression.
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Model for the student mental health example

Anxiety Depression
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Moral of the Story

Divide variables into sets.

Errors may be correlated within sets, but not between sets, as in
double measurement.

But sets need not measure the same things.

One set consists of reference variables.

In each set, at least as many variables as factors.

Arrows from all factors to all variables that are not reference
variables.
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Bifactor Model from Uli Schimmack’s blog
No reference variables!
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Bifactor Example670 REISE

TABLE 1

Revised Child Anxiety and Depression Scale (RCADS-15)

Abbreviated Item Content and Proposed Disorder

1 SAD Scared if I have to sleep on own

2 SAD Afraid of on my own at home

3 SAD Afraid of crowded places

4 GAD Something will happen to family

5 GAD Something bad will happen

6 GAD I think about death

7 PD Tremble or shake

8 PD Suddenly become dizzy or faint

9 PD Suddenly get a scared feeling

10 SOC Worry when done poorly

11 SOC Worry what other people think of me

12 SOC Fool of myself in front of people

13 OCD Have to think special thoughts

14 OCD Do things over and over again

15 OCD Do things in just the right way

Note. SAD D separation anxiety disorder; GAD D gener-

alized anxiety disorder; PD D panic disorder; SOC D social

phobia; OCD D obsessive-compulsive disorder.

and obsessive-compulsive disorder (OCD). Abbreviated item content is shown

in Table 1 and estimated tetrachoric correlations are provided in Table 2.

EXPLORATORY BIFACTOR MODELS

An exploratory bifactor approach to factor analysis was developed in a series

of reports entitled “Preliminary Reports on Spearman-Holzinger Unitary Trait

Study” that were summarized in Holzinger and Swineford (1937). An elegant

and simple bifactor estimation method—called the Schmid-Leiman orthogonal-

ization (SL; Schmid & Leiman, 1957)—was introduced 20 years later (see also

Schmid, 1957; Wherry, 1959). Since its introduction, the SL method has been

the dominant approach to exploratory bifactor modeling, and this remains true

today.

Although applications of exploratory correlated-factors analysis are common

in psychology, reports of exploratory bifactor analysis are rare. In part, this may

be attributable to (a) popular statistical software packages have not included the

SL as part of their factor rotation options and (b) assessment researchers may not

be aware that alternative exploratory rotations, such as an SL bifactor, are simply

transformations of the familiar correlated-factors and second-order solutions.

Accordingly, the aims of this first section are to (a) demonstrate the relations

From “The Rediscovery of Bifactor Measurement Models,” by Steven P. Reise,

Multivariate Behavioral Research, 47:667696, 2012 — Used without permission.
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Second-order Factor Analysis
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. Except for the table of the
Revised Child Anxiety and Depression Scale (which was stolen), it is
licensed under a Creative Commons Attribution - ShareAlike 3.0
Unported License. Use any other part of it as you like and share the
result freely. The LATEX source code is available from the course
website: http://www.utstat.toronto.edu/brunner/oldclass/431s23
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