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Unconditional regression without measurement error

Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi

where

Xi is normally distributed with mean µx and variance
φ > 0

εi is normally distributed with mean zero and variance
ψ > 0

Xi and εi are independent.
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Yi = β0 + β1Xi + εi

Pairs (Xi, Yi) are bivariate normal, with

E

(
Xi

Yi

)
= µ =

(
µ1
µ2

)
=

(
µx

β0 + β1µx

)
,

and variance covariance matrix

V

(
Xi

Yi

)
= Σ = [σi,j ] =

[
φ β1φ
β1φ β21φ+ ψ

]
.
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Moments and Moment Structure Equations

Moments of a distribution are quantities such E(X),
E(Y 2), V ar(X), E(X2Y 2), Cov(X,Y ), and so on.

Moment structure equations are a set of equations
expressing moments of the distribution of the data in terms
of the model parameters.

If the moments involved are limited to variances and
covariances, the moment structure equations are called
covariance structure equations.
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Moment structure equations for the regression model
Yi = β0 + β1Xi + εi

µ1 = µx

µ2 = β0 + β1µx

σ1,1 = φ

σ1,2 = β1φ

σ2,2 = β2
1φ+ ψ

Solve 5 equations in 5 unknowns to get

µx = µ1

β0 = µ2 −
σ1,2
σ1,1

µ1

β1 =
σ1,2
σ1,1

φ = σ1,1

ψ = σ2,2 −
σ2
1,2

σ1,1
.
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Nice one-to-one relationship

The parameters of the normal regression model stand in a
one-to-one-relationship with the mean and covariance
matrix of the bivariate normal distribution of the
observable data.

There is the same number of moments (means, variances
and covariances) as parameters in the regression model.

In fact, the two sets of parameter values are 100%
equivalent; they are just different ways of expressing the
same thing.

By the Invariance Principle, the MLEs have the same
relationship.

Just put hats on everything.
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Invariance Principle: MLE of a function is that function
of the MLE
No need for numerical maximum likelihood in this case

µ̂x = µ̂1 = x

β̂0 = y − σ̂1,2
σ̂1,1

x

β̂1 =
σ̂1,2
σ̂1,1

φ̂ = σ̂1,1

ψ̂ = σ̂2,2 −
σ̂21,2
σ̂1,1

.
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Important process

Calculate the moments of the distribution (usually means,
variances and covariances) in terms of the model
parameters, obtaining a system of moment structure
equations.

Solve the moment structure equations for the parameters,
expressing the parameters in terms of the moments.

Solutions can be used to estimate parameters. Later, we will do
this to check whether successful estimation is even possible at
all.
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Multivariate multiple regression

Yi = β0 + β1Xi + εi
where

Yi is an q × 1 random vector of observable response variables, so the
regression can be multivariate; there are q response variables.

β0 is a q × 1 vector of unknown constants, the intercepts for the q
regression equations. There is one for each response variable.

Xi is a p× 1 observable random vector; there are p explanatory
variables. Xi has expected value µx and variance-covariance matrix
Φ, a p× p symmetric and positive definite matrix of unknown
constants.

β1 is a q × p matrix of unknown constants. These are the regression
coefficients, with one row for each response variable and one column
for each explanatory variable.

εi is the error term of the latent regression. It is an q × 1 multivariate
normal random vector with expected value zero and
variance-covariance matrix Ψ, a q × q symmetric and positive definite
matrix of unknown constants. εi is independent of Xi.
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Data vectors are multivariate normal

Di =

(
Xi

Yi

)

Di ∼ N(µ,Σ)

Write µ and Σ as partitioned matrices (matrices of
matrices).

11 / 45



Models with no measurement error A first try Identifiability Parameter Count Rule

Write µ and Σ as partitioned matrices

µ =

(
E(Xi)

E(Yi)

)
=

(
µ1

µ2

)
and

Σ = V

(
Xi

Yi

)
=

(
V (Xi) C(Xi,Yi)

C(Xi,Yi)
′ V (Yi)

)
=

(
Σ11 Σ12

Σ′12 Σ22

)

Calculate µ and Σ in terms of model parameters to get
moment structure equations.

θ = (β0,µx,Φ,β1,Ψ)
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Moment structure equations

Based on

Yi = β0 + β1Xi + εi

θ = (β0,µx,Φ,β1,Ψ)

µ1 = µx

µ2 = β0 + β1µx

Σ11 = Φ

Σ12 = Φβ′1

Σ22 = β1Φβ′1 + Ψ.
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Solve moment structure equations for the parameters
θ = (β0,µx,Φ,β1,Ψ)

β0 = µ2 −Σ′12Σ
−1
11 µ1

µx = µ1

Φ = Σ11

β1 = Σ′12Σ
−1
11

Ψ = Σ22 −Σ′12Σ
−1
11 Σ12

Just put hats on everything to get MLEs.
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But let’s admit it

In most applications, the explanatory
variables are measured with error.
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A first try at including measurement error

Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi

Wi = ν +Xi + ei,

where

Xi is normally distributed with mean µx and variance
φ > 0

εi is normally distributed with mean zero and variance
ψ > 0

ei is normally distributed with mean zero and variance
ω > 0

Xi, ei, εi are all independent.

Data are just the pairs (Wi, Yi) for i = 1, . . . , n.
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Model implies that the (Wi, Yi) are independent
bivariate normal

E

(
Wi

Yi

)
= µ =

(
µ1
µ2

)
=

(
µx + ν

β0 + β1µx

)
,

and variance covariance matrix

V

(
Wi

Yi

)
= Σ = [σi,j ] =

(
φ+ ω β1φ
β1φ β21φ+ ψ

)
.
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Big problem
Revealed by the moment structure equations

µ1 = µx + ν

µ2 = β0 + β1µx

σ1,1 = φ+ ω

σ1,2 = β1φ

σ2,2 = β21φ+ ψ

It is impossible to solve these five equations for the seven model
parameters.
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Impossible to solve the moment structure equations for
the parameters

Even with perfect knowledge of the probability distribution of
the data (for the multivariate normal, that means knowing µ
and Σ, period), it would be impossible to know the model
parameters.
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A numerical example

(
µ1

µ2

)
=

(
µx + ν

β0 + β1µx

)
(
σ11 σ12

σ22

)
=

(
φ+ ω β1φ

β2
1φ+ ψ

)
µx β0 ν β1 φ ω ψ

θ1 0 0 0 1 2 2 3
θ2 0 0 0 2 1 3 1

Both θ1 and θ2 imply a bivariate normal distribution with mean zero
and covariance matrix

Σ =

[
4 2
2 5

]
,

and thus the same distribution of the sample data.

20 / 45



Models with no measurement error A first try Identifiability Parameter Count Rule

Parameter Identifiability

No matter how large the sample size, it will be impossible
to decide between θ1 and θ2, because they imply exactly
the same probability distribution of the observable data.

The problem here is that the parameters of the regression
are not identifiable.

The model parameters cannot be recovered from the
distribution of the sample data.

And all you can ever learn from sample data is the
distribution from which it comes.

So there will be problems using the sample data for
estimation and inference.

This is true even when the model is completely correct.
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Definitions
Connected to parameter identifiability

A Statistical Model is a set of assertions that partly specify
the probability distribution of a set of observable data.

Suppose a statistical model implies D ∼ Pθ,θ ∈ Θ. If no
two points in Θ yield the same probability distribution,
then the parameter θ is said to be identifiable.

That is, identifiability means that θ1 6= θ2 implies
Pθ1 6= Pθ2

On the other hand, if there exist distinct θ1 and θ2 in Θ
with Pθ1 = Pθ2 , the parameter θ is not identifiable.

22 / 45



Models with no measurement error A first try Identifiability Parameter Count Rule

An equivalent definition
Proof of equivalence deferred for now

If the parameter vector is a function of the probability
distribution of the observable data, it is identifiable.

That is, if the parameter vector can somehow be recovered
from the distribution of the data, it is identifiable.
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Regression models with no measurement error

The mean and covariance matrix are functions of the
probability distribution (calculate expected values).

We solved for all the parameters from the mean and
covariance matrix.

Therefore the parameters are a function of the probability
distribution.

Thus they are identifiable.
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Identifiability is a big concept

It means knowability of the parameters from the
distribution of the data.

We will do mathematical proofs that show whether certain
information can be known.

Call it the algebra of the knowable.
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Theorem

If the parameter vector is not identifiable, consistent estimation
for all points in the parameter space is impossible.

Consistent Estimation is 
Impossible 

Suppose θ1 6= θ2 but Pθ1 = Pθ2
Tn = Tn(D1, . . . , Dn) is a consistent estimator of θ for all
θ ∈ Θ.

Distribution of Tn is identical for θ1 and θ2.
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Identifiability of functions of the parameter vector

If g(θ1) 6= g(θ2) implies Pθ1 6= Pθ2 for all θ1 6= θ2 in Θ, the
function g(θ) is said to be identifiable.
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Some sample questions will be based on this model:

Let W = X + e, where

X ∼ N(µ, φ)

e ∼ N(0, ω)

X and e are independent.

Only W is observable (X is a latent variable).

How does this fit the definition of a model?
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Sample questions

Let W = X + e, where

X ∼ N(µ, φ)

e ∼ N(0, ω)

X and e are independent.

Only W is observable (X is a latent variable).

In the following questions, you may use the fact that the
normal distribution corresponds uniquely to the pair (µ, σ2).

1 What is the parameter vector θ?
2 What is the parameter space Θ?
3 What is the probability distribution of the observable data?
4 Give the moment structure equations.
5 Either prove that the parameter is identifiable, or show by

an example that it is not. A simple numerical example is
best.

6 Give two functions of the parameter vector that are
identifiable.
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Pointwise identifiability
As opposed to global identifiability

The parameter is said to be identifiable at a point θ0 if no
other point in Θ yields the same probability distribution as
θ0.

That is, θ 6= θ0 implies Pθ 6= Pθ0 for all θ ∈ Θ.

Let g(θ) be a function of the parameter vector. If
g(θ0) 6= g(θ) implies Pθ0 6= Pθ for all θ ∈ Θ, then the
function g(θ) is said to be identifiable at the point θ0.

If the parameter (or function of the parameter) is identifiable at
at every point in Θ, it is identifiable according to the earlier
definitions.
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The Parameter Count Rule
A necessary but not sufficient condition for identifiability

Suppose identifiability is to be decided based on a set of
moment structure equations. If there are more parameters than
equations, the set of points where the parameter vector is
identifiable occupies a set of volume zero in the parameter
space.

So a necessary condition for parameter identifiability is that
there be at least as many moment structure equations as
parameters.
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Example
Two latent explanatory variables

Y1 = β1X1 + β2X2 + ε1

Y2 = β1X1 + β2X2 + ε2,

where

X1, X2, ε1 and ε2 are independent normal random
variables with expected value zero, and

V ar(X1) = V ar(X2) = 1, V ar(ε1) = ψ1 and V ar(ε2) = ψ2.

The parameter vector is θ = (β1, β2, ψ1, ψ2).

Only Y1 and Y2 are observable.
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Calculate the covariance matrix of (Y1, Y2)
′

Y1 = β1X1 + β2X2 + ε1

Y2 = β1X1 + β2X2 + ε2,

Σ =

(
σ1,1 σ1,2

σ1,2 σ2,2

)
=

(
β2

1 + β2
2 + ψ1 β2

1 + β2
2

β2
1 + β2

2 β2
1 + β2

2 + ψ2

)
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Covariance structure equations

σ1,1 = β21 + β22 + ψ1

σ1,2 = β21 + β22

σ2,2 = β21 + β22 + ψ2

Three equations in 4 unknowns

Parameter count rule does not say that a solution is
impossible.

It says that the set of points in the parameter space where
there is a unique solution (so the parameters are all
identifiable) occupies a set of volume zero.

Are there any such points at all?
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Try to solve for the parameters
θ = (β1, β2, ψ1, ψ2)

Why is this important?

σ1,1 = β21 + β22 + ψ1

σ1,2 = β21 + β22

σ2,2 = β21 + β22 + ψ2

ψ1 = σ1,1 − σ1,2
ψ2 = σ2,2 − σ1,2
So those functions of the parameter vector are identifiable.

What about β1 and β2?
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Can we solve for β1 and β2?
θ = (β1, β2, ψ1, ψ2)

σ1,1 = β21 + β22 + ψ1

σ1,2 = β21 + β22

σ2,2 = β21 + β22 + ψ2

σ1,2 = 0 if and only if Both β1 = 0 and β2 = 0.

The set of points where all four parameters can be
recovered from the covariance matrix is exactly the set of
points where the parameter vector is identifiable.

It is

{(β1, β2, ψ1, ψ2) : β1 = 0, β2 = 0, ψ1 > 0, ψ2 > 0}

A set of infinitely many points in R4

A set of volume zero, as the theorem says.
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Suppose β2
1 + β2

2 6= 0
This is the case “almost everywhere” in the parameter space.

The set of infinitely many points {(β1, β2, ψ1, ψ2)} such that

ψ1 = σ1,1 − σ1,2
ψ2 = σ2,2 − σ1,2
β21 + β22 = σ1,2 6= 0

All produce the covariance matrix

Σ =

(
σ1,1 σ1,2
σ1,2 σ2,2

)
And hence the same bivariate normal distribution of (Y1, Y2)

′.
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Why are there infinitely many points in this set?

{(β1, β2, ψ1, ψ2)} such that

ψ1 = σ1,1 − σ1,2
ψ2 = σ2,2 − σ1,2
β21 + β22 = σ1,2 6= 0

Because β21 + β22 = σ1,2 is the equation of a circle with radius√
σ1,2.
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Maximum likelihood estimation
θ = (β1, β2, ψ1, ψ2)

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp−
n

2

{
tr(Σ̂Σ

−1
) + (x− µ)′Σ−1(x− µ)

}
L(Σ) = |Σ|−n/2(2π)−n exp−

n

2

{
tr(Σ̂Σ

−1
) + x′Σ−1x

}

Can write likelihood as either L(Σ) or L(Σ(θ)) = L2(θ).

Σ(θ) =

(
β21 + β22 + ψ1 β21 + β22
β21 + β22 β21 + β22 + ψ2

)
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Likelihood L2(θ) has non-unique maximum

L(Σ) has a unique maximum at Σ = Σ̂

For every positive definite Σ with σ1,2 neq0, there are
infinitely many θ ∈ Θ which produce that Σ, and have the
same height of the likelihood.

This includes Σ̂.

So there are infinitely many points θ in Θ with
L2(θ) = L(Σ̂).

A circle in R4
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A circle in R4 where the likelihood is maximal

{(β1, β2, ψ1, ψ2)} ⊂ R4 such that

ψ1 = σ̂1,1 − σ̂1,2

ψ2 = σ̂2,2 − σ̂1,2

β2
1 + β2

2 = σ̂1,2
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What if . . .

σ̂1,2 > σ̂1,1?

σ̂1,2 > σ̂2,2?

σ̂1,2 < 0?

These could not all happen, but one of them could. What
would it mean?

Remember,

ψ1 = σ1,1 − σ1,2
ψ2 = σ2,2 − σ1,2
β21 + β22 = σ1,2

What would happen in a numerical search for θ̂?
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Testing hypotheses about θ

It is possible. Remember, the model implies

ψ1 = σ1,1 − σ1,2
ψ2 = σ2,2 − σ1,2
β21 + β22 = σ1,2
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Lessons from this example

A parameter may be identifiable at some points but not others.

Identifiability at infinitely many points is possible even if there are
more unknowns than equations. But this can only happen on a set of
volume zero.

Some parameters and functions of the parameters may be identifiable
even when the whole parameter vector is not.

Lack of identifiability can produce multiple maxima of the likelihood
function – even infinitely many.

A model whose parameter vector is not identifiable may still be
falsified by empirical data.

Numerical maximum likelihood search may leave the parameter space.
This may be a sign that the model is false. It can happen when the
parameter is identifiable, too.

Some hypotheses may be testable when the parameter is not
identifiable, but these will be hypotheses about functions of the
parameter that are identifiable.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:
http://www.utstat.toronto.edu/∼brunner/oldclass/431s31
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