Large-sample Likelihood Ratio Tests!
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!See last slide for copyright information.
1/30



Introduction

Model and null hypothesis

Di,....D, "% Py 0co,
Hy:0€0yvs. Hy:0€0 r1()5,
The data have likelihood function

n

L(0) = [[ f(di0),

i=1

where f(d;;0) is the density or probability mass function
evaluated at d;.
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Introduction

Example

Di,...,Dn "5t Py 0 €O,

Hp:0€Ogvs. Ha:0e€ONOE,

Dlv s ’Dn Z'Z\“d N(:u’ 02)

Ho:p=povs. Ha:p# po
O = {(1,0%) : pp = po, 0% > 0}

u()
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Introduction

Likelihood ratio

m Let 8 denote the usual Maximum Likelihood Estimate
(MLE).

m That is, 9 is the parameter value for which the likelihood
function is greatest, over all 6 € ©.

m Let :9\0 denote the restricted MLE. The restricted MLE is
the parameter value for which the likelihood function is
greatest, over all § € Oy.

= @\0 is restricted by the null hypothesis Hy : 6 € ©.

= L(f) < L(6), so that

o .\ L(bo)
m The likelihood ratio X = 70) <1.

m If the overall MLE 4 is located in Og, the likelihood ratio
will equal one. In this case, there is no reason to reject the
null hypothesis.
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Introduction

The test statistic

It’s like comparing a full to a reduced model

m We know \ = &%) < 1.
L(9)

m If it’s a lot less than one, then the data are a lot less likely
to have been observed under the null hypothesis than
under the alternative hypothesis, and the null hypothesis is
questionable.

m If ) is small (close to zero), then In()) is a large negative
number, and —21n A is a large positive number.

L(6)
2 _ _21 maxge@O
“ ! < maxgee L(6)
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Introduction

Difference between two —2 log likelihoods

~ ~

= —21HL<90) — [—QIHL( )]
= —20(By) — [—2¢(0)).

m Could minimize —2¢(0) twice, first over all § € O, and then
over all 6 € ©.

m The test statistic is the difference between the two
minimum values.
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Introduction

Distribution of the test statistic under H|

Approximate large sample distribution (Wilks, 1936)

Suppose the null hypothesis is that certain linear combinations
of parameter values are equal to specified constants. Then if Hy

is true,
G?=—-2In L(GA)
L(9)

has an approximate chi-squared distribution for large n.

m Degrees of freedom equals number of (non-redundant,
linearly independent) equalities specified by Hy.
m So count the equals signs.

m Reject when G? is large.
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Introduction

Example

Suppose 6 = (01, ...07), with

1 1
Hy : 91:92706:9775(91‘1"924—93):5(044'95‘1'96)

Count the equals signs or write the null hypothesis in matrix
form as Hy : LO = h.

01
02
1 0 0 0 0 0 03 0
0 0 O 0 0 1 -1 04 = 0
1 1 -1 -1 -1 0 0 0
06
67

Rows are linearly independent, so df =number of rows = 3.
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Introduction

Bernoulli example

mYy,...,Y, < B(1,0)

m Hy:0=10g

m ©O=(0,1)

m O = {tb}

B L(A) = 02i=1¥i(1 — 9)"2im1 i
[ ] 5:@

]
>
(=)
I
>
=)
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Introduction

Likelihood ratio test
L(6) = PXi=1 Vi (1-— 9)'1*22’:1 Yi

G2

statistic
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Introduction

Continued
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Introduction

Coffee taste test

n = 100, 6y = 0.50, 3§ = 0.60

2 _ ain (2 o (=Y
G* = 2n(yln<90>+(1 y)ln<1_eo>)
0.60 0.40

= 4.027

df = 1, critical value 1.962 = 3.84. Conclude (barely) that the
new coffee blend is preferred over the old.
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Introduction

Univariate normal example

Yi,... Yo "5 N(p,0?)

"
m Ho:p=po
m O={(p,0?):peR,o?>0}
m O9 = {(u,0%) : p = pg, 0% > 0}
_ 2\—n/2 —n/2 2
m L(0) = (o) 72 (2m) 2 exp{—g,2 20 (vi — 1)*}
m 0= (Y,5?), where
2 _ I\~ y v
—RZ;E Y)

L] 00 - (ﬁ07a—\8) -
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Introduction

Restricted MLE

For Ho : 1 = po

Definitely have jig = po.

Recall that setting derivaties to zero, we obtained

p=gand o® =% (y—p)? so
i=1
ﬁo = Mo
1 n
o, = - (Y; — o)

14 /30



Likelihood ratio test statistic G*> = —21n L((if)

Have L(0) = (%) 7"/2(2m) "% exp{~ g2 3211 (yi — 1)*}, s0

n

LB) = @) en) " ep{- 5 i -7

=1

n )2
_ (82)—n/2(2ﬂ.)—n/2 exp {_ Zizl(yl y))2}

2% Z?:l(yi -y
— (6_\2)—71/2(27_()—71/26—71/2
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Likelihood at restricted MLE

L(0) = (o)™ (2m) % exp{— 555 S0, (yi — 1)*}

n

20

~2\—n —n 1
(G5) "2 2m) P exp{——5 > (yi — m0)*}
0

(38) "/ (2m) " exp {—

(a\g)fn/2(2ﬂ_)fn/267n/2

=1

> i1 (i — o)

2% Z?:1(yi - MO)2

}
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Introduction

Test statistic

—n/2(2ﬂ.)—n/26—n/2

7n/2(27-(-)7n/267n/2
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Multivariate Normal

Multivariate normal likelihood
SAS proc calis default

Lw® = [[—r—r

I
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127"/2(2m) /2 exp —g {tr(ﬁz

where 3 = Iy (yi—¥)(yi— ¥)" is the sample variance-covariance

matrix.
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Multivariate Normal

Sample variance-covariance matrix

Yi1 Yy
S[i = : Y = :
3= %Z?:l(Yi - ?)(Yi — ?)T is a p x p matrix with (j, k)
element .
1 _ _
- Y (Yij =Y (Yi = Vi)

i=1

This is a sample variance or covariance.
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Multivariate Normal

Multivariate normal likelihood at the MLE

This will be in the denominator of the likelihood ratio test.

Lp,®) = [B2en Fep—2{rES ) +F-p = F-n)}
L2 = B e T ¥
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Multivariate Normal

Example: Test whether a set of normal random

variables are independent

Equivalent to zero covariance

=Yy, Y, RN (e, )

L Hoio'l'j:(]fori#j.

m Equivalent to independence for this multivariate normal
model. ~

m Use G? = —2In (%).

= df =(3)

m Have L(g)

~

m Need L(6p).
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ariate Normal

Getting the restricted MLE

For the multivariate normal, zero covariance is equivalent to
independence, so under Hy,

Lp, %) = ]jl(f()ﬁ|lb’§3)
i=1
n p
= 11wl o)
i=1 \j=1

- 11 ([Tt
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p

L(pg, Zo) = H(Hf(yijluj,ff?))
=1

j=1

Upo, Xo) = Zln (Hf(yzﬂﬂjvg?))
=1

=1

It’s just j univariate problems, which we have already done.
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Multivariate Normal

Likelihood at the restricted MLE

L(fig, o) = H ((8?)”/2(270”/2 exp{—% Z(yij — yj)2}>

J i=1

where EJZ is a diagonal element of 3.
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Multivariate Normal

Test statistic

G2 _ 2 L(HO)
L(9)
P _np _mnp
. ( 5_105') (2m)" 2z e 2
= —<in L np np
S En) Fe 7
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Normal

Cars: Weight, length and fuel consumption
G*=n (Z‘]’:l Ing? —In |§3\>

> kars = read.table("mcars4.data.txt"); attach(kars)
> n = length(lper100k); SigmaHat = var(cbind(weight, length, lper100k))
> SigmaHat = SigmaHat * (n-1)/n # Make it the MLE

> SigmaHat

weight length  1lper100k
weight  129698.9859 186.4174680 984.089620
length 186.4175  0.2993794  1.472152

1per100k 984.0896 1.4721524 10.729116

> Gsq = n * ( sum(log(diag(SigmaHat))) - log(det(SigmaHat)) )
> Gsq # df=3

[1] 347.7159
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Numerical MLEs

Numerical maximum likelihood and testing

For the multivariate normal

Often an explicit formula for 9\0 is out of the question.
Maximize the log likelihood numerically.

Equivalently, minimize —21n L(u, X).

Equivalently, minimize —21In L(p, ¥) plus a constant.
Choose the constant well, and minimize

~

oI L(p, ) — (—2In L(f, 2))

over (u,X) € Q.

The value of this function at the stopping place is the
likelihood ratio test statistic.
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Numerical MLEs

Simplifying ...

_n 1 _ 1
B F ep -4 {r(E2 )+ 3 -w TS - w)}
|§|_%6_%
_n n a1 _ o ~ n np
= 2l (Z Fep-Z {rES )+ F-w ST -w ]IS T)

=

L
—21In —21In

®
MM

L Y
2

= 2 (Zlep{rES ) +F-w TS T -w}IS e ?)

= (o (327 —prmiE-nB G- S - w)

m To avoid numerical problems in minimizing the function, drop the n.

m The result is the “discrepancy function” Fj;r on page 1247 of the Version
9.3 proc calis manual.

m The discrepancy function is also called the “objective function” in other
parts of the manual and in the Results file.



Numerical MLEs

Later in the course
Recalling Fur, = tr (f]E_l) —p+In|¥|—In |f3\ +FT-w)'Z T -

m Model is based on systems of equations with unknown
parameters 6 € O.

m (@) and X(0) are the mean and covariance matrix of the
observable variables.

m We will give up on the parameters that appear only in pu.
Estimate p with ¥ and it disappears from Fisr..

m Calculate the covariance matrix ¥ = 3(0) from the model
equations.

m Minimize the objective function

Fr(6) = tr (22(0)*1) —p+1n|2(0) - n|E|

over all 8 € ©.
m The result is 8. Can also obtain 8y by minimizing over Q.
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Numerical MLEs

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The

ETEX source code is available from the course website:
http://wuw.utstat.toronto.edu/  brunner/oldclass/431s17
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