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A general approach to the analysis of covariance structures is considered, in which the 
variances and covariances or correlations of the observed variables are directly expressed in terms 
of the parameters of interest. The statistical problems of identification, estimation and testing of 
such covariance or correlation structures are discussed. 

Several different types of covariance structures are considered as special cases of the general 
model. These include models for sets of congeneric tests, models for confirmatory and exploratory 
factor analysis, models for estimation of variance and covariance components, regression models 
with measurement errors, path analysis models, simplex and circumplex models. Many of the 
different types of covariance structures are illustrated by means of real data. 
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1. In troduct ion 

The search for structure in correlated psychological  variables has been one o f  the 
main objectives in psychometr ics  for several decades. Tradi t ional ly this search was done 
by using factor  analysis to detect and assess latent sources o f  variat ion and covariat ion in 
observed measurements.  Seldom do these measurements  represent pure psychological  
traits or functions. Rather,  as Thurs tone  [1947] assumed in his multiple factor  model,  each 
measure depends on a limited number  o f  traits or functions and one tries to identify, and 
ultimately estimate, the componen t s  o f  the observed measurements  associated with differ- 
ent traits or  functions. 

In factor  analysis the correlat ion matrix is subjected to a suitable method  for estima- 
t ion o f  the factor  space, the solution rotated to obtain  projections o f  the test vectors on 
certain reference vectors, called factors, and,  by examining the contents  of  the tests which 
have large projections on a particular reference vector, a trait or function is inferred to be 
c o m m o n  to these psychological  tests. The  trait or function, treated as an explanatory  
variable is then named and considered to be a source o f  one o f  the componen ts  o f  
covaria t ion o r  correlat ion in the tests analyzed. Individual differences in this componen t  
can then be estimated as so called factor  scores. 

That  explora tory  factor  analysis may be quite useful in the early stages of  experimen- 
tat ion or  test development  is widely recognized. Thurs tone ' s  [1938] pr imary mental  
abilities, French 's  [1951] factors in apt i tude and achievement tests and Gui l ford ' s  [1956] 
structure o f  intelligence are g o o d  examples o f  this. The  results o f  an exploratory analysis 
may have heuristic and suggestive value [Anderson,  1963] and may generate hypotheses 
which are capable o f  more  objective testing by other  multivariate methods.  

As more  knowledge is gained about  the nature o f  psychological  measurements,  how- 
ever, explora tory  factor  analysis may not  be a useful tool  and may even become a 
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hindrance. Often there is structure in the data which can be postulated a priori and this 
structure may not be consistent with the factor analysis model at all. Such structure may 
arise because of a specified theory or hypothesis, a given classificatory design for items or 
subtests according to objective features of  content and format, known experimental 
conditions or because of results from previous studies based on extensive data. Sometimes 
the observed variables are ordered through time, as in longitudinal studies, or according to 
linear or circular patterns, as in Gut tman 's  [1954] simplex and circumplex models, or 
according to a given causal scheme, as in path analysis or structura! equation models or 
the variables are classified into the two categories dependent and independent variables as 
in prediction studies. The methods of exploratory factor analysis cannot take such a given 
structure into account and if applied to data having such a structure, it will usually give 
very misleading results. 

In this paper I shall describe a new general method for structural analysis of covari- 
ance and correlation matrices. The new method is in the spirit of previous writers on 
analysis of covariance structures, e.g. Bock [1960], Bock and Bargmann [1966], Anderson 
[1969], J6reskog [1970a, 1973, 1974], Mukherjee [1970], Browne [1974, 1977] and 
McDonald [1974, 1975] but is based on a more general model than all previous models in 
that it can handle any linear or non-linear covariance structure. Most of the previous 
models for analysis of covariance structures are based on models in which X, the covari- 
ance matrix of  the observed variables, is generated as a sum of products of matrices whose 
elements are either fixed a priori or free parameters to be estimated. However, often each 
element of  X is a simple function of  just a few of  the parameters and ~: can therefore be 
computed directly and much more rapidly by using the specific nature of  the covariance 
structure. The identification, estimation and testing of  such a covariance structure is dis- 
cussed as well as the testing of  structural hypotheses within a model. Several examples are 
given of various models useful in the behavioral sciences. 

Most studies are to some extent both exploratory and confirmatory since they involve 
some variables of known and other variables of unknown composition. The former should 
be chosen with great care in order that as much information as possible about the latter 
may be extracted. It is highly desirable that a hypothesis which has been suggested by 
mainly exploratory procedures should subsequently be confirmed, or disproved, by ob- 
taining new data and subjecting these to more rigorous statistical techniques. Although 
the new method is most useful in confirmatory studies, it can also be used to do 
exploratory analysis by means of a nested sequence of confirmatory analyses. 

2. The General Model 

General Covariance and Correlation Structures 

Any covariance structure may be defined by specifying that the population variances 
and covariances of the observed variables are certain functions of parameters 01, 02, - • ", Ot 
to be estimated from data: ~r u = au(O), or in matrix form ~ = l~(O). It is assumed that the 
functions ~ru(O ) are continuous and have continuous first derivatives and that ~ is positive 
definite at every point 0 of the admissible parameter space. The distribution of  the 
observed variables is assumed to be multivariate with an unconstrained mean vector tt and 
covariance matrix ~(0)  and is assumed to be sufficiently well described by the moments of 
first and second order, so that additional information about 0 contained in moments of 
higher order may be ignored. In particular this will hold if the distribution is multivariate 
normal. 

A correlation structure is defined by specifying that the population correlations ou of 
the observed variables are functions ou = pu(O) of O. Such a correlation structure is treated 
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as a covariance structure by specifying that 

(1) X = D~P(O)D~, 

where D~ is a diagonal matrix of population standard deviations ~1, or2, " " ,  ap of the 
observed variables, which are regarded as free parameters, and P(0) is the correlation 
matrix. The covariance structure (1) has parameters ~rl, a2, ' " ,  ap, 01, 02, " " ,  Or. The 
standard deviations al, a2, " " ,  ap as well as 0 must be estimated from data and the 
estimate of or, does not necessarily equal the corresponding standard deviation in the 
sample. 

Identification 
Before an attempt is made to estimate the parameters 0, the identification problem 

must be resolved. The identification problem is essentially whether or not 0 is uniquely 
determined by Z. Every 0 in the admissible parameter space generates a E but two or more 
O's may possibly generate the same E. The whole model is said to be identified if for any 
two vectors 01 and 02 in a region of the parameter space, locally or globally, 01 ¢ 02 implies 
that Z(0a) ¢ X(0z), i.e. if X is generated by one and only one 0. This means that all 
parameters are identified. However, even if the whole model is not identified some 
parameters can still be identified. Consider the set of all parameter vectors 0 generating the 
same Z. If a parameter 0~ has the same value in all such vectors, this parameter is 
identified. For parameters which are identified the methods to be described will yield 
consistent estimators. If a model is not completely identified, appropriate restrictions may 
be imposed on 0 to make it so, and the choice of restrictions may affect the interpretation 
of the results of an estimated model. 

ldentifiability depends on the choice of model. To examine the identification problem 
for a particular model consider the equations 

(2) ¢r u = ¢ru(0 ), i < j .  

There are ~p(p + 1) equations in t unknown parameters 0. Hence a necessary condition for 
identification of all parameters is that 

(3) t < ½p(p + 1). 

If a parameter 0 can be determined from ~: by solving the equations (2) or a subset of 
them, this parameter is identified; otherwise it is not. Often some parameters can be 
determined from X in several ways, i.e., by using different sets of equations. This gives rise 
to overidentifying conditions on Z which must hold if the model is true. Since the 
equations (2) are often non-linear, the solution of the equations is often complicated and 
tedious and explicit solutions for all O's seldom exist. Examples on how the identification 
problem is resolved in particular cases are given in Sections 3-10 of  the paper. 

There are various ways in which the computer program may be used to check the 
identification status of the model. If the GLS or ML methods are used for estimation (see 
the next subsection) the information matrix may be obtained and checked for positive 
definiteness. If the model is identified then the information matrix is almost certainly 
positive definite. If the information matrix is singular, the model is not identified and the 
rank of the information matrix may indicate which parameters are not identified. Anoth- 
er procedure which may also be used when other methods of  estimation are used is the 
following. Choose a set of reasonable values for the parameters and compute Z. Then run 
the program with this Z as input matrix and estimate 0. If this results in the same 
estimated values as were used to generate Z, then it is most likely that the model is 
identified. Otherwise, those parameters which gave a different value are probably not 
identified. 



446 PSYCHOMETRIKA 

Estimation 

The population is characterized by the mean vector ~, which is unconstrained, and 
the covariance matrix ~ which is a function of  0. In practice 0 is unknown and must be 
estimated from a sample of N independent observations on the random vector x of  order 
p. Let S = (stj) be the usual sample covariance matrix o f o r d e r p  × p, based on n = N - 1 
degrees of freedom. The information provided by S may also be represented by a 
correlation matrix R = (r~j) and a set of standard deviations sl, s2, • • ", sp, where s~ = (s,)  1/2 
and r~j = s~/s~sj. In many applications both the origin and the unit in the scales of 
measurement are arbitrary or irrelevant and then only the correlation matrix may be of  
any interest. In such cases one takes S to be the correlation matrix R in what follows. 

Since the mean vector is unconstrained, and higher moments are ignored, the estima- 
tion problem is how to fit a matrix ~ of the form ~(0)  to the observed covariance matrix S. 
Three different methods of fitting X; to S will be considered, namely the unweighted least 
squares (ULS) method, which minimizes 

(4) U = ½ tr (S - ~)2, 

the generalized least squares (GLS) method, which minimizes 

(5) G = ½ tr (I - S - i x )  2, 

and the maximum likelihood (ML) method, which minimizes 

(6) M = tr (X;- tS) - log I ~ -  1S I - P. 

Each function is to be minimized with respect to 0. 
All three functions U, G and M may be minimized by basically the same algorithm. 

The notation F = F(S, ~ )  will be used for any one of the three functions. The GLS and 
ML methods are scale-free in the sense that F(S, X) = F(DSD, D x D ) ,  for any diagonal 
matrix of positive scale factors; ULS does not have this property. With ULS, an analysis 
of S and of  DSD yield results which may not be properly related. When x has a 
multivariate normal distribution both GLS and ML yield estimates that are efficient in 
large samples. Both GLS and ML require a positive definite covariance matrix S or 
correlation matrix R; ULS will work even on a matrix which is non-gramian. 

Under the assumption that x has a multinormal distribution or that S has a Wishart 
distribution, M in (6) is a transform of the log-likelihood function for the sample, hence its 
association to the maximum likelihood method. J6reskog and Goldberger [1972] derived 
the expression for G from Aitken's [1934-35] principle of generalized least squares using 
estimated asymptotic variances and covariances of the elements of S under multinormality 
of x. Browne [1974] justified GLS under the slightly more general assumption that the 
elements of S have an asymptotic normal distribution. Since the variances and covariances 
in S are generally correlated and have unequal variances, it would seem that ULS uses the 
wrong metric in measuring deviations between S and ~. Nevertheless, ULS produces 
consistent estimators under more general assumptions than those which have been used to 
justify ML and GLS. 

The derivatives of F are 

(7) 00--7= tr A ( x - S ) A  0~  , 

where A = I in ULS, A = S -1 in GLS and A = X -1 in ML. Assuming that S converges in 
probability to X and ignoring terms of  order X - S, the second derivatives are approxi- 
mately 

02F F A 0 ~  Ac°~ 1 
= tr J" 
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Note that both (7) and (8) may be computed from knowledge about only the first 
derivatives of the covariance structure functions ~(0). In ML and GLS, (8) yields the 
elements of the information matrix which is positive definite at every point 0 of the 
admissible parameter space, if 0 is identified. 

The function F(0) may be minimized numerically by Fisher's scoring method [see e.g. 
Rao, 1973, Section 5g] or the method of Fletcher and Powell [1963]; see also Gruvaeus 
and J6reskog [Note 1]. 

The minimization starts at an arbitrary starting point 0 (1) and generates successively 
new points 0 C2~, 0 ~3~, . . . ,  such that F(0 (8+') < F(0 (8~) until convergence is obtained. 

Let gCS) be the gradient vector OF/SO at 0 = 0 c8~ and let E (~ be the information matrix 
given by (8) and evaluated at 0 = 0 (sl. Then Fisher's scoring method computes a 
correction vector fi(~ by solving the equation system 

(9) E ~  ~ = g~ 

and then computes the new point as 

( 1 0 )  0 ~8+" = 0 < ~ -  ~ .  

This requires the computation of E ~8~ and the solution of (9) in each iteration, and this is 
often quite time consuming. An alternative is to use the method of Fletcher and Powell, 
which evaluates only the inverse of E ~x) and in subsequent iterations E-1 is improved, using 
information built up about the function, so that ultimately E -1 converges to an approxi 7 
mation of  the inverse of O2F/OO 80' at the minimum. 

In GLS and ML, (2/N) times the inverse of the information matrix E, given by (8) 
and evaluated at the minimum of F, provides an estimate of  the asymptotic covariance 
matrix of the estimators 6 of 0. The square root of the diagonal elements of (2/N)E -1 are 
large-sample estimates of the standard errors of the O's. 

Unfortunately no statistical theory is available for computing standard errors for 
ULS estimators. Such standard errors may be obtained by jackknifing but this requires 
extensive computation. 

Assessment of Fit 

When the number of independent parameters in 0 is less than the total number of 
variances and covariances in Z, i.e., when t < ½p(p + 1 ), the model imposes conditions on 
x which must hold if the model is true. In GLS and ML, the validity of these conditions, 
i.e., the validity of the model, may be tested by a likelihood ratio test. The logarithm of the 
likelihood ratio is simply (N/2) times the minimum value of the function F. Under the 
model, this is distributed, in large samples, as a x 2 distribution with degrees of freedom 
equal to 

( l l )  d = ~p(p + l )  - t 

Tests of Structural Hypotheses 

Once the validity of the model has been reasonably well established, various struc- 
tural hypotheses within the model may be tested. One can test hypotheses of the forms 

(i) that certain O's are fixed equal to assigned values and/or  
(ii) that certain O's are equal in groups. 

Each of these two types of  hypotheses leads to a covariance structure Z(v) where v is a 
subset o fu  < t elements of 0. Let F~ be the minimum o f F  under the structural hypothesis 
and let Fo be the minimum of F under the general model. Then (N/2)(F, - Fo) is 
approximately distributed as X 2 with t - u degrees of freedom. 
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The Use of x 2 in Exploratory Studies 

The values of X z should be interpreted very cautiously because of  the sensitivity of  X 2 
to various model assumptions such as linearity, additivity, multinormality, etc., but also 
for other reasons. In most empirical work many of  the models considered may not be very 
realistic. If a sufficiently large sample were obtained, the test statistic would, no doubt, 
indicate that any such model is statistically untenable. The model should rather be that 
~:(0) represents a reasonable approximation to the population covariance matrix. From 
this point of  view the statistical problem is not one of testing a given hypothesis (which a 
priori may be considered false) but rather one of fitting various models with different 
numbers of  parameters and to decide when to stop fitting. In other words, the problem is 
to extract as much information as possible out of a sample of given size without going so 
far that the result is affected to a large extent by "noise".  I t i s  reasonable and likely that 
more information can be extracted from a large sample than from a small one. In such a 
problem it is the difference between ×2 values that matters rather than the ×5 values 
themselves. In an exploratory study, if a value of X 2 is obtained which is large compared to 
the number of degrees of freedom, the fit may be examined by an inspection of the 
residuals, i.e., the discrepancies between observed and reproduced values. Often the results 
of an analysis, an inspection of residuals or other considerations will suggest ways to relax 
the model somewhat by introducing more parameters. The new model usually yields a 
smaller X 2. If the drop in X 2 is large compared to the difference in degrees of  freedom, this 
is an indication that the change made in the model represents a real improvement. If, on 
the other hand, the drop in X ~ is close to the difference in number of  degrees of  freedom, 
this is an indication that the improvement in fit is obtained by "capitalizing on chance" 
and the added parameters may not have any real significance or meaning. 

Often it is not possible, or even desirable, to specify the model completely since there 
may be other models which are equally plausible. In such a situation it is necessary to have 
a technique of analysis which will give information about which of a number of alternative 
models is (are) the most reasonable. Also, if there is sufficient evidence to reject a given 
model due to poor fit to the data, the technique should be designed to suggest which part 
of  the model is causing the poor  fit. Several examples will be given illustrating the 
assessment of  fit o f  a model and strategies for model modification. 

In the following sections of  this paper, several examples are given of  models that are 
useful in the behavioral sciences and some of  these models are illustrated by means of real 
data. All analyses presented are based on the ML method and all X 2 values have been 
obtained as (N - 1) times the minimum value of M. Sometimes a probability level P for a 
X 2 value is given. This refers to the probability of obtaining a x ~ larger than that actually 
obtained, given that the hypothesized model holds. 

3. Models for Sets of Congeneric Tests 

Test Theory Models 

Most measurements employed in the behavioral sciences contain sizeable errors of  
measurements and any adequate theory or model must take this fact into account. Of  
particular importance is the study of congeneric measurements, i.e., those measurements 
that are assumed to measure the same thing. 

Classical test theory [Lord, & Novick, 1968] assumes that a test score x is the sum of a 
true score r and an error score e, where e and r are uncorrelated, m set of test scores xl, 
• • . ,  xp with true scores z~, • • . ,  rp is said to be congeneric if every pair of true scores r~ and 
r~ have unit correlation. Such a set of test scores can be represented as 

x = Lt + ~" + e, 
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where x' = ( x , . . . . ,  Xp ) ,  ~'  = (/31, • • " , /3p)  is a vector of regression coefficients, e' = (el, " ", 
ep)  is the vector of  error scores, ta is the mean vector of x and -~ is a true score, for 
convenience scaled to zero mean and unit variance. The elements of x, e and ~ are regarded 
as random variables for a population of  examinees. Let 0L "- -, 0g be the variances of  el, 
- • -, ep, respectively, i.e., the error variances. The corresponding true score variances are 
/3~, • • . ,  Og. One important problem is that of estimating these quantities. The covariance 
matrix of x is 

(12) Z = ~ ' +  0 2 , 

where 

O = diag (81, " " ,  Op). 

Parallel tests and tau-equivalent tests, in the sense of  Lord and Novick [1968], are 
special cases of  congeneric tests. Parallel tests have equal true score variances and equal 
error variances, i.e., 

/3,~ . . . . .  /3g, 0 ,  ~ . . . . .  0~. 

Tau-equivalent tests have equal true score variances but possibly different error variances. 
Parallel and tau-equivalent tests are homogenous in the sense that all covariances 

between pairs of test scores are equal. For  parallel tests the variances are also equal. Scores 
on such tests are directly comparable, i.e., they represent measurements on the same scale. 
For  tests composed of binary items this can hold only if the tests have the same number of 
items and are administrated under the same time limits. Congeneric tests, on the other 
hand, need not satisfy such strong restrictions. They need not even be tests consisting of 
items but can be ratings, for example, or even measurements produced by different 
measuring instruments. 

Recently Kristof [1971] developed a model for tests which differ only in length. This 
model assumes that there is a "length" parameter/3t associated with each test score x~ in 
such a way that the true score variance is proportional to /31 and the error variance 
proportional to/3~. It can be shown that the covariance structure for this model is of  the 
form 

(13) Z = D a ( ~ '  + ~k~I)Da, 

where D~ = diag (ill, /32, " " ,  /3p) and ~' = fill,/32; " " , / 3 , ) .  This model has p + 1 
independent parameters and is less restrictive than the parallel model but more restrictive 
than the congeneric model. A summary of the various test theory models and their number 
of parameters is given in Table 1. 

As an illustration of the variable-length model consider the following covariance 
matrix S taken from Kristof [1971]: 

= 

54.85 

60.21 99.24 

48.42 67.00 63.81 

This is based on N = 900 candidates who took the January 1969 administration of the 
Scholastic Aptitude Test (SAT). The first test, Verbal Omnibus, was administered under 
30 minutes, and the second test, Reading Comprehension, under 45 minutes, these two 
tests having 40 and 50 items respectively. The third test is an additional section of the SAT, 
not normally administered. 

The following maximum likelihood estimates are.obtained:/~1 = 2.58,/~2 = 3.03,/~s = 



450 P S Y C H O M E T R I K A  

TABLE 1 

Various Test Theory Models 

Model Covariance Structure No. of Parameters 

Parallel E = 82jj" + 82I 2 

Tau-equivalent E = B2jj" + 02 p + 1 

Variable-length ~ = D8(8 ~. + ~2i) ~8 P + 1 

Congeneric E = ~8" + 02 2p 

denotes a column vector with all elements equal to one. 

2.69 and  ~b = 1.60. The  goodness  o f  fit test  yield x 2 = 4.93 wi th  2 degrees of  f reedom.  This  
has  a p r o b a b i l i t y  level o f  0.09. 

Several Sets of Congeneric Test Scores 

The  previous  mode l  general izes  immedia t e ly  to several  sets o f  congener ic  test  scores.  
I f  there  are  q sets o f  such tests, with ml,  m2, • • ", rnq tests respect ively,  we wri te  x' = (xI, x~', 
. • . ,  x~) where  x~, g = 1,2, " ", q is the vec tor  of  observed  scores for the  gth set. Assoc i a t ed  
with the  vec tor  x~ there  is a t rue  score  rg and vectors  ttg and  ~ defined as in the  previous  
sect ion so tha t  

x~ = pg + ~grg + eg. 

As before  we may,  wi thou t  loss o f  general i ty ,  assume tha t  rg is scaled to  zero  mean  
and  uni t  var iance .  I f  the  different  t rue  scores  r l ,  ~'2, " • ", % are  all mu tua l ly  uncor re l a t ed ,  
then each set o f  tests can be ana lyzed  separa te ly  as in the  prev ious  sect ion.  However ,  in 
mos t  cases these t rue scores cor re la te  with each o the r  and an overa l l  analysis  o f  the  ent i re  
set o f  tests mus t  be made .  L e t p  = ml + m~ + •. • mq be the to ta l  n u m b e r  of  tests. Then x is 
o f  o rde r  p. Let  p be the  mean  vec tor  o f  x, and  let e be the vec tor  o f  e r ror  scores.  
F u r t h e r m o r e ,  let 

=' = ( ' r l ,  r 2 ,  ""  " ,  r q )  

and  let B be the mat r ix  o f  o r d e r  p × q, pa r t i t ioned  as 

Then  x is represented  as 

(14) 

B = 

~ 0 " ' "  0 

0 ~h "'" 0 

. . ,  . 

. ,  ° • 

0 0 " ' "  ~ 

x = p + B : + e .  
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Let 1-" be the correlation matrix of  e. Then the covariance matrix X of  x is 

(15)  I~ = B F B '  + O a, 

where O 2 is a diagonal matrix of  order p containing the error variances. 

Estimation and Testing of Disattenuated Correlation Coefficients 

The correlation,coefficient corrected for attenuation between two tests x and y is the 
correlation between their true scores. If, on the basis of  a sample of  examinees, the 
disattenuated coefficient is near unity, the experimenter concludes that the two tests are 
measuring the same trait. 

Let xt, x~, yt, and Y2 be four tests with zero means and satisfying the following model 

with covariance matrix 

3, 0 

3~ 0 
Z =  

0 38 

0 34 

Xl 

Yl 

F2 
ii 1 

3~ 00 r~ 

0 38 r~ 

0 3, 

el 

ea 

es 

e4 

° ° l O 1 0 0 3s 34 

oI o o o 

0o22 o o 
+ 

0 0 o~ o 

o o o o,~ 

In this model, xl and x2 are congeneric measures of  rx and yl and y~ are congeneric 
measures of  rs.  The disattenuated correlation p is the correlation between rx and ry. One 
would like to estimate p and test the hypothesis that p = 1. 

To  illustrate this some data from Lord [1957] are used. The tests xl and x2 are 15-item 
vocabulary tests administered under liberal time limits. The tests y~ and y2 are highly 
speeded 75-item vocabulary tests. The covariance matrix is given in Table 2a. The data are 
analyzed under four different hypotheses: 

H1:3~ = 3~,3s = 3,,0~ = O],O] = O],p = l 

H2:3,  = #2, 3s = 3,, 021 = 022, 0] = 042 

Hs: p = 1 

H,: X is of  the form (15) with 3,, 32, 3s, 34, 01, 02, 03, 0,, and o unconstrained. 

The results are shown in Table 2b. Each hypothesis is tested against the general alternative 
that X is unconstrained. To  consider various hypotheses that can be tested, the four X 2 
values of  Table 2b are recorded in a 2 × 2 table as in Table 2c. Test of  H1 against H2 gives 
X u = 35.40 with 1 degree of freedom. An alternative test is/-/3 against/ /4,  which gives x ~ = 
35.51 with 1 degree of freedom. Thus,  regardless of  whether we treat the two pairs of tests 
as parallel or congeneric, the hypothesis ,o = 1 is rejected. There is strong evidence that  the 
unspeeded and speeded tests do not measure the same trait. I shall return to this question 
in the next section, The hypothesis of  parallelness of  the two pairs of  tests can also be 
tested by means of  Table 2c. This gives X z = 1.12 or X a = 1.23 with 4 degrees of  freedom, 
depending on whether we assume o = 1 or O # 1. Thus we cannot reject the hypothesis that 
the two pairs of tests are parallel. It appears that Ha is the most reasonable of  the four 
hypotheses. The maximum likelihood estimate o fo  under / /2  is h = 0.899 with a standard 
error of  0.019. An approximate  95% confidence interval for 0 is 0.86 < o < 0.94. 
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TABLE 2 

Lord's Vocabulary Test Data 
Covariance Matrix (a) 

N = 649 

Xl x2 Yl Y2 

x I 86.3979 

x 2 57.7751 

Yl 56.8651 

Y2 58.8986 

86.2632 

59.3177 97.2850 

59.6683 73.8201 97.8192 

Summary of Analyses (b) 

2 
Hypothesis No. par. ........... X d.f. P 

H 1 4 37.33 6 0.00 

H 2 5 1.93 5 0.86 

H 3 8 36.21 2 0.00 

H 4 9 0.70 1 0.40 

Tests Hypotheses (c) 

Parallel Congeneric 

p = 1 X~ = 37.33 X 2 2 2 = 36.21 X4 = 1.12 
u, . . . . .  

2 2 2 
p ~ 1 X5 = 1.93 X1 = 0.70 X 4 = 1.23 

2 
X1 = 35.40 

2 
X1 = 35.51 
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Analysis of Speeded and Unspeeded Tests 

Table 3a shows correlations and standard deviations for 18 tests. There are three 
kinds of tests, Vocabulary, Intersections, and Arithmetic Reasoning tests and of each kind 
there are two level tests (L) which are unspeeded or very little speeded, one medium- 
speeded (M) and three highly speeded (S). These tests together with several others were 
analyzed by Lord [1956] with the objective to isolate and identify speed factors in tests and 
their relationships to academic grades. Lord (p. 31) lists among others the following 
questions, that his study was designed to answer: "Is speed on cognitive tests a unitary 
trait? Or are there different kinds of speed for different kinds of tasks? If so, how highly 
correlated are these kinds of speed? How highly correlated are speed and level on the same 
task?" Lord used maximum likelihood factor analysis and oblique rotations, and verbal- 
speed and spatial-speed factors were clearly identified but no arithmetic-reasoning speed 
factor was found. A smaller battery of  15 tests was used by JSreskog [1971] to answer the 
same kinds of questions by means of a series of confirmatory analyses. One of these 
models will be used here. 

I postulate that there are three power factors and three speed factors, one of each kind 
for each kind of task. The two unspeeded tests load only on the power factor whereas the 
four speeded tests l~oad on both the power and the speed factor. The speed factors are 
postulated to be uncorrelated with the power factors. The resulting solution, given in 
Table 3b, has X 2 = 167.51 with 117 degrees of freedom. This has a P-level of  0.002. Table 
3b also gives approximate 95% confidence intervals for all the estimated parameters. Note 
that the loadings for the medium speeded tests on the speed factor are on the boundary of  
being significant. In order to detect and isolate the speed factor in these medium speeded 
tests one should either have a larger sample or these tests should be more speeded. The 
three power factors correlate moderately and so do the three speed factors. Thus all six 
factors are clearly manifested. The advantage of  postulating that speed and power factors 
are uncorrelated is that one can easily get a variance decomposition of each total test 
variance into components due to power, speed and error. These variance components are 
obtained simply by squaring the corresponding loadings in Table 3b. 

Can the fit o f  the model in Table 3b be improved by letting speed and power factors 
correlate? The answer is no for the following reason. If the correlation between factors V 
and VS, say, is relaxed, one can add a multiple of column 4 of the factor matrix to column 
1. This change can be compensated by changing the correlation between V and VS in such 
a way that Z remains the same. Thus, the correlation between V and VS and the loadings 
of the four speeded tests on the power factor are not identified while all the other 
parameters are identified. In fact, the correlation between V and VS can be assigned any 
value (between zero and one) and the fit of the model will be identically the same. 
Although one cannot estimate the correlations between speed and power on the same task, 
one can estimate the correlations between speed and power factors on different tasks. 
However, these correlations are generally very small and they do not improve fit signifi- 
cantly. 

4. Factor Analysis Models 

The models of the previous section are all special cases of a general model for 
confirmatory factor analysis developed by J6reskog [1969]. However, factor analysis is 
most widely used in exploratory studies, in which the nature of the common factors is to 
be revealed by the analysis rather than postulated in advance. The basic idea is that for a 
given set of  response variates xl, • • ", xp one wants to find a set of  underlying or latent 
factors fl, . . . ,  fk, fewer in number than the observed variates, that will account for the 
intercorrelations of  the response variates, in the sense that when the factors are partialled 



4
~
 

4~
 

T
A
B
L
E
 

3
a
 

St
an

da
rd

 

49
.4
9 

9.
2~

 
49

.6
3 

9.
73

 

49
.7

6 
9.

86
 

49
.9

o 
9.
61
 

i4
9.
83
 

9
.8

9
 

49
.9

4 
9.

55
 

~0
~i

~ 
9.

67
 

Lo
rd

's
 S

pe
ed

 
Fa

ct
or

 D
a
t
a
 

To
ta

l 
Sa

mp
le

 
N 

= 
64

9 

Vo
ca

bu
la

ry
 

tt
 

In
te

rs
ec

ti
on

s 

"
 

90
.0

0 
9.

80
 

" 
5o

.i
0 

9.
83

 

" 
~o
.o
7 

9.
s8
 

Ar
it
h.
 
Re

as
on

in
g 

49
.5

2 
9.

05
 

" 
~0

.!
6 

9.
67

 

" 
49

.9
2 

9.
73

 

" 
i 4
9.

79
 

9.
91

 

" 
49

.8
0 

9.
85

 

" 
50

.0
0 

9.
83

 

49
.4

9 
9.

30
 

I.
OO

 

• 6
7 

1.
oo

 

• 7
1 

.6
9 

1.
00

 

.6
2 

.6
5 

.6
6 

1
.
o
o
 

.6
9 

.7
0 

.7
U 

.7
7 

i.
oo

 

.6
4 

.
6
~
 

.7
0 

.7
6 

.8
5 

1.
0o

 

.1
5 

.1
8 

.l
l 

.1
6 

.1
2 

.0
9 

i.
oo

 

.0
6 

.1
4 

.0
8 

.1
4 

.0
6 

.0
7 

.7
2 

1.
oo

 

49
.9

7 
9.

81
 

.i
o 

.1
8 

.1
2 

,1
8 

.i
o 

.1
2 

.7
1 .
...
...
...
...
 

~7
7 

l.
oo

 

.1
2 

.1
7 

,0
9 

-1
9 

.1
3 

.1
4 

.7
0 

.7
1 

.7
5 

1.
00

 

• 0
9 

.1
5 

.0
8 

.1
7 

.i
i 

.i
0 

.7
0 

.7
4 

.7
6 

.8
0 

1.
00

 

.0
8 

.1
2 

.0
8 

.1
6 

.i
0 

.l
l 

.7
0 

.7
~ 

.7
7 

.7
9 

.8
5 

1.
00

 

• 3
0 

.3
2 

.2
7 

.2
8 

.2
9 

.2
7 

.3
4 

.3
O 

.3
4 

.5
2 

.3
1 

.3
3 

1.
00

 

.
2
~
 

.3
1 

,2
6 

.
2
9
 

.2
7 

.2
9 

,3
6 

.3
0 

.3
6 

.5
0 

.2
9 

.3
1 

,5
4 

1.
00

 

• 2
9 

II
 
"
5
 4
 

"3
0 

i.
~2

 
.3
1 

-3
5 

.3
0 

.3
0 

.3
4 

.3
1 

.2
~ 

.3
2 

.6
1 

.5
6 

1.
00

 

.2
8 

.2
6 

.3
0 

.3
6 

.3
5 

.3
8 

.e
9 

.2
8 

.5
3 

.3
1 

.2
9 

.3
6 

.5
5 

.5
4 

.6
3 

1.
00

 

.2
7 

.2
9 

.3
0 

-3
3 

-3
5 

.3
5 

.3
4 

.2
8 

.3
4 

-5
5 

.3
4 

.3
7 

.5
3 

.5
5 

.5
8 

.6
3 

1.
00

 

.2
8 

.3
0 

.3
1 

.3
8 

.3
6 

.5
9 

.2
6 

.2
3 

.2
5 

.2
7 

.2
5 

.3
1 

.5
1 

.~
3 

.5
7 

.6
4 

.6
1 

1.
0~

 

0 ['n
 



KARL G. JORESKOG 455 

TABLE 3b 

Lord's Spee d Facto r Dat_a 

Total Sample N = 649 

V S R VS a s  RS 

Vocabulary L 82 + 07 00" 00" O0" CO* 00* 
" L 83 ± 07 00" 00" 00* OO* OO* 
" M 84 +- 07 00" 00" 09 +- 07 00" 00" 
,, S 76 -+ 08 00" 00" 33 ± 08 00" O0" 
,, S 85 ± 07 00" 00" 40 ± 07 00* 00" 
,, S 79 -+ 07 OO* 00* 48 +- 07 00* 00* 

Intersections L OO* 83 ± 07 00" O0" 00* OO* 
" L OO* 87 ± 07 00" O0" 00* 00* 
" M 00" 88 ± 07 00" 00" 06 +- 07 00" 
" S 00* 84 ± 07 00" O0" 25 + i0 00* 
" S 00* 85 ± 07 00" 00" 32 ± 07 00" 
" S 00" 86 ± 06 00" 00" 34 ± i0 00" 

Arith, Reasoning L 00" 00" 75 i 06 00" 00" 00" 
" L 00" 00" 74 -+ 09 00" 00" 00" 
" M 00" 00" 79 i 07 00" 00" Ii + 07 
" S 00" 00" 74 ± 08 00* OO* 36 ± 09 
" S 00" 00" 72 -+ 07 00" O0" 29 -+ 07 
" S 00" 00" 70 ± 08 O0" OO* 35 -+ i0 

V S R VS SS RS 

V i00" 
S 16 ± 08 1 0 0 "  
R 49 -+ 07 48 ± 07 i00" 
VS 00" 00" 00" i00" 
SS 00" 00" 00" 27 + 16 lO0* 
RS 00" 00" 00" 65 ± 18 41 + 22 lO0* 

X 2 = 167.51 with ll7 degrees of freedom 

P = 0.002 

Asterisks denote parameter values specified by hypothesis. 

All entries have been multiplied by'. 100. 

Unique Variance 

33 -+ o4 
31 +- 04 
29_+o4 
3i -+ o4 
13 -+ 03 
15 -+ 04 

32 -+ 04 
24 _+ 04 
23 -+ o4 
24 +_ o3 
18 + 03 
16 +- 03 

44 + 06 
46 + 06 
58 + o5 
32 _+ o5 
40 _+ 05 
39 +- 06 

out from the observed variates there no longer remains any correlation between these. 
This leads to the model 

(16) x = tt + A f +  z 

where g (x) = tt, g (f) = 0 and g (z) = 0, z being uncorrelated with f. Let • = g ( f f )  which 
may be taken as a correlation matrix and W ~ = g (zz')  which is diagonal. Then the 
covariance matrix Z o f  x becomes 

(17)  x = A ~ A '  + W 2. 

If (p - k)~ < p + k, this relationship can be tested statistically, unlike (16) which involves 
hypothetical variates and cannot be verified directly. 

When k > 1 there is an indeterminacy in (16) arising from the fact that a nonsingular 
linear transformation o f  f changes A and in general also • but leaves ~ unchanged. The 
usual way to deal with this indeterminacy in exploratory factor analysis [see, e.g., Lawley 
& Maxwell,  1971 or J6reskog, 1967] is to choose  • = I and A ' W - ~ A  or A ' A  to be 
diagonal and to estimate the parameters in A and W subject to these conditions. This 
leads to an arbitrary set o f  factors which may then be subjected to a rotation or a linear 
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transformation to another set of factors which can be given a more meaningful inter- 
pretation. This rotation is usually guided by Thurstone's [1947] principle of simple 
structure which states that in each column of A there should only be a relatively small 
number of large loadings and a relatively large number of small loadings. Efficient 
computational procedures for estimating the unrotated factor loadings by ULS, GLS or 
ML have been described by J6reskog [1977a] and a computer program by J6reskog and 
S6rbom [1979] is available for this. Analytical procedures for rotation to simple structure 
are described by Harman [1967]. 

The factor analyst usually only interprets the large loadings in a factor matrix A after 
rotation to simple structure. However, the most difficult question which have plagued 
factor analysts for several decades is "How large should a factor loading be to be 
considered significant?" or "How small should a factor loading be to be ignored?". The 
first break-through came with the papers by Archer and Jennrich [1973] and Jennrich 
[1973] who developed procedures for estimating standard errors for rotated factor load- 
ings estimated by the maximum likelihood method. Unfortunately, however, the amount 
of computation involved in these procedures is so enormous that their feasibility in 
practice becomes very limited. I shall therefore propose an alternative procedure here. 
This procedure not only gives standard errors for factor loadings but, when applied 
routinely, also yields what I shall call "the best-fitting simple structure" for a given 
number of factors. 

Finding the Best Fitting Simple Structure 

Once a sufficient number of restrictions has been imposed on the model to make it 
identified, standard errors for factor loadings can be estimated by the method described in 
Section 2. The simplest way to achieve identification, assuming that • is a correlation 
matrix with one's in the diagonal, is to set at least k - 1 zeroes in each column of  A. 
Sometimes one has enough knowledge about the factorial nature of the tests to be able to 
specify a priori that certain variables should not load on certain factors. If this is not 
possible, as in a completely exploratory analysis, one can proceed as follows: 

(i) rotate the factors orthogonally by the varimax method [Kaiser, 1958]; 
(ii) raise the varimax factor loadings to some power 3 or 4 while retaining their signs. 

Use these numbers as a target and perform a promax [Hendrickson and White, 
1964] procrustes rotation. This produces an oblique solution. 

(iii) in the promax factor matrix find the largest factor loading in each column and, 
assuming that these are in different rows, rotate the original unrotated factor 
matrix or the varimax factor matrix so that the other loadings in these rows 
become zero. This results in an oblique solution in which each factor vector 
passes through one test point. 

The solution obtained in (iii) has k - 1 zeroes in each column of  A and has exactly 
the same fit to the data as any other rotated solution. A confirmatory analysis with the 
same fixed zeroes will yield the same non-zero factor loadings but standard errors for these 
can now be obtained. A n inspection of the loadings in relation to their standard errors will 
usually reveal that a large number of  the loadings are insignificant. By eliminating these, 
i.e. by setting them equal to zero, one can reduce a lot of noise in the model and estimate 
the really significant loadings more precisely. To obtain the best-fitting simple structure, 
proceed with the next step: 

(iv) set all insignificant loadings to zero. The resulting solution will not in general 
have a significantly worse fit than the original solution but will display a neat 
simple structure with many zero loadings. 

Since it is a possibility that the loadings that were set to zero in step (iii) are not zero, 
it is recommended as a safeguarding final step that the zero loadings are checked again as 
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follows. Find the largest absolute derivative of F with respect to the fixed zero loadings 
and relax this particular zero loading while keeping all other zeroes fixed. This loading will 
make the function decrease maximally and hence make the largest improvement in fit. If 
the improvement in fit is significant this step should be repeated again. Otherwise the final 
solution is "best-fitting" in the following sense: 

(a) all non-zero loadings are significant; 
(b) all zero loadings are such that if they were relaxed they would not be significant. 
The whole procedure for finding the best fitting simple structure will be illustrated 

using the well-known Harman's [1967] twenty-four psychological variables with four 
factors. The varimax solution is given in Table 4a. This has an overall X 2 of 246.36 with 
186 degrees of freedom representing a reasonably good fit of the unrestricted four-factor 
model. Since this already exhibits a rather good simple structure I shall omit the step (ii) of 
the procedure and continue directly with step (iii). The largest loading in each column is 
underlined in Table 4a. Using the tests 9, 10, 1 and 17 as reference variables for Factors 1, 
2, 3 and 4, respectively, one obtains the solution given in Table 4b in which the standard 
errors of the non-zero loadings are given in parenthesis. Setting to zero those loadings 
which are not significant at the 5% level, i.e. those that are less in magnitude than two 
times its standard error, gives the solution in Table 4c. This has a X ~ of 301.42 with 231 
degrees of freedom. The difference between this and the original X 2 is 55.06 with 45 degrees 
of freedom which is not significant. Hence, although the solution in Table 4c represents a 
highly restricted solution with many zero loadings, the fit of this solution is not any worse 
than that of the original unrestricted solution. The largest derivative occurs for the zero 
loading in row 12 and column 1 of Table 4c. When this loading is relaxed, X 2 drops to 
295.52, a drop of 5.89 with one degree of freedom. Since this is not significant at the 1% 
level the zero loading is retained and the solution in Table 4c is accepted as the best fitting 
simple structure. 

The interpretation of the factors in Table 4c is straightforward. The first factor is a 
logical verbal reasoning factor, the second is a speed factor, the third is a spatial visual- 
ization factor and the fourth is a memory factor. 

5. Varience and Covariance Components 

Estimation of Variance Components 

Several authors [Bock, 1960; Bock & Bargmann, 1966 and Wiley, Schmidt & 
Bramble, 1971] have considered covariance structure analysis as an approach to study 
differences in test performance when the tests have been constructed by assigning items or 
subtests according to objective features of content or format to subclasses of a factorial or 
hierarchical classification. 

Bock [1960] suggested that the scores of N subjects on a set of tests classified in 2 n 
factorial design may be viewed as data from an N × 2 n experimental design, where the 
subjects represent a random mode of classification and the tests represent n fixed mode of 
classification. Bock pointed out that conventional mixed-model analysis of variance gives 
useful information about the psychometric properties of the tests. In particular, the 
presence of non-zero variance components for the random mode of classification and for 
the interaction of the random and fixed modes of classification provides information 
about the number of dimensions in which the tests are able to discriminate among 
subjects. The relative size of these components measure the power of the tests to discrimi- 
nate among subjects along the respective dimensions. 

The multitrait-multimethod matrix of Campbell and Fiske [1959] is an example of a 
factorial design of tests. A more complex design is Guilford's [1956] structure of intellect. 
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TABLE 4a 

T__wentTfour Pszcholo~ical Variables 

Varimax-Rotated ML- Solution 

Reference factor loadings underlined 

1, Visual Perception 

2. Cubes 

3. Paper Form Board 

4. Flags 

5. General Information 

6. Paragraph Comprehension 

7. Sentence Completion 

8. Word Classification 

9. Word Meaning 

10. Addition 

11. Code 

12. Counting Dots 

13. Straight-Curved Capitals 

14. Word Recognition 

15. Number Recognition 

16. Figure Recognition 

17. Object-Number 

18. Number-Figure 

19. Figt~e~Word 

20. Deduction 

21. Numerical Puzzles 

22. Problem Reasoning 

25. Series Completion 

24. Arithmetic Problems 

1 2 3 4 

0.160 0.187 ........... 0.689 0.160 

o.117 0.083 0.436 0.096 

o.137 -o.o19 0.570 o.11o 

0,233 0 . 0 9 9  0.527 0,080 

0.739 0,213 0.185 0.150 

0.767 0,066 0,205 o,233 

0.806 0.155 0.197 0.075 

0.569 0.242 0.338 0.132 

0,806 0,040 0,201 0,227 

0,168 0,871 .0,118 0,167 

0,180 0,512 0,120 0,374 

0,019 0.716 0,210 0,088 

0.188 0.525 0.438 0.082 

o.197 0.081 0.050 0.553 

0,122 0,074 0,116 0,520 

0.069 0.062 0.408 0.525 

0.142 0.219 0,062 0,574 

0.026 0.336 0.295 0.456 

0.148 0.161 0.239 0.365 

0.378 0,118 0,402 0,501 

0,175 0.438 0,581 0,225 

0.566 0.122 0.399 0.301 

0.369 0.244 0.500 0.239 

0.370 0.496 0.157 0.304 

2 
X = 246.36 with 186 d.f. 

This design is based on a cross-classification o f  test items, not all o f  which may  exist or be 
employed in any one study. Thus  the classification scheme may be incomplete.  

Consider  an experimental design that  has one r a n d o m  way o f  classification u = I, 2, 
. . . .  N, one fixed way of  classification i = 1,2, 3 and another  fixed way of  classificationj = 
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TABLE 4b 

Twent[four Psycholo~ica! Variables 

Reference-Variables ML-Solution 

Obtained by oblique transformation of varimax solution 

Standard errors in parenthesis 

Factor L qadin~s 
1 2 3 

1. Visual Perception . . . . . . .  i0.000 -0,000 0.749(0.078) 
2. Cubes 0.027{0.110) -0.054(0.111) 0.462(0.111~ 
5. Paper Form Board 0.049~0.108~ -0.177~0.109~ 0.580(0.1082 
4. Flags 0.148(0.107) -0.017(0.108) 0.541(0.107) 
5. General Information 0.762(0.090~ 0.214(0.0882 0.052{0.0902 
6. Paragraph Comprehension 0.809(0.087) 0.020[0.083) 0.019~0.087) 
7. Sentence Completion 0.866(0.0942 0.186(0.091) o.o45£0.o932 
8. Word Classification 0.533(0.094~ 0.198(0.094) 0.274(0.094) 
9. Word Meaning 0.862(0.068) -0.000 0.000 

10. Addition -0.000 0.872(0.076) -0.000 
11. Code 0.oo7(o.097) 0.591(o.o99~ 0.155(0.1Ol) 
12. OountiugDots -0.190(0.0972 0.690(0.104) 0.587(0.098) 
13. Straight-Curved Capitals 0.014(0.1052 0.456(0.106~ 0.555~0.1032 
14. Word Recognition 0.102~0.125~ -0.131~0.129) -0.057~0.152) 
15. Number Recognition 0.010~0.125~ -0.148(0.129) 0.039~0.151) 
16. Figure Recognition -0.100(0.125) -0.235(0.126) 0.374(0.124) 
17. Object-Number 0.000 -0.000 0.000 
18. Number-Figure -0.179(o.114) 0.110(0.115) 0. 552(0.115) 
19. Figure-Word 0.029(0.111) -0.014~0.115) 0.215~0.114) 
20. Deduction 0.294£0.098) -0.045(0.0992 0.337~0.099) 
21. Numerioal Puzzles 0.002~0.100) 0.515(0.101) 0.452~0.100) 
22. Problem Reasoning 0.279~0.099) -0.039(0.100) 0.558(0.100) 
23. Series Completion 0.250(0.095~ 0.096(0.096) 0.488(0.094) 
24. Arithmetic Problems 0.240(0.089) 0.417(0.091) 0.156(0.092) 

4 
0.000 

-0.004(0.158) 
0,008{0,136) 

-0.079~0.135~ 
-o.113~o.1o8~ 
o.o15(o.I04~ 

-0.219(0.110) 
-0.116(0.116) 

0.000 
0.000 
0.2921 D.118) 

-0.085q O. 122~ 
- 0 . 1 4 1  q 0 .1502 

0.622,0.1482 
0.595 0. I47) 
0.570 0.143) 
0.654 0.386) 
0.45410.154 ~ 
o.347~o.t35) 
o.176(o.I21~ 
0.072(0.125) 
0.180 0o122) 
0.056 0.120) 
0.141 0.110) 

Factor Interoorre!ations 
1 2 ~ 4 ........... 

1 1.000 
2 0.243(0.106) 1.000 
5 0.482(0.108~ 0.196(0.124) 1.000 
4 0.487(0.127) 0.533(0.126) 0.418(0.153) 1.000 

1, 2, 3 for i = l, 2 a n d j  = 1, 2 for i = 3. One  model  that  may  be considered is 

(18) x~u = / ~ u  + a~ + b~t + c~ + e~u,  

where  au  is the mean  o f x .  u and where  a~, b~, c.j and e.u are uncorrelated r a n d o m  variables 
with zero  means  and variances crg, crg,, a~j and a~,p respectively. Writ ing x" = ( x . . ,  
x~12, x~ls, x ~ ,  x~2, x~2s, x~3~, x~82), u~ = (a~, b~l, b~, b~3, c~, c,~, c~8) and 

1 
1 
1 
1 

A = 

we may  write (18) as 

1 0 0 1 0 0 
1 0 0 0 1 0 
1 0 0 0 0 1 
0 1 0 1 0 0 
0 1 0 0 1 0 
0 1 0 0 0 1 
0 0 1 l 0 0 
0 0 1 0 1 0 

x ~ = v + A u ~ + ~  

where  ta is the mean  vector  and e is a r a n d o m  error  vector  both  of  the same form as x~. The 
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TABLE 4 c. 

Twentyfour Psycho log ica l  V a r i a b l e s .  

Best-Fittin~ Simpl_e Structure ML-Solution 

Factor Loadin~s 

1 2 3 4 

I. Visual Perception 0.0 0,0 0.736 0.0 

2. Cubes 0.0 0.0 0.468 0.0 

5. Paper Form Board 0.0 0.0 0.555 0.0 

4. Flags 0.0 0.0 0,594 0.0 

5. General Information 0.758 0.148 0,0 0.0 

6. Paragraph Comprehension 0.824 0.0 0.0 0.0 

7. Sentence Completion 0.806 0,070 0.0 0.0 

8. Word Classification 0.512 ~ 158 0.219 0.0 

9. Word Meaning 0.868 0.0 0.0 0.0 

10. Addition 0.0 0.860 0.0 0.0 

11. Code 0.0 0.412 0.0 0.394 

12. Counting Dots 0.0 0.642 0.209 0.0 

13. Straight-Curved Capitals 0.0 0,435 0.452 0.0 

14. Word Recognition 0.0 0.0 0.0 0.547 

15. Number Recognition 0.0 O.0 0.O 0.529 

16. Figure Recognition 0.0 0.0 0.358 0.375 

17. Objeet-N~nber 0.0 0.0 0.0 0,649 

18. Number-Figure 0.0 0.0 0,172 0.510 

19. Figure-Word 0.0 0.0 0.0 0.493 

20. Deduction 0.324 0,0 0,414 0.0 

21. Numerical Puzzle 0.0 0,585 0.463 0.0 

22. Problem Reasoning 0.320 0.0 0.403 0.0 

23. Series Completion 0.258 0.146 0.503 0.0 

24. Arithmetic Problems 0.384 0.498 0.0 0.0 

Factor Intercorrelations 

1 2 ~ 4 
! 1.000 
2 0.254 1.000 
5 0.505 0.200 1.000 
4 0.476 0.440 0.520 1,o0o 

2 
X = 501.42 with 251 d.f. 
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covariance matrix of x, is 

(19) ~ = A ~ A '  + W 2 

where • is a diagonal matrix whose diagonal elements are a2a, trg 1, crg~ a~2~ ~1, 
~2c~ and ~a~2 and W 2 is a diagonal matrix whose elements are the Cre2~r The matrix A 
has rank 5, and only 5 linearly independent combinations of  the components of  u~ are 
estimable [see e.g. Graybill,  1961, pp 228-229]. In conventional mixed-model analysis of  
variance one usually makes the assumptions that ag, = o,g for i = 1, 2, 3, a~j = ~ 
for j = 1, 2, 3 and a~,j = tr~ for all i and j ,  but all these assumptions are not necessary. 

In general, if A is of  order p × r and of  rank k, one may choose k independent linear 
functions, each one linearly dependent on  the rows of A and estimate the covariance 
matrix of these functions. It is customary to choose linear combinations that are mutually 
uncorrelated but this is not necessary. Let L be the matrix of coefficients of  the chosen 
linear functions and let K be any matrix such that A = KL. For  example, K may be 
obtained from 

(20) K = AL ' (LL ' )  -~. 

The model may then be reparameterized to full rank by defining u* = Lu. We then have x 
= Au + e = KLu  + e = Ku* + e. The covariance matrix of  x is represented as 

(21) ~ = K ~ *  K '  + W 2 

where ~ *  is the covariance matrix of  u* and W 2 is as before. One can now estimate W 2 
and ~ * .  The latter may be taken to be diagonal if desired. 

It should be noted that the covariance structure in (21) is linear in ~ *  and W 2. When 
the elements of  ~ *  and W ~ are considered as the parameters  generating ~ then ~ / 8 0 ~  in 
(8) are constant and independent of  0 and as a consequence the information matrix in (8) 
is constant in ULS and GLS. Browne [1974] used this fact and showed how GLS 
estimators can be obtained in closed form. With the algorithm outlined in Section 2, the 
ULS and GLS estimators are obtained after one iteration since the function being 
minimized is exactly quadratic and the information matrix in (8) is the exact Hessian, 
which is constant. 

A General Class of Components of Covariance Models 

The models of  the previous subsection assume that all tests or subtests are measured 
on the same scale. Wiley, Schmidt and Bramble [1973] suggested the study of a general 
class of  components  of covariance models which would allow different tests to be on 
different scales. The covariance matrix ~ will then be of  the form 

(22a-b) X = A A ~ A ' &  + 0 5 or X = A(A@A'  + W2)A. 

The matrix A(p × k) is assumed to be known and gives the coefficient of  the linear 
functions connecting the manifest and latent variables, ,~ is a p × p diagonal matrix of 
unknown scale factors, • is the k × k symmetric and positive definite covariance matrix 
of  the latent variables and W 2, and 0 5 are p × p diagonal matrices of  error variances. 

Within this class of  models eight different special cases are of  interest. These are 
generated by the combination of the following set of  conditions; 

& 

( is diagonal o n  • : < 
L ~  is not d iagonal j  
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W ~ or O 3 = a~ I ]~ 
on W 2 or 0 2 : W ~ or O ~ general diagonalJ  ' 

The classical formulation of  the mixed model and its generalizations assume that A = I. 
This is appropriate  if the observed variables are in the same metric as for example when 
the observed variables represent physical measurements,  time to criterion measures, 
reaction times or items similarly scaled such as semantic differential responses. However,  
if the observed variables are measured in different metrics then the classical model would 
not fit. In such cases the inclusion of A in the model as a general diagonal matrix of  scaling 
factors would provide a useful alternative specification. It  should be pointed out that the 
elements of  1', do not have to be related to the variances of  the variables. 

The classical components  of  the variance model assume that • is diagonal. However,  
there are usually no substantive reasons for assuming this. 

The two conditions on W 2 or O 2 correspond to homogeneous and heterogeneous 
error variances. I f  the variables are in the same metric and if the measurement situation is 
sufficiently similar from variable to variable then it would seem reasonable to hypothesize 
that the variances of  the errors of  measurement ought to be homogeneous,  i.e., in (22a) we 
take A = I and 0 2 = tr2I. 

If, on the other hand, the scale of  measurement  is the same but the measurement 
situation from variable to variable is different enough to generate different kinds of  error 
structures, then the variances of the errors of  measurement  might differ systematically 
from variable to variable. For this situation it would seem best to take ~ = I but leave O ~ 
free in (22a). If the manifest variables were in different metrics then clearly the error 
variances in the observed metric will most likely be heterogeneous. One useful hypothesis 
to test in this context would be that the standard deviations of  the errors of  measurement 
are proport ional  to the rescaling factors. This would correspond to taking W 2 = a q  in 
(22b). When both A and W 2 are free, (22a) and (22b) are equivalent. 

Analysis of  a 23 Factorial Design 

This example is taken from Wiley, Schmidt and Bramble [1973]. The original data are 
from a study by Miller and Lutz [1966], and consist of the scores of  51 education students 
on a test designed to assess teachers' judgments concerning the effects of situation and 
instruction factors o n  the facilitation of pupil learning. The items used here were designed 
according to three factors which were hypothesized to influence classroom learning 
situations and teaching practices. The three factors and their levels are given as [see Miller 
& Lutz, 1966]: 

Grade Level (G). The levels of this factor, the first grade (G1) and the sixth grade (G2), were chosen to 
represent extremes of the elementary grades. In this way it was possible to maximize the opportunity for 
observing any differences in teachers' judgments that might occur as a result of variations due to grade level. 

Teacher Approach (T). The teacher-centered approach (Tt) and the pupil-centered approach (7"2) were 
distinguished as levels of this factor on the basis of the locus of described activity control, and the direction 
of described pupils' attention. In the case of the teacher-centered approach, the locus and direction were 
oriented to the teacher; in the case of the pupil-centered approach, the locus and direction were oriented to 
the pupil. 

Teaching Method (M). Level one of this factor was drill (M~) which was used strictly to refer to rote learning 
activities; discovery (M2) was used to refer to an approach in which the teacher attempts to develop pupil 
understanding through procedures aimed at simulating insight without recourse to rote memorization or 
rigid learning routines. 

The eight subtest scores are each based on eight items. The eight subtests conform to 
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a 23 factorial arrangement and is given 

1 
1 
1 

A = 1 
1 
1 
1 
1 

by 

1 1 1 
1 1 - 1  
1 - 1  1 
1 - 1  - 1  

- 1  1 1 
- 1  1 - I  
- 1  - 1  1 
- 1  - 1  - 1  

The sample covariance matrix S for these data is given in Table 5a. 
For this data the use of ~ = I was considered appropriate because the same scale (! - 

7) was employed for each item and the numbers of  items in the subtests were also equal. 
The data was analyzed under each of  the four remaining cases in the general class of  

models considered in the previous section. The X 2 values and their degrees of freedom are 
shown in Table 5b. In the margin of this table, X~-values are given for testing the 
hypotheses of  uncorrelated components and of  homogeneous error variances. It appears 
that these hypotheses are both rejected by the tests. The only model that seems reasonable 
is the one which assumes both correlated components and heterogenous error variances. 
The maximum likelihood estimates of the variances and covariances of  the components 
and the error variances, together with their standard errors are given in Table 5c. 

The relative magnitudes of the estimated variance components for the latent variables 
indicates the major sources of variation in the performance of the subjects. The estimate of 
the first variance component (~la = 9.16) is the largest as would be expected since this 
component reflects the variation due to individual differences between the subjects. The 
estimated values of  the other components indicate that another major source of variation 
in the responses of the subjects is due to the different type of teaching method specified in 
the content of the item (i.e., ~44 = 5.21). Apparently the education students varied 
considerably as to how the contrast between drill and discovery methods of instruction 
influenced their responses. Variation contributed by grade level was intermediate in 
magnitude (~22 = .70). The estimate of  the variance component for the teacher approach 
factor and its large standard error (i.e., ~ss = .43, S.E. (~sa) = .91) indicate that this was 
not an important source of variation in the performance of the subjects. One of the 
estimated covariances was relatively large--that  between the teaching method factor and 
the teacher approach factor--indicating these latent variables to be highly correlated. This 
would indicate that the responses of the education students to the different type of  
teaching method specified in the items was related to their responses to the teacher 
approach factor found in the items. 

6. Measurement Errors in Regression Models 

The models of  Sections 3-5 are all such that all observed variables are of  the same 
kind; they are all generated by some latent variables of one kind or another. In this section 
I consider models in which there are two kinds of observed variables, dependent or caused 
variables denoted by y and independent or causal variables denoted by x. The purpose of 
the models is to account for, or estimate, or predict the variables y. The variables x are 
given variables, usually freely correlated, which are believed to influence the y-variables. 
These x-variables may be random or fixed variables. 

The ordinary linear regression of one y-variable on a number of x-variables is 

(23) y = 7 ' x + z  
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TABLE 5 

Miller-Lutz Data 

(taken from Wile~, Schmidt and Bramble, 1973) 

a. Sample Covariance Matrix 

S = 
N 

18.74 
9.28 18.80 

15.51 7.32 21.93 
3.98 15.27 4.10 26.62 

15.94 4.58 13.79 -2.63 
7.15 13.63 3.86 15.33 
1.69 6.05 10.18 1.13 
2.49 12.35 .03 16.93 

(symmetric) 

19.82 
3.65 16.81 

13.55 5.72 
-.86 14.33 

16.58 
2.99 18.26 

b. X 2 Values for Testin@ the Fit of Four Models 

diagonal 

not diagonal 

02 = o2I 
N N 

2 
X31 = 68.25 

2 
X25 = 51.00 

2 
X6 = 17.25 

02 + a2~ 

2 
X24 = 46.16 

2 
X18 = 25.98 

2 
X6 = 20.18 

2 
X7 = 22.09 

X2 = 25.02 
7 

c. Maximum Likelihood Estimates of Band 02 

Standard Errors in Parenthesis 

i =[_i "16(1 .95) ] .75(0.48) 0.70(0.34) 
.63(0.43) -0.05(0.33) 0.43(0.91 ) 
.62(I .10) -0.51 (0.81) 1 .13(0.51 ) 5.21 (1 .58) I 

~2= diag [1.52(0.83) 4.95(1 41) 8.25(1.88), 5.58(1 60) 1 95(0.96), 
N • " ' " • " 

5.76(1.21), 2.52(0.92)] 

where the residual or random disturbance term z is assumed to be uncorrelated with x. The 
covariance structure for this model is 

(24) x = (  Y'Xxx'  + ~ ) .  

If x is fixed, ~ is Sx~, the covariance matrix computed from the fixed values of x. If x is 
random the estimate of X~  is S~x. In both cases, y is estimated from the covariances in the 
first column of S and a~ is estimated as %y - -[,'$~;~. There is a one to one correspondence 
between the parameters X~, y and a~ of the regression model and the variances and 
covariances Xx~, d~y and tryy in ~. The model is just identified and ULS, GLS and ML 
yield the same estimators all with a perfect fit. 
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When there is measurement  er ror  in one or  more  o f  the x-variables or  in the y-  
variable and one is interested in the true regression 

(25) 77 = 7'/~ + ~" 

rather than (23), then the above est imator  of  7 is not  a consistent est imator  o f  the 7 in (25). 
Here  ~" is the residual in the true regression (25), assumed to be uncorrelated with ~, and  y 
and x are observed variables having rt and ~ as c o m m o n  factors or  true scores, i.e., 

(26) y = 3,r/ + r ,  

(27) x = A t  + 

where X is a column vector  and A is a matrix o f  factor  loadings and t and b are the error  
scores o f y  and x respectively. The model  defined by (25), (26) and (27) contains two kinds 
o f  errors namely the error  in the equation,  i.e., the residual or  r andom disturbance term ~" 
and the errors in variables, i.e., the measurement  errors r and b. I f  one has two or  more  
congeneric  or  parallel measures o f  each true score one can estimate both  kinds of  errors as 
well as the regression parameters  T. The covariance structure for this model  is 

(28) \ A ~ y ' ~ .  A ~ A '  + O ~ ]  ' 

where • = coy (~), ~b 2 = var (~'), O,  = cov (r), d iagonal  and O~ = coy (fi), diagonal.  
This model will be illustrated by an example f rom Rock  et al. [1977], in which the 

regression o f  role behavior  (?7) o f  managers  o f  farm cooperat ives on 

~a = knowledge 
~z = value orientat ion 
~8 = role satisfaction 
~4 = past training 

is estimated. The observed variables are 

y~ = a split-half measure o f  role behavior  
Y2 = a split-half measure  o f  role behavior  
x~ = a split-half measure o f  knowledge 
x~ = a split-half measure of  knowledge 
x~ = a split-half measure o f  value orientat ion 
x~ = a split-half measure o f  value or ientat ion 
x3t = a split-half measure o f  role satisfaction 
xs2 = a split-half measure o f  role satisfaction 
x4 = ~4 = a measure o f  past  training. 

For  further information about  the measures see Warren et al. [1974]. The covariance 
matrix o f  all the observed measures is 

Yl y~ x m  xz2 x21 x2~ xsx xs~ x4 

yl .0271 
y~ .0172 .0222 
xll .0219 .0193 .0876 
x12 .0164 .0130 .0317 
x~l .0284 .0294 .0383 
x22 .0217 .0185 .0356 
xsl .0083 .0011 - .0001  
x~  .0074 .0015 .0035 
x4 .0180 .0194 .0203 

.0568 

.0151 .1826 

.0230 .0774 

.0055 - . 0 0 8 7  

.0089 - . 0 0 0 7  

.0182 .0563 

.1473 
- . 0 0 6 9  1137 
- . 0 0 8 8  .0722 .1024 

.0142 - . 0 0 5 6  - . 0 0 7 7  .0946 
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This can be used to estimate the true regression equation 

using the following measurement models 

Y~ 

Xll [ 
X12 

X21 

X22 

X31 

X32 

X4 

1 0 0 
1 0 0 
0 1 

= 0 1 
0 0 
0 0 
0 0 

0 
0 
1 

1.2 
0 

= (1 ~2 

07 
0 

0 (~ 
0 ~s + 

0 ~' 
1 

011 I 

o~2 ! 

o21 { • 

022 l 

031  I 

osz I 

O I 

The value 1.2 in the last equation reflects the fact that x32 has six items whereas xsl has only 
five. 

The overall fit of the model is X ~ = 26.97 with 22 degrees of freedom, which represents 
a rather good fit. The ML estimates of the 3,'s and their standard errors (below) are 

= (0.350, 0.168, 0.045, 0.071) 
0.133 0.079 0.054 0.045 

These may be compared with the ordinary least squares (OLS) estimates for the regression 
o f y  on xl, x2, x3 and x4, where y = (1/2) (Yl + Y2), x~ = (1/2) (xtl + x~2), i = 1, 2, 3. These 
estimates are 

"~ = (0.230), 0.120, 0.056, 0.110) 
0.052 0.037 0.037 0.038 

Thus there is considerable bias in the OLS estimates but their standard errors are smaller. 
Estimates of the true and error score variances for each observed measure are also 

obtained. These can be used to compute the reliabilities of the composite measures. The 
reliability estimates are 

y x~ x2 xs 
0.820 0.597 0.637 0.807 

The model defined by (28) can be generalized directly to the case when there are 
several jointly dependent variables , .  The only differences will be that ~. and 3" will be 
replaced by matrices Ay and F, respectively and ~b 2 by a full symmetric positive definite 
matrix W [see J6reskog & S6rbom, Note 2]. 

7. Path Analysis Models 

Path analysis, due to Wright [1934], is a technique sometimes used to assess the direct 
causal contribution of one variable to another in a non-experimental situation. The 
problem in general is that of estimating the parameters of a set of linear structural 
equations representing the cause and effect relationships hypothesized by the investigator. 
Recently, several models have been studied which involve hypothetical constructs, i.e. 
latent variables which, while not directly observed, have operational implications for 
relationships among observable variables [see e.g. Werts & Linn, 1970; Hauser & Gotd- 
berger, 1971; J6reskog & Goldberger, 1975]. Various types of structural equation models 
in the social sciences were discussed by J6reskog [1977b] who also considered various 
statistical problems associated with such models. A computer program for estimation of 
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structural equation models have been developed by J6reskog and SSrbom [1978]. In some 
models, the observed variables appear only as effects (indicators) of  the hypothetical 
constructs, while in others, the observed variables appear as causes or as both causes and 
effects of  latent variables. 

Suppose that two variables are used on two occasions, i.e., in a two-wave longitudinal 
design. Assume that the two variables measure the same latent variable r~ on two different 
occasions, i.e., yx and y2 measure rh on the first occasion and Ya and Y4 measure 712 on the 
second occasion. The equations defining the measurement relations are 

I y~ = rh + ~ 

Y2 = h i l l  W ~2 
(29) ~ Ys = r~ + ~s 

Y~ =~2r /~+~4"  

The main interest is in the stability of r /over  time. This can be studied by means of  

(30) ,~ = ~ + ~-, 

the regression of ~2 on ~h. In particular, one is interested in whether B is close to one and ~" 
is small. 

Let • be the covariance matrix of  (r~, rt~) and let O be the covariance matrix of(e,, e2, 
e~, e,). If all the e's are uncorrelated so that t9 is diagonal, the covariance matrix o f ( y ,  Y2, 
Ys, Y~) is 

The matrix ~ has 10 variances and covariances which are functions of 9 parameters. The 
model has one degree of  freedom. 

Often when the same variables are used repeatedly there is a tendency for the 
corresponding errors (the e's) to correlate over time because of memory and other retest 
effects. Hence there is a need to generalize the above model to allow for correlations 
between el and es and also between e2 and e4. This means that there will be two non-zero 
covariances 03~ and 0~ in O. The covariance matrix of the observed variables will now be 

i 
~11 + 011 ] 

(31)  ~ = ~ x  + Os, ~,1~b~1 ~2~ + Oss 

This ~ has its I0 independent elements expressed in terms of  11 parameters. Hence it is 
clear that the model is not identified, In .fact, none of the 11 parameters are identified 
without further conditions imposed. The loadings ha and h~ may be multiplied by a 
constant and the ~b's divided by the same constant. This does not change cr21, as2, a41 and 
a4s. The change in the other u's may be compensated by adjusting the O's additively. Hence 
to make the model identified one must fix one h or one q~ at a non-zero value or one # at 
some arbitrary value. However, the correlation between r/1 and rt2 is identified without any 
restrictions, since 

corr (r11, r/~) = (4,~1/~4~22) ~/2 = [(~32~,~)/(a2~cr,a)] ~12. 

This model may therefore be used to estimate this correlation coefficient and to test 
whether this is one. The maximum likelihood estimate of the correlation coefficient is 
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[(S32S41)/(S21S43)] I/~. To make further use of  the model it is necessary to make some 
assumption about the nature of  the variables. For example, if it can be assumed that the 
two variables on each occasion are tau-equivalent we can set both )tl and ~2 equal to one. 
Then the model can be estimated and tested with one degree of freedom. If  ~1 = ~ ,  the 
model is just identified. 

While the above model is not identified as it stands it becomes so as soon as there is 
information about  one or more background variables affecting 71 or 72 or both. To  
illustrate this I use an example of  a longitudinal study analyzed in more detail by Wheaton 
et al. [1977]. This study was concerned with the stability over time of attitudes such as 
alienation and the relation to background variables such as education and occupation. 
Data  on attitude scales were collected from 932 persons in two rural regions in Illinois at 
three points in time: 1966, 1967 and 1971. The variables used for the present illustration 
are the Anomia subscale and the Powerlessness subscale, taken to be indicators of Aliena- 
tion. I use these subscales from 1967 and 1971 only. The background variables are the 
respondent 's  education (years of schooling completed) and Duncan 's  Socioeconomic 
Index (SEI). These are taken to be indicators of  the respondent 's  socioeconomic status 
(SES). Let 

Yl = Anomia67  
Y2 = Powerlessness 67 
x~ = Education 

¢ = S E S  

Ya = Anomia  71 
Y4 = Powerlessness 71 
x2 = SEI 
7: = Alienation 67 

r/~ = Alienation 71 

~11 -t- 011 

~b2~ + Oas 

~32 M~3~ 

~3(~32 ~2~3(~32 

(/)33 ~- 055 

)~3~33 MCa3 + ~66 

The model is then specified as 

t y~ = Xl 0 X: + ~2 , 

Ya 1 )k2 ca 
Y4 ~2 ~4 

= ~ +  , 

x2 X3 ~ 

f II[:I:fZ:],,(:ZX • 
It is assumed that f l  and f2 are uncorrelated and that the scales for 71, 72 and ( have been 
chosen to be the same as for y,, y3 and xl, respectively. 

Let 4~ = var (() and ~ = var (fi), i = 1, 2 and let • be the covariance matrix of  (71, 
72, (). It is obvious that there is a one-to-one correspondence between the six q~'s in q~ and 
(4~, ~, %, %, ~1, if,). In terms of  O,  the covariance matrix of  (yl, y~, ys, y4, X:,  X2) is 



KARL G. J~)RESKOG 469 

The upper left 4 × 4 part of the matrix is the same as (31). It is clear that the two last rows 
of Z determine )~1, )~8, )~3, ~.bs~, 4~32, ~33, 058 and 066. With ),, and ~,2 determined, the other 
parameters are determined by the upper left part. Altogether we have 17 parameters to 
estimate so that there are 4 degrees of  freedom. 

The sample covariance matrix of  the six observed variables is (N = 932): 

yl 

Y2 

S = Y3 

Y4 

Xl 

X2 

Yl Y2 Y3 Y4 xl x2 

11.834 

6.947 9.364 

6,819 5.091 12.532 

4.783 5.028 7.495 9.986 

-3 .839 -3 .889 -3.841 -3.625 9.610 

-21,899 -18.831 -21.748 -18.775 35.522 450.288 

These data have been analyzed under two models. In Model A, 031 = 042 = 0; in Model B, 
0sl and 045 are free. 

The maximum likelihood estimates of the parameters with standard errors in paren- 
thesis are given in Table 6. The stability of alienation over time is reflected in the 
parameter/3. The influence of SES on Alienation at the two occasions is significant in 
Model A. The coefficient for 1967, 72, -0 .614 with a standard error of  0.056 and for 1971, 
3'z, it is -0 .174 with a standard error equal to 0.054. The negative sign of the 7-coefficients 
indicates that for high socioeconomic status the alientation is low and vice versa. How- 
ever, the overall fit of the Model A is not acceptable: ×5 with six degrees of freedom equals 
71.544. Model B is intuitively more plausible, As can be seen from Table 6, the inclusion 
of 081 and 048 results in a model with an acceptable overall fit. A test of the hypothesis that 
both 03~ and 042 are zero yields X 8 = 66.774 with 2 degrees of freedom so that this 
hypothesis must be rejected. 

Other similar models for longitudinal data with two or more occasions have been 
studied by J6reskog and S5rbom [1977] and J6reskog [1978]. 

8. Simplex and Circumplex Models 

Simplex Models 

Since the fundamental paper of  Gut tman [1954] on the simplex structure for correla- 
tions between ordered tests, many investigators have found data displaying the typical 
simplex structure. Guttman gave several examples of this structure. His Table 5 is 
reproduced here as Table 7. In this example all the tests involve verbal ability and are 
ordered according to increasing complexity. 

The typical property in a simplex correlation structure, such as that in Table 7, is that 
the correlations decrease as one moves away from the main diagonal. Such data will not 
usually fit a factor analysis model with one common factor for the following reasons. Let 
the tests be ordered so that the factor loadings decrease. Then if the factor model holds, 
the correlations in the first row decrease as one moves away from the diagonal, but the 
correlations in the last row increase as one moves away from the diagonal. Also the 
correlations just below the diagonal decrease markedly as one moves down. These features 
do not hold in Table 7. 

JSreskog [1970b] considered several statistical models for such simplex structures. 
Following Anderson [1960] he formulated these models in terms of the well-known 
Wiener and Markov stochastic processes. A distinction was made between a perfect 
simplex and a quasi simplex. A perfect simplex is reasonable only if the measurement 
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TABLE 6 

Maximum Likelihood Estimates for Models A and B 

The standard errors of the estimates are given within 

parenthesis. 

Paraneter Model A Model B 

11 0.889 (.041) 0.979 (.062) 

12 0.849 (.040) 0.922 (.060) 

13 5.329 (.430) 5.221 (.422) 

B 0.705 (.054) 0.607 (.051) 

71 -0.614 (.056) -0.575 (.056) 

72 -0.174 (.054) -0.227 (.052) 

~I 5.307 (.473) 4.846 (.468) 

~2 3.742 (.388) 4.089 (.405) 

6.666 (.641) 6.803 (.650) 

811 4.015 (.343) 4.735 (.454) 

e22 3.192 (.271) 2.566 (.404) 

833 3.701 (.373) 4.403 (.516) 

e44 3.625 (.292) 3.074 (.435) 

831 1.624 (.314) 

842 0.339 (.261) 

855 2.944 (.500) 2.807 (.508) 

866 260.982 (18.242) 264.809 (18.154) 

2 X 71.470 4.730 

d.f. 6 4 
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TABLE 7 

Intercorrelations of Six Verbal-Abilit~ Tests 

for 1046 Bucknell Colle@e Sophomores 

Spelling Punctuation Grammar Vocabulary Literature Foreign 
Literature 

Test 

A C B D E H 

A -- .621 .564 .476 .394 .389 
C .621 -- .742 .503 .461 .411 
B .564 .742 -- .577 .472 .429 
D .476 .503 .577 -- .688 .548 
E .394 .461 .472 .688 -- .639 
H .389 .411 .429 .548 .639 -- 

Total 2.444 2.738 2.784 2.792 2.654 2.416 

errors in the test scores are negligible. A quasi simplex, on the other  hand,  allows for 
sizeable errors  of  measurement .  Simplex models  occur  natural ly when the same or con- 
tentwise similar measurements  are repeated on the same individuals over  time. In the 
following we discuss all models  in te rms  of four  occasions,  the general izat ion to an 
arb i t ra ry  number  o f  occasions will be obvious  at all stages. 

The  unit o f  measu remen t  in the t rue variables ~ may  be chosen to be the same as in 
the observed variables Yt, i = 1, 2, 3, 4. The  equat ions defining the model  are then, taking 
all variables as deviat ions f rom their means:  

(32) y~ = n~ + ~, i ---- 1, 2, 3, 4, 

(33) rh = ~,rh-1 + f,, i = 2, 3, 4, 

where  the e~ are uncorre la ted  among  themselves and uncorrela ted with all the ~ and where  
J'~+l is uncorre la ted  with ~t, i = 1, 2, 3. The  paramete rs  of  the model  are ~ = var  (n~), 0i = 
var  (~), i = 1, 2, 3, 4 and 13~,/3s, ~,. The  residual var iance var  (~'~+1) is a function of  q~+l, ~b~ 
~na ~+1, namely  var  (~'~+~) = ~b~+l -/3~+W,l, i = 1, 2, 3. The  covar iance  matr ix  o f  yl,  y2, Y3 
and y4 is 

4'1 + 01 

B~q% 4,~ + o2 
(34) I~ = 

It is seen f rom (34) tha t  a l though the product/~24h = a2~ is identified, t32 and ~b~ are not  
separate ly  identified. The  produc t  B24~ is involved in the off-diagonal  elements  in the first 
co lumn (and row) only. One can mult iply ~ by a constant  and  divide q~l by the same 
cons tant  wi thout  changing the product .  The  change induced by q~ in all  can be absorbed  
in 01 in such a way that  a u  remains  unchanged.  Hence  01 = var  (e~) is not  identified. For  72 
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and 73 we have 

( b 2 -  Ga2G21 

- - 0 " 3 1  

(I) 3 - -  0"430"32 

0"42 

so that 4~2 and ~b3, and hence also 02 and 03, are identified. With q~2 and q~s identified,/33 and 
/34 are identified by tr82 and tr,3. The middle coefficient/33 is overidentified since 

~3(~2 - -  U31G42 : 0"32 • 
U41 

Since both ~b4 and 04 are involved in a4~ only, they are not identified but their sum ~44 is 
identified. 

This analysis of the identification problem shows that for the "inner" variablesy2 and 
Ys, the parameters ~2, q~3, 02~, 03s and/33 are identified, whereas there is an indeterminacy 
associated with each of the "outer"  variables Yl and yr. To eliminate these indetermi- 
nacies, one of the parameters ~bl, 01 and/32 must be specified and one of the parameters 
4~4 and 04 must also be specified. Perhaps the most natural way of eliminating the indeter- 
minacies is to set 01 = 02 and 04 = 03. Hence there are only nine independent parameters 
and the model has one degree of  freedom. In the general case of  p > 4 occasions there 
will be 3p - 3 free parameters and the degrees of  freedom ar~(l /2)p(p + 1) - (3p - 3). 

To illustrate a simplex model, I will use data published by Humphreys [1968] and 
analyzed by Werts et al. [1978]. The variables include eight semesters of gradepoint 
averages, high school rank and a composite score on the American College Testing tests 
for approximately 1600 undergraduate students at the University of  Illinois. The correla- 
tion matrix is given in Table 8. 

Using first only yl - Y3, I estimate a quasi-Markov simplex and estimate the correla- 
tions between the true academic achievements 72, 73, " " ,  76. These correlations are: 

72 73 r/4 75 76 77 

72 1.000 
7a 0.838 1.000 
74 0.812 0.969 
75 0.724 0.865 
76 0.677 0.809 
rt7 0.619 0.740 

Here every correlation ptj with f i - J l  

1.000 
0.892 1.000 
0.834 0.935 1.000 
0.763 0.855 0.914 1.000 

> 1 is the product of correlations just below the 
diagonal. For example, p(n~, rt2) = 0.838.0.969.0.892 = 0.724. These correlations form 
a perfect Markov simplex. The goodness of  fit test of the model gives X 2=  23.91 with 15 
degrees of freedom. This represents a reasonably good fit considering the large Sample 
size. The reliabilities of the semester grades y 2 ,  y s ,  • • ",  Y7 can also be obtained directly 
from the solution in which the 7's are standardized. The reliabilities are 

Y2 Y3 Y~ Y5 Ye Y~ 

0.569 0.575 0.562 0.584 0.581 0.608. 

A test of the hypothesis that these are equal gives X 2 = 2.17 with 5 degrees of freedom, so 
that this hypothesis is not rejected by the data despite the large sample size. 

In this example the correlations p(71, 7j) , j  ~ l and 0(7, 7s), i ~ 8 and the reliabilities 
of yl and Y8 are not identified. However, in view of the above test of equality of reliabilities 
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TABLE 8 

Correlations amonH Grade Point Avera@es, Hi@h 

School Rank and An Aptitude Test 

Y0 Y0 Yl Y2 Y3 Y4 Y5 Y6 Y7 Y8 

Y0 1.000 

y~ .393 1.000 

Yl .387 .375 1.000 

Y2 .341 .298 .556 1.000 

Y3 .278 .237 .456 .490 

Y4 .270 .255 .439 .445 

Y5 .240 .238 .415 .418 

Y6 .256 .252 .399 .383 

Y7 .240 .219 .387 .364 

Y8 .222 .173 .342 .339 

I. 000 

.562 1.000 

.496 .512 1.000 

.456 .469 .551 

.445 .442 .500 

.354 .416 .453 

I. 000 

.544 1.000 

.482 .541 I .000 

Note: Y0 is high school rank, y~ ACT composite score, and 

Yl through Y8 are eight semesters grade-point averages. 

it seems reasonable to assume that all reliabilities or equivalently all error variances in the 
standardized solution are equal for Yl through y8. This assumption makes it possible to 
estimate the intercorrelations among all the ~'s. 

Assuming that xo and x~ are indicators of precollege academic achievement r/o which 
influences the true academic achievement in the first semester r/i, one can estimate again 
the quasi-Markov simplex and show how this use of  xo and x~ helps identify the parame- 
ters of  the model. 

The only parameter which is now not identified is 08, the error variance in ys. This 
gives a X ~ = 36.92 with 28 degrees of freedom. If we assume that the re|iabilities of all the 
semester grades are equal, all parameters are identified and the goodness of  fit becomes 
45.22 with 34 degrees of  freedom. The difference equaling 8.30 with 6 degrees of freedom 
provides another test of equality of  the reliabilities. Finally a test of the hypothesis that the 
whole process is stationary, i.e., that 

O~ = 03 . . . . .  08 

gives X 2 = 12.82 with 11 degrees of freedom so that this hypothesis cannot be rejected. 
There is good evidence that the whole Markov process is stable over time. 

Circumplex Models 

Simplex models, as considered in the previous subsection, are models for tests that 
may be conceived of  as having a linear ordering. The circumplex is another model 
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considered by G u t t m a n  [1954] and this yields a circular order ing instead o f  a linear. The  
circular order  has no begirming and no end but  there is still a law of  neighboring that  
holds. 

The  circumplex model  suggested by G u t t m a n  [1954] is a circular moving  average  
process.  Let ~'1, ~'~, " " ,  ~'p be uncorrela ted r a n d o m  latent  variables.  Then the perfect  
c ircumplex of  order  m with p variables is defined by 

xl = ~'l + ~'~+1 + " "  + ~'~+,,-~, 

where x~,+~ = x ,  In matr ix  fo rm we may  write this as x = Cf, where  C is a matr ix  o f o r d e r p  
× p with zeros and ones. In the case o f p  = 6 and m = 3, 

-1 1 
0 1 
0 0 

C =  0 0 
1 0 
1 1 

1 0 0 
1 1 0 
1 1 1 
0 1 1 
0 0 1 
0 0 0 

of  Let ¢~, 4~, " " ,  q~p be the variances 
matr ix  of  x is 

0-  
0 
0 
1 
1 
1 

~'1, ~'2, " " ,  ~'p respectively. Then the covar iance  

:~ = C D  C'  

where D = diag (~1, 4~2, " " ,  ~p). The  var iance  o f  x~ is 

the covar iance  between x, and  xl, for i < j ,  is 

l + m - 1  

~ .  ~b~ for j = i +  1, i + 2 ,  . . . , i + m - -  1 

and 0 otherwise  and the correlat ion between x~ and xj, i < j ,  is 

P l J  = 

Here  q~+~ should be interpreted as ¢~. I f  all the O's are equal,  i.e., if the points  on the circle 
are equidistant ,  the correlat ions fo rm a circular symmetr ic  pa t te rn  as follows: 

(35) 

1 
pl 

p2 Pl 
P = p3 p2 

p2 p3 
p~ pz 

1 
1 

p~ 1 
p2 pl 1 
P3 P~ pl 1 

Even with different ¢ ' s  the correlat ions p~j, for  a given i, decrease as j increases 
beyond  i, reach a m in imum,  and then increase as j approaches  p + i. It  is convenient  to 
think o f  1, 2, • • -, p as points  on a circle. Then for  adjacent  points  the corre la t ion tends to 
be high, and  for  points  far apar t  the corre la t ion  tends to be low or  0. I f m  < p/2, then p~j = 
0 i f j  - i > m (modulus  p) .  Since zero correlat ions are not  to be expected in practice,  we 
assume that  m is chosen to be greater  than p/2. 
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TABLE 9 

Intercorrelations Amon~ Tests of Six Different Kinds of 

Abilities for 710 Chicago Schoolchildren 

Test 
I 2 3 4 5 6 

I. Association 1.000 0.446 0.321 0.213 0.234 0.442 

2. Incomplete Words 0.446 1.000 0.388 0.313 0.208 0.330 

3. Multiplication 0.321 0.388 1.000 0.396 0.325 0.328 

4. Dot Patterns 0.213 0.313 0.396 I .000 0.352 0.247 

5. ABC 0.234 0.208 0.325 0.352 1.000 0.347 

6. Directions 0.442 0.330 0.328 0.247 0.347 1.000 

Gut tman  gives several examples of  sets of  tests showing this property of  the correla- 
tions. His Table 19 is reproduced here as Table 9. It will be noted that  in each row the 
correlations fall away from the main diagonal, reach a minimum, and then increase. 
Gu t tman  argues that the tests form a circular order. In the example the Association test is 
about  equally related to the Incomplete Words test and the Directions test. It is this 
circular ordering that is the significant feature of  the correlation matrix. 

The perfect circumplex model may be too restrictive. First, it cannot account for 
random measurement error in the test scores and second, since the model is not scale free, 
it cannot  be used to analyze correlations such as those in Table 9. However, these 
difficulties are easily remedied by considering the following quasi circumplex 

x = D~Ctj + e 

with covariance matrix 

(36) 21 = D~CD~C'D~ + 0 2 , 

where e is the vector of  error scores with variances in the diagonal matrix 0 2 and D ,  is a 
diagonal matrix of  scale factors. One element in D ,  or D¢ must be fixed at unity. It seems 
most natural to fix ~1 = 1. 

To illustrate the testing of a circumplex model, I use the data in Table 9. I first test 
circular correlation pattern with the model 

Z = DoPDo, 

where P is given by (35) and where D~ is a diagonal matrix of standard deviations. Note 
that Do must be estimated even though S is a correlation matrix. The model gives X 2 = 
27.05 with 12 degrees of freedom. The more general model (36) with m = 4 gives X s = 16.47 
with 4 degrees of freedom. It appears that these data do not fit a circumplex model well. 
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