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An Extension of Multiple Regression

More than one regression-like equation
Includes latent variables

Variables can be explanatory in one equation
and response in another

Modest changes in notation
Vocabulary

Path diagrams

No intercepts, all expected values zero

Serious modeling (compared to ordinary
statistical models)

Parameter identifiability



Variables can be response in one
equation and explanatory in another

e Variables (IQ = Intelligence Quotient):
— X; = Mother’s adult 1Q
— X, = Father’s adult 1Q
— Y, = Person’s adult IQ
— Y, = Child’s 1Q in Grade 8

Yi = a1 +mXi +7Xe+ e
Yo = a4+ 0Y] +e

 Of course all these variables are measured
with error.

* We will lose the intercepts very soon.




Modest changes in notation

Regression coefficients are now called gamma
instead of beta

Betas are used for links between Y variables

Intercepts are alphas but they will soon
disappear.

Especially when model equations are written in
scalar form, we feel free to drop the subscript j;

implicitly, everything is independent and
identically distributed fori=1, ..., n.

Yi = a1 +mXi +7Xe+ e
Yo = a4+ BY1+e




Strange Vocabulary

e Variables can be Latent or Manifest.
— Manifest means observable
— All error terms are latent

e Variables can be Exogenous or Endogenous

— Exogenous variables appear only on the right side of
the = sign.
* Think “X” for explanatory variable.
* All error terms are exogenous

— Endogenous variables appear on the left of at least
one = sign.
* Think “end” of an arrow pointing from exogenous to
endogenous

* Betas link endogenous variables to other endogenous
variables.



Path diagrams

€2 €3
i |
WQ Vl
3




Path Diagram Rules

Latent variables are enclosed by ovals.
Observable (manifest) variables are enclosed by rectangles.

Error terms are not enclosed

— Sometimes the arrows from the error terms seem to come from
nowhere. The symbol for the error term does not appear in the path
diagram.

— Sometimes there are no arrows for the error terms at all. It is just
assumed that such an arrow points to each endogenous variable.

Straight, single-headed arrows point from each variable on the
right side of an equation to the endogenous variable on the left
side.

— Sometimes the coefficient is written on the arrow, but sometimes it is
not.

A curved, double-headed arrow between two variables (always
exogenous variables) means they have a non-zero covariance.

— Sometimes the symbol for the covariance is written on the curved
arrow, but sometimes it is not.



Causal Modeling (cause and effect)

* The arrows deliberately imply that if A = B,
we are saying A contributes to B, or partly
causes it.

* There may be other contributing variables. All
the ones that are unknown are lumped
together in the error term.

* Itis aleap of faith to assume that these unknown

variables are independent of the variables in the
model.

* This same leap of faith is made in ordinary
regression. Usually, we must live with it or go home.



But Correlation is not the
same as causation!

Young smokers who buy contraband cigarettes tend to smoke more.



Confounding variable: A
variable that contributes to
both the explanatory variable
and the response variable,
causing a misleading
relationship between them.
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Mozart Effect

 Babies who listen to classical music tend to
do better in school later on.

* Does this mean parents should play classical
music for their babies?

 Please comment. (What is one possible confounding
variable?)



Experimental vs.
Observational studies

« Observational: explanatory variable ,
response variable just observed and recorded

« Experimental: Cases randomly assigned to
values of explanatory variable

* Only a true experimental study can establish
a causal connection between explanatory
variable and response variable



Structural equation models are mostly
applied to observational data

* The correlation-causation issue is a logical
problem, and no statistical technique can
make it go away.

* So you (or the scientists you are helping) have
to be able to defend the what-causes-what
aspects of the model on other grounds.

e Parents’ 1Q contributes to your IQ and your IQ
contributes to your kid’s 1Q. This is
reasonable. It certainly does not go in the
opposite direction.



Models of Cause and Effect

This is about the interpretation (and use) of structural
equation models. Strictly speaking it is not a statistical issue
and you don’t have to think this way. However, ...

If you object to modeling cause and effect, structural
equation modelers will challenge you.

They will point out that regression models are structural
equation models. Why do you put some variables on the
left of the equals sign and not others?
— You want to predict them.
— |t makes more sense that they are caused by the explanatory
variables, compared to the other way around.
If you want pure prediction, use standard tools.

But if you want to discuss why a regression coefficient is
positive or negative, you are assuming the explanatory
variables in some way contribute to the response variable.



Serious Modeling

Once you accept that model equations are statements
about what contributes to what, you realize that structural
equation models represent a rough theory of the data, with
some parts (the parameter values) unknown.

They are somewhere between ordinary statistical models,
which are like one-size-fits-all clothing, and true scientific
models, which are like tailor made clothing.

So they are very flexible and potentially valuable. It is good
to combine what the data can tell you with what you
already know.

But structural equation models can require a lot of input
and careful thought to construct. In this course, we will get
by mostly on common sense.

In general, the parameters of the most reasonable model
need not be identifiable. It depends upon the form of the
data as well as on the model. Identifiability needs to be
checked. Frequently, this can be done by inspection.



Example: Halo Effects in Real Estate
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Losing the intercepts and expected values

* Mostly, the intercepts and expected values are not
identifiable anyway, as in multiple regression with
measurement error.

* We have a chance to identify a function of the
parameter vector — the parameters that appear in the
covariance matrix £ = V(D).

* Re-parameterize. The new parameter vector is the set
of parameters in Z, and also p = E(D). Estimate p with
x-bar, forget it, and concentrate on inference for the
parameters in 2.

* To make calculation of the covariance matrix easier,
write the model equations with zero expected values
and no intercepts. The answer is also correct for non-
zero intercepts and expected values, by the centering
rule.



From this point on the models have
no means and no intercepts.



Multiple Regression
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Regression with measurement error
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A Path Model with Measurement Error




A Factor Analysis Model
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General Intelligence



A Longitudinal Model




Estimation and Testing as Before

X Y, Y,
X T

€1 €2

All expected values equal zero.

V(X) =0, V(er) =91, V(ez) = 9o,
X, €1, €9 are all independent.

Everything is normal.



Distribution of the data

X 1 Xn
Yi1 | .| Yan are independent normal with mean zero
i YI,Z _ i Yn.,2 _

and covariance matrix

¢ VP By
= v o+ B(v?¢ + 1)
CBvo B(Yo+n) BP(e+ 1) + s

0 = (v,3,d,101, 1)




Maximum Likelihood

n

L(ZD) = |3 7"2(2m) 2 exp 2 {r(E5 )}

Minimize the “Objective Function”

log |2(0)] — log || + tr(E2(0)~1) — k



Tests

Z tests for H,: Parameter = 0 are produced by
default

“Chi-square” = (n-1) * Final value of objective
function is the standard test for goodness of fit.
Multiply by n instead of n-1 to get a true
likelihood ratio test .

Consider two nested models. One is more
constrained (restricted) than the other. Then

n * the difference in final objective functions is
the large-sample likelihood ratio test, df =
number of (linear) restrictions on the parameter.

Other tests (for example Wald tests) are possible
too.




A General Two-Stage Model
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D; (the data) are observable. All other variables are latent.

Y, = 0BY,; +I'X; + ¢; is called the Latent Variable Model

The latent vectors X; and Y, are collected into a “factor” F;. This is
not a categorical independent variable, the usual meaning of factor in
experimental design.

D, = AF,; + e; is called the Measurement Model.



More Details

Y, is a ¢ X 1 random vector.

3 is a ¢ X ¢ matrix of constants with zeros on the main diagonal.
I' is a ¢ X p matrix of constants.

X,; is a p X 1 random vector.

€; is a ¢ X 1 random vector.

F; (F for Factor) is just X; stacked on top of Y;. It is a (p+¢) x 1 random
vector.

D, is a k X 1 random vector. Sometimes, D; = ( ‘\7‘77@ )

1

A is a k X (p+ q) matrix of constants.
D, is a k£ x 1 random vector.
e; is a k X 1 random vector.

X, €; and e; are independent.
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Recall the example







Observable variables in the latent
variable model (fairly common)

* These present no problem
* Let P(e=0) =1, so Var(e) =0
* And Cov(e,e;)=0 because if P(e=0) = 1

Cov(e;,e;) = FEl(ee;) — E(e;)E(e;)
= 0—-0=0

* So in the covariance matrix Q=V(e), just set
w; = w; =0, i=1,....k



What should you be able to do?

Given a path diagram, write the model
equations and say which exogenous variables
are correlated with each other.

Given the model equations and information
about which exogenous variables are
correlated with each other, draw the path
diagram.

Given either piece of information, write the
model in matrix form and say what all the
matrices are.

Calculate model covariance matrices
Check identifiability



Recall the notation

Y, = BY;+I'X; +¢
X;

- (V)

Dz = AFZ—I—GZ



For the latent variable model, calculate ® = V(F)

Y =08Y+TX+e

Y —-08Y =I'X+e¢€

IY - BY =TX + ¢
I-B)Y=TX+e
I-8)""I-B)Y=>1-8)"(TX+e¢)
Y=(I-8)"'TX+I-0)"e

¢4y

V(A=) TX + (I-p)"e)
vwa—¢ﬂ1rxy+va 5)%9
= (I-8)7'TV(X)(I-8)7'T) +(I-8)"'V(e)I-B)~"

I-8)"'T &I (I—ﬁ) Y+ (I-08)" 1‘1’(1_5) Y



For the measurement model, calculate £ = V(D)

D
= V(D)

AF + e

V(AF + e)
V(AF)+ V(e)
AV(F)A" +V (e)
APA 4+ Q

2



Two-stage Proofs of Identifiability

Show the parameters of the measurement
model (A, @, Q) can be recovered from

2=V(D).

Show the parameters of the latent variable
model (B, I, ®,,, W) can be recovered from (),
= V/(F).

This means all the parameters can be
recovered from 2.

Break a big problem into two smaller ones.

Develop rules for checking identifiability at
each stage.
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