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Introduction

Model and null hypothesis

Di,....D, "% Py 0co,
Hy:60€0yv.s. HA:GGGHG)E,
The data have likelihood function

n

L(0) = [[ f(di0),

i=1

where f(d;;0) is the density or probability mass function
evaluated at d;.

V]

/31



Introduction

Example

Dn. i"i\-‘“d‘ PH, H € @,

H()’: 0 eB®yvs. Ha:0e€0OnNOE,

Di,...,Dy "% N(u, 0?)

Ho:p=pov.s. Ha:p# po
©o = {(1, 0% : p = po)}
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Introduction

Likelihood ratio

m Let § denote the usual Maximum Likelihood Estimate
(MLE).

m That is, 9 is the parameter value for which the likelihood
function is greatest, over all € O.

m Let :9\0 denote the restricted MLE. The restricted MLE is
the parameter value for which the likelihood function is
greatest, over all § € Oy.

[ 50 is restricted by the null hypothesis Hy : 6 € Oy.

m L(6y) < L(6), so that

m The likelihood ratio \ = LL((éQ)) <1.

m The likelihood ratio will equal one if and only if the overall
MLE 6 is located in ©¢. In this case, there is no reason to
reject the null hypothesis.




Introduction

The test statistic

_ L(bo)
m We know \ = I70) < 1.

m If it’s a lot less than one, then the data are a lot less likely
to have been observed under the null hypothesis than
under the alternative hypothesis, and the null hypothesis is
questionable.

m If )\ is small (close to zero), then In(\) is a large negative
number, and —21n A is a large positive number.

L(9)
G . ( maxgeco L(0)



Introduction

Difference between two —2 loglikelihoods

~ ~

= —21HL<90) — [—QIHL( )]
= —20(By) — [—2¢(0)).

m Could minimize —2¢(0) twice, first over all § € O, and then
over all 6 € ©.

m The test statistic is the difference between the two
minimum values.
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Introduction

Distribution of the test statistic under H|

Approximate large sample distribution

Suppose the null hypothesis is that certain linear combinations
of parameter values are equal to specified constants. Then if Hy

G?=—2In (L(:)>
L(#)

has an approximate chi-squared distribution for large n.

is true,

m Degrees of freedom equals number of (non-redundant,
linearly independent) equalities specified by Hy.

m Reject when G? is large.
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Introduction

Example

Suppose € = (01, ...07), with

1 1
Hy : 91292,9629775(91+92+93)25(94+95+96)

Count the equals signs or write the null hypothesis in matrix
form as Hp : LO = h.

01
0o
0 0 0 0 0 03 0
0 0 0 1 -1 04 = 0
1 -1 -1 -1 0 0 0
s
07

=
—_ o

Rows are linearly independent, so df =number of rows = 3.



Introduction

Bernoulli example

mYy,...,Y, < B(1,0)

m Hy:0=10g

m ©O=(0,1)

m O = {tb}

B L(A) = 02i=1¥i(1 — 9)"2im1 i
[ ] 5:@

]
>
(=)
I
>
=)
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Introduction

Likelihood ratio test
L(6) = PXi=1 Vi (1-— 9)'1*22’:1 Yi

G2

statistic
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Introduction

Continued
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Introduction

Coffee taste test

n = 100, 6y = 0.50, 3§ = 0.60

2 _ ain (2 o (=Y
G* = 2n(yln<90>+(1 y)ln<1_eo>)
0.60 0.40

= 4.027

df = 1, critical value 1.962 = 3.84. Conclude (barely) that the
new coffee blend is preferred over the old.
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Introduction

Univariate normal example

Yio.., Yo R N, 0?)

Ho:p=po

0 ={(u,0?) : p e R, 0% > 0}

60 = {(11,0%) : jt = pio, 02 > 0}

L(6) = (02)"2(2m) "2 exp{ — gk S0 (31 — 1)?)
0= (?, 82), where
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Introduction

Restricted MLE

For Ho : 1 = po

Recall that setting derivaties to zero, we obtained
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Likelihood ratio test statistic G*> = —21n L((if)

Have L(0) = (%) 7"/2(2m) "% exp{~ g2 3211 (yi — 1)*}, s0

n

LB) = @) en) " ep{- 5 i -7

=1

n )2
_ (82)—n/2(2ﬂ.)—n/2 exp {_ Zizl(yl y))2}

2% Z?:l(yi -y
— (6_\2)—71/2(27_()—71/26—71/2
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Likelihood at restricted MLE

L(0) = (o)™ (2m) % exp{— 555 S0, (yi — 1)*}

n

20

~2\—n —n 1
(G5) "2 2m) P exp{——5 > (yi — m0)*}
0

(38) "/ (2m) " exp {—

(a\g)fn/2(2ﬂ_)fn/267n/2

=1

> i1 (i — o)

2% Z?:1(yi - MO)2

}
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Introduction

Test statistic

—n/2(2ﬂ.)—n/26—n/2

7n/2(27-(-)7n/267n/2
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Multivariate Normal

Multivariate normal likelihood

- 1 Two1
L(p,%) = exp{f*yﬁu 3 yﬁu}
(1, %) EIEI% o 2( ) ( )
1 n

_ —n/2 —np/2 _ = o Te-—1 o

= |Z[7V7(2n) exp{ 2§=1(yz n) Z(y: u)}

_ -n/2 —np/2 Te—1/—

= |Z[7V7(2n) exp—- {tr(S +F-—u) ZTF -,

where £ = 15" (y; —¥)(y; —¥) " is the sample
variance-covariance matrix.
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Multivariate Normal

Sample variance-covariance matrix

Yi1 Yy
3= %Z?:l(Yi - ?)(Yi — ?)T is a p x p matrix with (j, k)
element .
1 _ _
- Y (Yij =Y (Yi = Vi)

i=1

This is a sample variance or covariance.

19 /31



Multivariate Normal

Multivariate normal likelihood at the MLE

This will be in the denominator of every likelihood ratio test.

Lp,®) = [B2en Fep—2{rES ) +F-p = F-n)}
L2 = B e T ¥
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ariate Normal

Test whether a set of variables are uncorrelated

Equivalent to zero covariance

s Yy Y, KN (3

L] HotJijZOfOFi7éj.

m Equivalent to independence for this multivariate normal
model. ~

m Use G? = —2In (12((05)))

= Have L(6).

= Need L(6p).
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ariate Normal

Getting the restricted MLE

For the multivariate normal, zero covariance is equivalent to
independence, so under Hy,

Lp, %) = H f(yilp, )
i=1
n p
= 11wl o)
i=1 \j=1

- 11 ([Tt



p

L(pg, Zo) = H(Hf(yijluj,ff?))
=1

j=1

Upo, Xo) = Zln (Hf(yzﬂﬂjvg?))
=1

=1

It’s just j univariate problems, which we have already done.
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Multivariate Normal

Likelihood at the restricted MLE

L(fig, o) = H ((8?)”/2(270”/2 exp{—% Z(yij — yj)2}>

J i=1

where EJZ is a diagonal element of 3.
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Multivariate Normal

Test statistic

G2 _ 2 L(HO)
L(9)
P _np _mnp
. ( 5_105') (2m)" 2z e 2
= —<in L np np
S En) Fe 7
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Numerical MLEs

Numerical maximum likelihood

For the multivariate normal

Often an explicit formula for 9\0 is out of the question.
Maximize the log likelihood numerically.

Equivalently, minimize —21n L(u, X).

Equivalently, minimize —21In L(p, ¥) plus a constant.
Choose the constant well, and minimize

~

oI L(p, ) — (—2In L(f, 2))

over (u,X) € Q.

The value of this function at the stopping place is the
likelihood ratio test statistic.
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Numerical MLEs

What SAS proc calis does

Instead of minimizing —21In L(p, ) — (—21n L(i, £))

B exp—{0r(E2 ) + ¥ - ) =T - w)}
|| er
= n(W[E-mE-wES )~ G- w5 - +p)

= nln

To avoid numerical problems, drop the n and minimize the rest.
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Numerical MLEs

Minimize the “Objective Function”

Over a restricted parameter space

Minimize
~ ~ -1 . o
(S -E-tr(EZ8 ) - F-w' S y-—pn-p

Or, if Hy is concerned only with 3 (common), estimate p with
y, and minimize

S-S - t(ES ) —p

m Then multiply the value at the stopping point by n to get G2.

Actually proc calis multiplies by n — 1.

Still okay as n — oo.

m Maybe it’s to compensate for a possible n — 1 in the denominator of s
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Numerical MLEs

Later in the course

m X is the covariance matrix of the observable variables.

m Model is based on systems of equations with unknown
parameters 8 € ©.

Calculate ¥ = 3(0).

m Minimize the objective function

In|=(0) —In|Z| - tr(EX(0)"") — p

over all 8 € O.



Numerical MLEs

But first

But first a computed example of a direct test of Hy : 05 = 0 for
i # j for a multivariate normal model.
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Numerical MLEs

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The

ETEX source code is available from the course website:
http://wwuw.utstat.toronto.edu/ "~ brunner/oldclass/431s15
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