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Multiple Regression
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Structural equation models
are extensions of multiple
regression

» Simultaneous equations
* Include latent variables

* DV in one equation can be IV in another

An Extension
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A Further Extension
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A Longitudinal Model
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A Factor Analysis Model
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General Intelligence

Vocabulary: Latent v.s. Manifest,
Endogenous v.s. Exogenous
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Notation

LISREL (Bollen, 1989)
Classical Factor Analysis (Lawley, 1971)

LINEQS (Bentler and Weeks, 1980)

RAM (McArdate, 1980)
COSAN (McDonald 1978, 1980)

Distribution of the data
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Estimation and Testing
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Everything is normal

Maximum Likelihood
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Likelihood Ratio Test for
Goodness of Fit
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Chi-square and Z Tests

» “Chisquare” is (n-1) times minimum objective
function.

» Test nested models by difference between
chi-square values

» Z tests are produced by default; Asymptotic
Covariance matrix is available

» Likelihood ratio tests perform better

Do it all at once: Minimize
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Actually, SAS minimizes the “Objective Function”
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Simple Regression with
measurement Error
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Unconstrained (Exploratory)
Factor Analysis

The Model is not Identified
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Model Identification Consistent Estimation is

Impossible
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If the function ¢ is one to one,
then the model is identified.



To prove model identification Remember the example

* Show that the parameter can be recovered X Jy Y
from the distribution of the observed data. 1 2
i i
* In practice, recover it from the moments 0 — (~ B o
(usually, the covariance matrix). = (7,0, 0,91, 12)
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Solve the identifying equations An |dentified model can be
« Just-ldentified (saturated): Same
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» Over-identified: More equations than
For 8 = (v, 3, ¢, 1, 12) unknowns



|dentification Rules

* A necessary condition for all Models

» Sufficient conditions for models with
just observed variables

» Sufficient conditions for measurement
models (factor analysis)

» Sufficient conditions for combined
models

Observed variable models
Y =08Y +ITX+¢

Identified if Cov(X,¢{) = 0 and

e 3 =0 (Regression model), or

e Model is Recursive, and Var(¢) is diagonal

Parameter Count

» The number of parameters must be no
more than the number of unique
elements in the covariance matrix of
the observed variables.

* Necessary for all models

Recursive means no
Feedback Loops
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A just-identified, Non- Measurement Models

recursive Model (Confirmatory Factor Analysis)
X X |« Q
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Rules for Confirmatory Factor

) “Pick a Scale” for each factor
Analysis

* F is obesity

+ X, is percent body fat from immersion
* X, is triceps skin fold

* X;is Body Mass Index

* Three-indicator rules

* Two-indicator rules
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Three-indicator rules

At least three variables per factor
Each variable caused by only one factor

Errors uncorrelated with factors and
with each other

Pick a scale for each factor

No restrictions on Var(F)

Combined Models

Consider the latent part of the model as
a model for observed variables. Verify
identification.

Consider the measurement part of the
model as a confirmatory factor
analysis, ignoring structure in Var(F).
Verify identification.

Two-Indicator Rules

At least two variables per factor
Each variable caused by only one factor

Errors uncorrelated with factors and
with each other

Pick a scale for each factor

At least one non-zero off-diagonal
element in each row of Var(F)

Fixing up non-identified
models

Negotiation
Deeper study may be rewarded
“Model” is not identified.

Consider identification before collecting
data!l



Further Issues

Normality
Numerical problems
Sample size
Categorical data

Software

LISREL, EQS, RAM

Mplus

Stata

R

AMOS (Graphical interface)
SAS proc calis



