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Measurement Error

Snack food consumption
Exercise

Income

Cause of death

Even amount of drug that reaches animal’s
blood stream in an experimental study

Is there anything that is not measured with
error?



For categorical variables

Classification error is common



Additive measurement error:
W =X +4e




Simple additive model for
measurement error: Continuous case

W=X+e¢e€

Where F(X) = u, E(e) =0, Var(X) = 0%, Var(e) = o2, and Cov(X,e) = 0.
Because X and e are uncorrelated,

Var(W) =Var(X) + Var(e) = o5 + o2
Cov(X, W) = E()C(Vf/)
E()C( ()C( +e)

— E(X)) + E(X)E(e)

— o2



How much of the variation in the observed
variable comes from variation in the
guantity of interest, and how much comes
from random noise?



Reliability is the squared correlation
between the observed variable and the
latent variable (true score).

First, recall
B Cov(X,Y)
Corr(X,Y) = SD(X)SD(Y)
Var(X +a) = Var(X)

Cov(X +a,Y+b) = Cov(X,Y)
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(Corr(X,W))? = X
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Reliability is the proportion of the variance
in the observed variable that comes from
the latent variable of interest, and not from
random error.



Correlate usual measurement
with “Gold Standard?”

Not very realistic, except maybe for
some bio-markers



Measure twice

X + ey
X‘|_€27

W, r




Test-Retest

W1 = X + €1
W2 = X + €2,

where E(X) = pu, Var(X) = 0%, E(e1) = E(e2) =0, Var(e1) = Var(ez) = o2,
and X, e; and ey are all independent.

Equivalent measurements



Test-Retest Reliability

o COU(Wl,WQ)
Corr(W1,Wy) = SD(Wl)SD(Wg)’and

Cov(Wy,Ws) = Cov(WC/1,WC/2)
= E(WWs)

= FE(X +e1)(X +e2)
c 2
= E(X )+0+0+0

= 0%, S0

Corr(W1,Wy) = oX




Estimate the reliability: Measure twice
for a sample of size n

Calculate the sample correlation between
W.., W,.,..,W
W.,,W,,, .., W

* Test-retest reliability
e Alternate forms reliability
* Split-half reliability



The consequences of ignoring
measurement error in the
explanatory (x) variables

First look at measurement error in
the response variable



Measurement error in the response variable

€




Measurement error in the response
variable is a less serious problem:
Re-parameterize

Y = [o+ 01X +e

V. = v+Y+e
= v+ (Bo+ 01X +¢€)+e
= (v+pBy)+ 61X + (e+e)
= By + /X +¢€

Can’t know everything, but all we care about is B, anyway.



Whenever a response variable
appears to have no measurement
error, assume it does have
measurement error but the
problem has been re-
parameterized.



Measurement error in the explanatory variables

€,
W

<X €4 o
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Measurement error in the explanatory
variables

e True model

Yi = pPo+ 51 X1+ PaX;0+ €
Wii = Xi1+e€1
Wia = X;a2+e;0

e Naive model

Yi = Bo+BiWi1+ BaW;a+ €



True Model (More detail)
Yi = [Oo+01Xi1+ BaXio+ ¢
Wii = Xi1+6€n
Wi o

|
s
™
_I_
S
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where independently for i = 1,...,n, E(X; 1) = p1, E(X;2) = pe,
E(Ez) = E(ez’,l) == E(Gi’g) — O, VCL?“(Ei) — 0'2, Var(ei,l) = W1,
Var(e; 2) = wa, the errors €;,e; 1 and e; o are all independent,
X, 1 is independent of €;,¢e; ;1 and e; 2,

X, 2 is independent of €;,¢e; ; and e; 2, and

X1\ _ [ P11 P12
V( X2 ) B ( P12 P22 )



Reliabilities

d11

* Reliability of W, is

O11 + w1

P22

* Reliability of W, is

P29 + wo



Test X, controlling for (holding constant) X,

Y = B0+ B171 + Bazxa + €
E(Y) = Bo + Bix1 + Bax2

0
a—xQE(Y) = Do

That's the usual conditional model



Unconditional: Test X, controlling for X,

Y = 0o+ 1 X1+ 0aXote
Cov(X2,Y) = p1Cov(Xy1,X2)+ BoVar(Xs)
= P1¢12 + P22

Hold X, constant at fixed x,

Cov(Xo,Y|X1 =x1) = BoVar(Xs) = Bagas



Controlling Type | Error Probability

* Type |l error is to reject Hy when it is true, and
there is actually no effect or no relationship

 Type | error is very bad. Maybe that’s why it’s
called an “error of the first kind.”

* False knowledge is worse than ignorance.



Simulation study: Use pseudo-
random number generation to
create data sets

Simulate data from the true model with 3,=0
Fit naive model

Test H,: B,=0 at a = 0.05 using naive model

Is H, rejected five percent of the time?



rmvn <- function(nn,mu,sigma)
# Returns an nn by kk matrix, rows are independent MVN(mu,sigma)
{
kk <- length(mu)
dsig <- dim(sigma)
if(dsigl[1] !'= dsigl[2]) stop("Sigma must be square.")
if (dsigl[1] '= kk) stop("Sizes of sigma and mu are inconsistent.")
ev <- eigen(sigma,symmetric=T)
sqrl <- diag(sqrt(ev$values))
PP <- ev$vectors
ZZ <- rnorm(nnxkk) ; dim(ZZ) <- c(kk,nn)
rmvn <- t(PPY/*Y%sqrli*’%ZZ+mu)
rmvn
}# End of function rmvn



mereg <- function(beta0=1, betal=1, beta2=0, sigmasq = 0.5,

mul=0, mu2=0, phill=1, phi22=1, phil2 = 0.80,

rel1=0.80, rel2=0.80, n=200)
HHHHHHHHHBHHHBHBHBHHHHHHHFHFFFFFFF G
Y = betaO + betal X1 + beta2 X2 + epsilon

#
#

H HF H OH H HEHHHHFHHHEHEHEHHAEHFH

Model 1is

Wl =
W2 =

Fit naive model
Y = beta0 + betal W1 + beta2 W2 + epsilon

Inputs are

betaO, betal beta2

sigmasq
mul

mu2
phill
phi2?2
phil2

rell
rel?
n

X1 + el
W2 + e2

True regression coefficients
Var (epsilon)

E(X1)

E(X2)

Var (X1)

Var (X2)

Cov(X1,X2) = Corr(X1,X1), because
Var(X1) = Var(X2) =1
Reliability of W1
Reliability of W2

Sample size

Note: This function uses rmvn, a multivariate normal random number
generator I wrote. The rmultnorm of the package MSBVAR does
the same thing but I am having trouble installing it.

HHH BB HHHH B R HHHH B R HHHHH R R R  3#



{
# Calculate SD(el) and SD(e2)

sdl <- sqrt((phill-rell)/rell)
sd2 <- sqrt((phi22-rel2)/rel2)
# Random number generation
epsilon <- rnorm(n,mean=0,sd=sqrt(sigmasq))
el <- rnorm(n,mean=0,sd=sdl)
e2 <- rnorm(n,mean=0,sd=sd2)
# X1 and X2 are bivariate normal. Need rmvn function.
Phi <- rbind(c(phill,phil2),
c(phil2,phi22))
X <- rmvn(n, mu=c(mul,mu2), sigma=Phi) # nx2 matrix
X1 <- X[,1]; X2 <- X[,2]
# Now generate Y, W1 and W2

Y = beta0 + betal*X1l + beta2x*X2 + epsilon
Wl =X1+ el
W2 = X2 + e2

# Fit the naive model

mereg <- summary(lm(Y"W1+W2))$coefficients

mereg # Returns table of beta-hats, SEs, t-statistics and p-values
} # End function mereg



> mereg() # All the default values of inputs

Estimate Std. Error t value Pr(>ltl)
(Intercept) 0.9704708 0.05423489 17.893845 3.692801e-43
Wi 0.6486972 0.06336434 10.237576 5.385982e-20
W2 0.2079601 0.06201811 3.353216 9.578634e-04

>

> mereg() [3,4] # Just the p-value for HO: beta2=0
[1] 0.0006340172

>

> # HO rejected twice. Is the function okay?

> mereg(rell=1,rel2=1) [3,4] # No measurement error
[1] 0.03946133

> mereg(rell=1,rel2=1) [3,4] # No measurement error
[1] 0.2582209

> mereg(rell=1,rel2=1) [3,4] # No measurement error
[1] 0.08474088

> mereg(rell=1,rel2=1) [3,4] # No measurement error
[1] 0.5182614

> mereg(rell=1,rel2=1) [3,4] # No measurement error
[1] 0.2889913



> mereg(rell=1,rel2=1) [3,4]
[1] 0.1667587

> mereg(rell=1,rel2=1) [3,4]
[1] 0.4414364

> mereg(rell=1,rel2=1) [3,4]
[1] 0.2268087

> mereg(rell=1,rel2=1) [3,4]
[1] 0.8298779

> mereg(rell=1,rel2=1) [3,4]
[1] 0.3508289

> mereg(rell=1,rel2=1) [3,4]
[1] 0.05173589

> mereg(rell=1,rel2=1) [3,4]
[1] 0.243059

> mereg(rell=1,rel2=1) [3,4]
[1] 0.8818203

> mereg(rell=1,rel2=1) [3,4]
[1] 0.3430994

> mereg(rell=1,rel2=1) [3,4]
[1] 0.4860574

> mereg(rell=1,rel2=1) [3,4]
[1] 0.9644776

> mereg(rell=1,rel2=1) [3,4]
[1] 0.09245873

> mereg(rell=1,rel2=1) [3,4]
[1] 0.04757209

> mereg(rell=1,rel2=1) [3,4]
[1] 0.7947851

> mereg(rell=1,rel2=1) [3,4]
[1] 0.8039931

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

measurement

measurement

measurement

measurement

measurement

measurement

measurement

measurement

measurement

measurement

measurement

measurement

measurement

measurement

measurement

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error



Try it with measurement error

> mereg() [3,4] #
[1] 0.01080889

> mereg() [3,4] #
[1] 0.0007349183
> mereg() [3,4] #
[1] 0.01884786

> mereg() [3,4] #
[1] 0.003615565
> mereg() [3,4] #
[1] 0.003421935
> mereg() [3,4] #
[1] 3.895541e-07
> mereg() [3,4] #
[1] 3.328842e-07
> mereg() [3,4] #
[1] 0.0754436

> mereg() [3,4] #
[1] 0.0001274642
> mereg() [3,4] #
[1] 6.900713e-05
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A Big Simulation Study (6 Factors)

Sample size: n =50, 100, 250, 500, 1000
Corr(X,,X,): ¢,, =0.00, 0.25, 0.75, 0.80, 0.90
Variance in Y explained by X,: 0.25, 0.50, 0.75
Reliability of W,: 0.50, 0.75, 0.80, 0.90, 0.95
Reliability of W,: 0.50, 0.75, 0.80, 0.90, 0.95

Distribution of latent variables and error
terms: Normal, Uniform, t, Pareto

5x5x3x5x5x4 = 7,500 treatment combinations



Within each of the

5x5x3x5x5x4 = 7,500 treatment combinations
10,000 random data sets were generated
For a total of 75 million data sets

All generated according to the true model,
with 3,=0

Fit naive model, test H,: B,=0 at a = 0.05

Proportion of times H, is rejected is a Monte
Carlo estimate of the Type | Error Probability



Look at a small part of the results

* Both reliabilities = 0.90
* Everything is normally distributed
* B,=1, B;=1, B,=0 (H, is true)



Weak Relationship between X; and Y: Var = 25%

Correlation Between X,; and X,

N 0.00 0.25 0.75 0.80 0.90
50 0.04760 0.05050 0.06360 0.07150 0.09130
100 0.05040 0.05210 0.08340 0.09400 0.12940
250 0.04670 0.05330 0.14020 0.16240 0.25440
500 0.04680 0.05950 0.23000 0.28920 0.46490
1000 0.05050 0.07340 0.40940 0.50570 0.74310

Moderate Relationship between X, and Y: Var = 50%

Correlation Between X,; and X,

N 0.00 0.25 0.75 0.80 0.90
50 0.04600 0.05200 0.09630 0.11060 0.16330
100 0.05350 0.05690 0.14610 0.18570 0.28370
250 0.04830 0.06250 0.30680 0.37310 0.58640
500 0.05150 0.07800 0.53230 0.64880 0.88370
1000 0.04810 0.11850 0.82730 0.90880 0.99070

Strong Relationship between X; and Y: Var = 75%

Correlation Between X; and X,

N 0.00 0.25 0.75 0.80 0.90
50 0.04850 0.05790 0.17270 0.20890 0.34420
100 0.05410 0.06790 0.31010 0.37850 0.60310
250 0.04790 0.08560 0.64500 0.75230 0.94340
500 0.04450 0.13230 0.91090 0.96350 0.99920
1000 0.05220 0.21790 0.99590 0.99980 1.00000



normal
0.38692448

Explained Variance

0.25
0.27330660

Base Distribution

Pareto

0.36903077

0.50
0.38473364

t Distr
0.38312245

0.75
0.48691232

uniform
0.38752571

Marginal Mean Type | Error Probabilities

Correlation between Latent Independent Variables

0.00
0.05004853

50
0.19081740

0.50
0.60637233

0.50
0.30807933

0.25
0.16604247

0.75
0.515440093

Sample Size n

100
0.27437227

Reliability of W,

0.75
0.46983147

Reliability of W,

0.75
0.37506733

250
0.39457933

0.80
0.42065313

0.80
0.38752793

0.80
0.55050700

500
0.48335707

0.90
0.26685820

0.90
0.41254800

0.90
0.62621533

1000
0.56512820

0.95
0.14453913

0.95
0.42503167



Summary

* |[gnoring measurement error in the
independent variables can seriously inflate
Type | error probabilitys.

* The poison combination is measurement error
in the variable for which you are “controlling,”
and correlation between latent independent
variables. If either is zero, there is no
problem.

e Factors affecting severity of the problem are
(next slide)



Factors affecting severity of the problem

As t
the

As t
the

As t

ne correlation between X, and X, increases,
oroblem gets worse.

ne correlation between X, and Y increases,
oroblem gets worse.

ne amount of measurement error in X,

increases, the problem gets worse.

As the amount of measurement error in X,
increases, the problem gets less severe.

As the sample size increases, the problem gets
worse.

Distribution of the variables does not matter
much.



As the sample size increases, the
problem gets worse.

For a large enough sample size, no amount of
measurement error in the independent
variables is safe, assuming that the latent
independent variables are correlated.



The problem applies to other kinds of regression, and
various kinds of measurement error

* Logistic regression

* Proportional hazards regression in survival
analysis

* Log-linear models: Test of conditional
independence in the presence of classification
error

* Median splits

* Even converting X, to ranks inflates Type |
Error probability



If X, is randomly assigned

Then it is independent of X,: Zero correlation.

So even if an experimentally manipulated
variable is measured (implemented) with error,
there will be no inflation of Type | error
probability.

If X, is randomly assigned and X, is a covariate
observed with error (very common), then again
there is no correlation between X, and X,, and so
no inflation of Type | error probability.

Measurement error may decrease the precision
of experimental studies, but in terms of Type |
error it creates no problems.

This is good news!



What is going on theoretically?

First, need to look at some large-
sample tools



Sample Space Q, w an element of Q

Observing whether a single individual is male or
female:

Q= {F M}
Pair of individuals and observed their genders in

order:
(1 = {(FvF)a(FvM)a(MvF)v(MaM)}

Select n people and count the number of
females:

Q={0,...,n}

For limits problems, the points in Q are infinite
sequences



Random variables are functions from
Q) into the set of real numbers

Pr{X e B} =Pr({w e Q: X(w) € B}



Random sample X;(w),..., X, (w)
T=T(X1,...,X,)
T ="T,(w)

Let n — o

To see what happens for large samples



Modes of Convergence

* Almost Sure Convergence
* Convergence in Probability
* Convergence in Distribution



Almost Sure Convergence

a.s.

We say that 1), converges almost surely to I', and write 1,, — if

Priw: lim T,(w) =T(w)} = 1.

n—ao0

Acts like an ordinary limit, except possibly on a set of probability zero.

All the usual rules apply.



Strong Law of Large Numbers

Yn Cﬁ',u

The only condition required for this to hold is the existence of the expected value.



Let X, ..., X,, be independent and identically
distributed random variables; let X be a general
random variable from this same distribution,

and Y=g(X)

%Zg(Xi)

1 =<, as
~ ) Y, B E(Y)
nz’zl

E(g9(X))



So for example

1 « 0.5
—» X B(XY)
nizl

1 < a.s
— N UFV;W} S E(UVW?)
T

1
1=1

That is, sample moments converge almost surely to population moments.



Convergence in Probability

We say that 1), converges in probability to T, and write T, L if for all € > 0,

lim P{|T, —T|<e}=1

n—oo

Almost Sure Convergence => Convergence in Probability

Strong Law of Large Numbers => Weak Law of Large Numbers



Convergence in Distribution

Denote the cumulative distribution functions of 11,75, ... by Fi(t), Fa(?),. ..
respectively, and denote the cumulative distribution function of T" by F'(t).

We say that 1), converges in distribution to 1', and write T, % T if for every
point ¢t at which F' is continuous,

lim F,(t) = F(t)

n—oo

Central Limit Theorem says

X, —
7, — Y 14y N0, 1)

O




Connections among the Modes of
Convergence

o T “ST=T ZT7=T 4T

. d P
e If a is a constant, 7,, — a = T,, — a.



Consistency

r.=T.(X, .., X,)is a statistic estimating a parameter 6

The statistic 7}, is said to be consistent for 6 if T, Lo

lim P{|T,, — 0| <e} =1

The statistic T}, is said to be strongly consistent for 0 if T,, ©3 6.

Strong consistency implies ordinary consistency.



Consistency is great but it's not
enough

* |t means that as the sample size becomes
indefinitely large, you (probably) get as close
as you like to the truth.

* |t's the least we can ask. Estimators that are
not consistent are completely unacceptable
for most purposes.

100,000,000 ..

n

T, “S0=U, =T, - ()




Consistency of the Sample Variance

Q)
S N
| |
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By SLLN, X,, =3 pand 1 >0 | X2 ™5 F(X?) = 02 + p?

Because the function g(z,y) = x — y 1s continuous,

ZX n) 3 glo? + P p) =0+t — pP =07



Consistency of the Sample Covariance

. 1 — _ 1< S
Gra=—) (Xi—X)(Y;i-Y)=-) X;¥Vi-X,Y,
1=1 1=1

By SLLN, X,, 5 E(X), Y, = E(Y),and 1 > " | X,Y; =5 E(XY)

Because the function g(z,y, 2) = x — yz is continuous,

. 1O - - | as
01,2 = 4§ (E ZXilfiaXnvyn> — g(E(XY)aE(X)aE(Y))
1=1

— E(XY) - E(X)E(Y) = Cou(X,Y)

= 01,2



MOM is consistent, usually

m = f(0)
0 =g ' (m)
é\n — g_l(mn)

By SLLN, m,, =3 m

AN

a.s. —1

By continuous mapping, 0, = ¢~ t(m,) = g 1(m) =6

1

Provided g™ is continuous at the true parameter value.



True Regression model: Single explanatory
variable measured with error

€ €
Y Y
W Y




Single Explanatory Variable

* True model Y, = By+ 61X + e
W; = X;+e;

e Naive model

Yi = Po+HWi+e

where independently for ¢ = 1,..., n, Var(X;) = o%, Var(e;) = o2, and
X, e;, € are all independent.



Least squares estimate of B, for the Naive Model

31 _ Z?:1(Wi _ W)(E _ 7)
Z?:1(Wi _ W)2
p— gw’y
O

as. Cov(W,Y)
Var(W)

2
_ Ox
¢ <a%<+az>
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Goes to the true parameter times reliability
of W.

Asymptotically biased toward zero, because
reliability is between zero and one.

No asymptotic bias when 3,=0.
No inflation of Type | error probability
Loss of power when 3, 20

Measurement error just makes relationship seem
weaker than it is. Reassuring, but watch out!



Two explanatory variables with error

€,
W

<X €4 o
S <

1 2




Two explanatory variables, 3,=0
Yi = [Oo+01Xi1+ BaXio+ ¢
Wii = Xi1+¢€1
Wi 2 X2+ €2,

where independently for i = 1,...,n, E(X; 1) = p1, E(X;2) = pe,
E(Ez) = E(ez’,l) == E(Gi’g) — O, VCL?“(Ei) — 0'2, Var(ei,l) = W1,
Var(e; 2) = wa, the errors €;,e; 1 and e; o are all independent,
X, 1 is independent of €;,¢e; ;1 and e; 2,

X, 2 is independent of €;,¢e; ; and e; 2, and

X1\ _ [ P11 @12
V( Xi2 ) B ( P12 P22 )



Least squares estimate of 3, for the Naive Model
when true 3,=0

51¢1,2w1
(P11 + wi)(P2,2 + w2)

W1 51¢1,2
®1.1 + wi ®2.2 + wo

Combined with estimated standard error going almost surely to zero,
Get t statistic for H,: B, =0 going to +e°, and p-value going almost
Surely to zero, unless ....



Combined with estimated standard error going
almost surely to zero, get t statistic for H,: $,=0
going to oo, and p-value going almost surely to

zero, unless ....

* There is no measurement errorin W,, or
* There is no relationship between X, and Y, or

* There is no correlation between X, and X.,.

B as( W1 )( B1¢1,2 >
: ®1,1 + w1 $2,2 + wo

And, anything that increases Var(W,) will make the problem less severe.




Need a statistical model that
includes measurement error
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