THE TRUTH



Why should the variance of the factors

equal one?

Inherited from exploratory factor analysis, which
was mostly a disaster.

The standard answer is something like this:
“Because it’s arbitrary. The variance depends
upon the scale on which the variable is
measured, but we can’t see it to measure it
directly. So set it to one for convenience.”

But saying it does not make it so. If Fis a random
variable with an unknown variance, then

Var(F)=@ is an unknown parameter in the model.



True Model
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Covariance Matrix
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Butforc>0
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The choice ¢ = 1 just sets ¢ = v/¢: convenient but seemingly arbitrary.




You should be concerned!

* For any set of true parameter values, there are
infinitely many untrue sets of parameter
values that yield exactly the same Sigma and
hence exactly the same probability
distribution of the observable data.

* There is no way to know the full truth based
on the data, no matter how large the sample
size.

* But thereis a way to know the partial truth.



Certain functions of the parameter
vector are identifiable

At points in the parameter space where A, Ag, A3 #~ 0,
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What can we successfully estimate?

Error variances are knowable.

Factor loadings and variance of the factor are
not knowable separately.

But both are knowable up to multiplication by
a hon-zero constant, so signs of factor loadings
are knowable (if one sign is known).

Relative magnitudes (ratios) of factor loadings
are knowable.



Testing the Model

Note that all the equality constraints must involve
only the covariances: o; for i not equal to |

In the true model, the covariances are all
multiplied by the same non-zero constant.

So, the equality constraints of the true model and
the pretend model with =1 are the same.

The chi-square test for goodness of fit applies to
the true model. This is a great relief!

Likelihood ratio tests comparing full and reduced
models are mostly valid without deep thought.
— Equality of factor loadings is testable.

— Could test H,: A, =0, etc.



Re-parameterization

The choice ¢=1 is a very smart re-
parameterization.

It re-expresses the factor loadings as multiples
of the square root of @.

It preserves what information is accessible
about the parameters of the true model.

Much better than exploratory factor analysis,
which lost the signs of the factor loadings.

This is the second major re-parameterization.
The first was losing the the means and
Intercepts.



Add a factor to the true model
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Variances and covariances of factors

* Are knowable only up to multiplication by a
unknown positive constants.

* Since the parameters of the latent variable
model will be recovered from ®=V(F), they
also will be knowable only up to multiplication
by unknown positive constants — at best.

e Luckily, in most applications the interest is in
testing (pos-neg-zero) more than estimation.



Cov(F,,F,) is un-knowable, but

Easy to tell if it’s zero

Sign is known if one factor loading from each
set is known — say lambdal1>0, lambda4>0

And,
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Corr(Fy, I5)
The correlation between factors is identifiable!




The correlation between factors is
identifiable

* Furthermore, it is the same function of Sigma
that yields ¢, under the pretend model.

* Therefore, Corr(F,,F,) = §,, under the pretend

model is equivalent to Corr(F,,F,) under the
true model.

» Estimates and tests of ¢, under the
pretend model apply to P12
under the true model. V11V 02




Setting variances of factors to one

S a very smart re-parameterization

s excellent when the interest is in correlations
netween factors.

When the interest is in the factor loadings, we
can do better.

Recall that ratios of factor loadings are
identifiable.



Back to a single-factor model with A,>0

Re-express all factor loadings relative to A;.
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Under this second pretend model

o It looks like )\; is identifiable, but actually it’s A;/A;.
e Estimates of \; for j # 1 are actually estimates of A, /A;.
e It looks like ¢ is identifiable, but actually it’s \{¢.
e ¢ is being expressed as a multiple of \?.

e Estimates of ¢ are actually estimates of \$¢.
Everything is being expressed in terms of A,.

Make D, the clearest representative of the factor.



Add a variable

 Parameters are all identifiable, even if the
factor loading of the new variable equals zero.

* Equality restrictions on Sigma are created,
because we are adding more equations than
unknowns.

* |tis straightforward to see what the
restrictions are, though the calculations can be
time consuming.



Finding the equality restrictions

Calculate Z(0)

Solve the covariance structure equations
explicitly, obtaining theta as a function of 2.

Substitute the solutions back into Z(0)

Simplify




Example: Add a 4th variable

Dl — F + €1

D2 — )\2F T €9

D3 — )\SF T €3

D4 — )\4F T €4
€i1,...,eq4, F all independent

Viej) =w; VI(F)=9¢
)\17)\27)\3 #O



/ ¢ + wi A2 A3 >\4¢\

5(6) Aod A5+ wo A2 A3 A2 A4 @
A3 AoAzd AP + ws A3A4Q
\ Ag @ A2 Ag ¢ Ashagp Ao+ wy
Solutions Substitute
Ag = 22 012 = A2@
° _ 023 012013
Az = g_ii 013 023
= 0
A\ = 2 12




Substitute solutions into expressions
for the covariances
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Equality Constraints

014023 — 024013

012034 — 0924013

These hold regardless of whether factor loadings are zero (1234).

012034 — 013024 — 014023



For both pretend models

Parameters of the 3-variable version are just identifiable.
Six equations in 6 unknowns

There is a one-to-one function between thetal and Sigma,
and another one-to-one function between theta2 and
Sigma.

So, there is a one-to-one function between thetal and
theta?2.

Add a variable and you really only add 2 more equations in
2 more unknowns — one for lambda and one for omega.

The rest become (over-identifying) restrictions on the
sigmas.

So the relationship between thetal and theta2 remains
one-to-one.

The models are equivalent.



Add another 3-variable factor

ldentifiability is maintained.

The covariance ¢,, =0y,

Actually 0., = A, A, ®,, under the true model.
The two pretend models remain one-to-one.

Again, the covariances of the true model are just
those of the pretend model, multiplied by an un-
knowable positive constant.

The true model and both pretend models share
the same equality constraints, and hence the
same goodness of fit results for any given data
set.

As more variables and more factors are added, all
this remains true.



Which re-parameterization is better?

Technically, they are equivalent.

They both involve setting a single un-knowable parameter
to one, for each factor.

This seems arbitrary, but actually it results in a very good
re-parameterization that preserves what is knowable about
the true model.

Standardizing the factors (pretend model 1) is more
convenient for estimating correlations between factors.

Setting one loading per factor equal to one (pretend model
2) is more convenient for estimating the relative sizes of
factor loadings.

Calculations with pretend model 2 can be easier.

Mixing pretend model 2 with double measurement is
natural.



Why all this pretending?

The parameters of the true model cannot be
estimated directly. For example, maximum
likelihood will fail because the maximum is not
unique.

The parameters of the pretend models are all

identifiable (estimable) functions of the
parameters of the true model.

They have the same signs (positive, negative or
zero) of the corresponding parameters of the true
model.

Hypothesis tests mean what you think they do.

Parameter estimates are interpretable for some
Darameters.




The Crossover Rule

* |tis unfortunate that variables can only be
caused by one factor. In fact, it’s unbelievable

most of the time.
* A pattern like this would be nicer.
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When you add a set of variables to a factor analysis
model whose parameters are identifiable

e Straight arrows with factor loadings on them may
point from each existing factor to each new variable.

* You don’t need to include all such arrows.

* Error terms for the new set of variables may have
non-zero covariances with each other, but not with
the error variances or factors of the original model.

 Some of the new error terms may have zero
covariance with each other. It’s up to you.

* All parameters of the new model are identifiable.



ldea of the proof

Have a measurement (factor analysis) model
with p factors and k, observable variables. The
parameters are all identifiable.

Assume that for each factor, there is at least
one observable variable with a factor loading

of one.
If this is not the case, re-parameterize.

Re-order the variables, putting the p variables
with unit factor loadings first, in the order of
the corresponding factors.



The first two equations belong to the initial model
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Comments

There are no restriction on the factor loadings of
the variables that are being added to the model

There are no restriction on the covariances of
error terms for the new set of variables, except
that they must not be correlated with error terms
already in the model.

This suggests a model building strategy. Start
small, perhaps with 3 variables per factor. Then
add the remaining variables — maximum
flexibility.

Could even fit the one-variable sub-models one
at a time to make sure they are okay, then
combine factors, then add variables.



