Exploratory Factor Analysis

STA431: Spring 2017

See last slide for copyright information

Factor Analysis: The Measurement Model

 $\mathbf{D}_i = \mathbf{\Lambda} \mathbf{F}_i + \mathbf{e}_i$

Example with 2 factors and 8 observed variables

 $\mathbf{D}_i = \mathbf{\Lambda} \mathbf{F}_i + \mathbf{e}_i$

The lambda values are called **factor loadings**.

Terminology

$$D_{i,1} = \lambda_{11}F_{i,1} + \lambda_{12}F_{i,2} + e_{i,1}$$

$$D_{i,2} = \lambda_{21}F_{i,1} + \lambda_{22}F_{i,2} + e_{i,2} \text{ etc.}$$

- The lambda values are called **factor loadings**.
- F₁ and F₂ are sometimes called common factors, because they influence all the observed variables.
- Error terms e₁, ..., e₈ are sometimes called unique factors, because each one influences only a single observed variable.

Factor Analysis can be

- Exploratory: The goal is to describe and summarize the data by explaining a large number of observed variables in terms of a smaller number of latent variables (factors). The factors are the reason the observable variables have the correlations they do.
- **Confirmatory**: Statistical estimation and testing as usual.

Unconstrained (Exploratory) Factor Analysis

- Arrows from all factors to all observed variables.
- Massively non-identifiable.
- Reasonable, been going on for around 70-100 years, and completely DOOMED TO FAILURE as a method of statistical estimation.

Calculate the covariance matrix

$$egin{array}{rcl} \mathbf{D}_i &=& \mathbf{\Lambda}\mathbf{F}_i + \mathbf{e}_i \ cov(\mathbf{F}_i) &=& \mathbf{\Phi} \ cov(\mathbf{e}_i) &=& \mathbf{\Omega} \end{array}$$

 \mathbf{F}_i and \mathbf{e}_i independent (multivariate normal)

$cov(\mathbf{D}_i) = \mathbf{\Sigma} = \mathbf{\Lambda} \mathbf{\Phi} \mathbf{\Lambda}^\top + \mathbf{\Omega}$

A Re-parameterization

$\Sigma = \Lambda \Phi \Lambda^+ + \Omega$

Square root matrix: $\mathbf{\Phi} = \mathbf{S}\mathbf{S} = \mathbf{S}\mathbf{S}^{\top}$, so

$$\begin{split} \mathbf{\Lambda} \mathbf{\Phi} \mathbf{\Lambda}^\top &= \mathbf{\Lambda} \mathbf{S} \mathbf{S}^\top \mathbf{\Lambda}^\top \\ &= (\mathbf{\Lambda} \mathbf{S}) \mathbf{I} (\mathbf{S}^\top \mathbf{\Lambda}^\top) \\ &= (\mathbf{\Lambda} \mathbf{S}) \mathbf{I} (\mathbf{\Lambda} \mathbf{S})^\top \\ &= \mathbf{\Lambda}_2 \mathbf{I} \mathbf{\Lambda}_2^\top \end{split}$$

Parameters are not identifiable

 $\boldsymbol{\Sigma} = \boldsymbol{\Lambda} \boldsymbol{\Phi} \boldsymbol{\Lambda}^{ op} + \boldsymbol{\Omega} = \boldsymbol{\Lambda}_2 \mathbf{I} \boldsymbol{\Lambda}_2^{ op} + \boldsymbol{\Omega}$

- Two distinct (Lambda, Phi, Omega) sets give the same Sigma, and hence the same distribution of the data (under normality).
- Actually, there are infinitely many. Let **Q** be an arbitrary covariance matrix for **F**.

$$\begin{split} \mathbf{\Lambda}_{2}\mathbf{I}\mathbf{\Lambda}_{2}^{\top} &= \mathbf{\Lambda}_{2}\mathbf{Q}^{-\frac{1}{2}}\mathbf{Q}\mathbf{Q}^{-\frac{1}{2}}\mathbf{\Lambda}_{2}^{\top} \\ &= (\mathbf{\Lambda}_{2}\mathbf{Q}^{-\frac{1}{2}})\mathbf{Q}(\mathbf{Q}^{-\frac{1}{2}\top}\mathbf{\Lambda}_{2}^{\top}) \\ &= (\mathbf{\Lambda}_{2}\mathbf{Q}^{-\frac{1}{2}})\mathbf{Q}(\mathbf{\Lambda}_{2}\mathbf{Q}^{-\frac{1}{2}})^{\top} \\ &= \mathbf{\Lambda}_{3}\mathbf{Q}\mathbf{\Lambda}_{3}^{\top} \end{split}$$

Restrict the model

$$\mathbf{\Lambda} \mathbf{\Phi} \mathbf{\Lambda}^{ op} = \mathbf{\Lambda}_2 \mathbf{I} \mathbf{\Lambda}_2^{ op}$$

- Set Phi = the identity, so cov(F) = I
- All the factors are standardized, as well as independent.
- Justify this on the grounds of simplicity.
- Say the factors are "orthogonal" (at right angles, uncorrelated).

Another Source of non-identifiability R is an orthoganal (rotation) matrix

$$\begin{split} \boldsymbol{\Sigma} &= \boldsymbol{\Lambda}\boldsymbol{\Lambda}^\top + \boldsymbol{\Omega} \\ &= \boldsymbol{\Lambda}\mathbf{R}\mathbf{R}^\top\boldsymbol{\Lambda}^\top + \boldsymbol{\Omega} \\ &= (\boldsymbol{\Lambda}\mathbf{R})(\mathbf{R}^\top\boldsymbol{\Lambda}^\top) + \boldsymbol{\Omega} \\ &= (\boldsymbol{\Lambda}\mathbf{R})(\boldsymbol{\Lambda}\mathbf{R})^\top + \boldsymbol{\Omega} \\ &= \boldsymbol{\Lambda}_2\boldsymbol{\Lambda}_2^\top + \boldsymbol{\Omega} \end{split}$$

Infinitely many rotation matrices produce the same Sigma.

A Solution

- Place some restrictions on the factor loadings, so that the only rotation matrix that preserves the restrictions is the identity matrix. For example, $\lambda_{ii} = 0$ for j>i
- There are other sets of restrictions that work.
- Generally, they result in a set of factor loadings that are impossible to interpret. Don't worry about it.
- Estimate the loadings by maximum likelihood. Other methods are possible but used much less than in the past.
- All (orthoganal) rotations result in the same value of the likelihood function (the maximum is not unique).
- Rotate the factors (that is, post-multiply the estimated loadings by a rotation matrix) so as to achieve a simple pattern that is easy to interpret.
- The result is often satisfying, but has no necessary connection to reality.

Consulting advice

- When a non-statistician claims to have done a "factor analysis," ask what kind.
- Usually it was a principal components analysis.
- Principal components are linear combinations of the observed variables. They come from the observed variables by direct calculation.
- In true factor analysis, it's the observed variables that arise from the factors.
- So principal components analysis is kind of like backwards factor analysis, though the spirit is similar.
- Most factor analysis software (SAS, SPSS, etc.) does principal components analysis by default.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. These Powerpoint slides are available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/431s17