
STA 431s17 Assignment Three1

This assignment is on material from Lecture Slide Set 5: Statistical models and estimation. There is also
some background in Section A.6 of Appendix A, but that section is dominated by numerical maximum
likelihood with R, which is nice but not needed for this course.

1. Let X1, . . . , Xn be a random sample from a Poisson distribution with expected value λ > 0.

(a) What is the parameter of this model?

(b) What is the parameter space? See the lecture slides for how to write it.

2. Let Y1, . . . , Yn be a random sample from a normal distribution with expected value µ and variance σ2.

(a) What are the parameters of this model?

(b) What is the parameter space?

3. Independently for i = 1, . . . , n, let Yi = βXi + εi, where Xi ∼ N(µx, σ
2
x), εi ∼ N(0, σ2

ε ), and Xi and εi
are independent.

(a) What are the parameters of this model?

(b) What is the parameter space?

4. For i = 1, . . . , n, let Yi = β0 + β1xi1 + · · ·+ βkxik + εi, where

β0, . . . , βk are unknown constants.

xij are known constants.

ε1, . . . , εn are independent N(0, σ2) random variables.

σ2 is an unknown constant.

Y1, . . . , Yn are observable random variables.

(a) What are the parameters of this model?

(b) What is the parameter space?

5. Let X1, . . . , Xn be a random sample from a normal distribution with expected value µ and variance
σ2.

(a) What is the parameter space for this model?

(b) Derive the Maximum Likelihood Estimator of the pair θ = (µ, σ2). Show your work.

(c) Find a Method of Moments estimator of θ. Use the fact that E(Xi) = µ and V ar(Xi) = σ2. This
is very quick. Don’t waste time and effort doing unnecessary things.

(d) In the following R output, data are in the vector x. Based on this, give θ̂. Your answer is a pair
of numbers. I needed a calculator because R’s var function uses n− 1 in the denominator.

> c(length(x),mean(x),var(x))

[1] 20.0000 94.3800 155.1554

(e) Give the maximum likelihood estimator of the standard deviation σ. The answer is a number.
Do it the easy way. How do you know that this is okay?

1This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto.
It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of
it as you like and share the result freely. The LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/431s17
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6. The formula sheet has a useful expression for the multivariate normal likelihood.

(a) Show that you understand the notation by giving the univariate version, in which X1, . . . , Xn
i.i.d∼

N(µ, σ2). Your answer will have no matrix notation for the trace, transpose or inverse.

(b) Now starting with the univariate normal density (also on the formula sheet), show that the
univariate normal likelihood is the same as your answer to the previous question. Hint: Add and
subtract X.

(c) How does this expression allow you to see without differentiating that the MLE of µ is X?

7. Starting with the multivariate normal density on the formula sheet, derive the multivariate normal
likelihood, also on the formula sheet. You will use tr(AB) = tr(AB) and other properties of the trace.

8. Independently for i = 1, . . . , n, let Yi = β0 + β1Xi + εi, where

• Yi is an q × 1 random vector of observable response variables; there are q response variables.

• Xi is a p × 1 observable random vector; there are p explanatory variables. E(Xi) = µx and
V (Xi) = Φp×p. The positive definite matrix Φ is unknown.

• β0 is a q × 1 matrix of unknown constants.

• β1 is a q × p matrix of unknown constants.

• εi is a q × 1 random vector with expected value zero and unknown positive definite variance-
covariance matrix V (εi) = Ψq×q.

• εi is independent of Xi.

Letting Di =

(
Xi

Yi

)
, we have V (Di) = Σ =

(
Σx Σxy

Σyx Σy

)
, and Σ̂ =

(
Σ̂x Σ̂xy

Σ̂yx Σ̂y

)
.

(a) Start by writing Σ in terms of the unknown parameter matrices.

(b) Give a Method of Moments Estimator for Φ. Just write it down.

(c) Obtain formulas for the Method of Moments Estimators of β1, β0 and Ψ. Show your work. You

may give β̂0 in terms of β̂1, but simplify Ψ̂.

(d) If the distributions of Xi and εi are multivariate normal, how do you know that your Method of
Moments estimates are also the MLEs?

9. Let X1, . . . , Xn be a random sample from a continuous distribution with density

f(x; θ) =
1

θ1/2
√

2π
e−

x2

2θ ,

where the parameter θ > 0. Propose a reasonable estimator for the parameter θ, and use the Law of
Large Numbers to show that your estimator is consistent.

10. Let X1, . . . , Xn be a random sample from a Gamma distribution with α = β = θ > 0. That is, the
density is

f(x; θ) =
1

θθΓ(θ)
e−x/θxθ−1,

for x > 0. Let θ̂ = Xn. Is θ̂ consistent for θ? Answer Yes or No and prove your answer. Hint: The
expected value of a Gamma random variable is αβ.
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11. Independently for i = 1, . . . , n, let
Yi = βXi + εi,

where E(Xi) = µx, V ar(Xi) = σ2
x, E(εi) = 0, V ar(εi) = σ2

ε , and εi is independent of Xi. Let

β̂ =

∑n
i=1XiYi∑n
i=1X

2
i

.

Is β̂ consistent for β? Answer Yes or No and prove your answer.

12. Another Method of Moments estimator for Problem 11 is β̂2 = Y n
Xn

.

(a) Show that β̂2
p→ β in most of the parameter space.

(b) However, consistency means that the estimator converges to the parameter in probability every-

where in the parameter space. Where does β̂2 fail, and why?

13. Let X1, . . . , Xn be a random sample from a distribution with expected value µ and variance σ2
x.

Independently of X1, . . . , Xn, let Y1, . . . , Yn be a random sample from a distribution with the same
expected value µ and variance σ2

y. Let Let Tn = αXn + (1 − α)Y n, where 0 ≤ α ≤ 1. Is Tn always a
consistent estimator of µ? Answer Yes or No and show your work.

14. Let X1, . . . , Xn be a random sample from a distribution with mean µ. Show that Tn = 1
n+400

∑n
i=1Xi

is consistent for µ. Hint: If a sequence of constants an → a as an ordinary limit, you can view the

constants as degenerate random variables and write an
p→ a. Then you can use continuous mapping

and so on with confidence.

15. Let X1, . . . , Xn be a random sample from a distribution with mean µ and variance σ2. Prove that the

sample variance S2 =
∑n
i=1(Xi−X)2

n−1 is consistent for σ2.

16. Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate distribution with E(Xi) = µx, E(Yi) =
µy, V ar(Xi) = σ2

x, V ar(Yi) = σ2
y, and Cov(Xi, Yi) = σxy. Show that the sample covariance Sxy =∑n

i=1(Xi−X)(Yi−Y )

n−1 is a consistent estimator of σxy.

17. Let X1, . . . , Xn be a random sample from a Poisson distribution with parameter λ. You know that
E(Xi) = V ar(Xi) = λ; there is no need to prove it.

From the Law of Large Numbers, it follows immediately that Xn is consistent for λ. Let

λ̂ =

∑n
i=1(Xi −Xn)2

n− 4
.

Is λ̂ also consistent for λ? Answer Yes or No and prove your answer.
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