Large-Sample Likelihood Ratio Tests

We will use the following hypothesis-testing framework. The data are Y7,...,Y,. The distribu-
tion of these independent and identically distributed random variables depends on the parameter
0, and we are testing a null hypothesis Hy using a large sample likelihood ratio test.
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The data have likelihood function
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where f(y;;0) is the density or probability mass function evaluated at y;.

Let 6 denote the usual Maximum Likelihood Estimate (MLE). That is, it is the parameter
value for which the likelihood function is greatest, over all § € ©. And, let 50 denote the
restricted MLE. The restricted MLE is the parameter value for which the likelihood function is
greatest, over all § € ©g. This MLE is restricted by the null hypothesis Hy : 0 € ©q. It should
be clear that L(fy) < L(), so that the likelihood ratio.
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The likelihood ratio will equal one if and only if the overall MLE 0 is located in ©g. In this case,
there is no reason to reject the null hypothesis.

Usually, the likelihood ratio is strictly less than one. If it’s a lot less than one, then the data
are a lot less likely to have been observed under the null hypothesis than under the alternative
hypothesis; if so, the the null hypothesis is questionable. This is the basis of the likelihood ratio
tests.

If X is small (close to zero), then In A is a large negative number, and —21In \ is a big positive
number.

Tests will be based on

= —2InL(f) — [-2In L(H)]. (1)

Thus, the test statistic G is the difference between two -2 log likelihood functions. This
means that to carry out a test, you can minimize —21In L(6) twice, first over all § € ©, and then
over all 6 € ©. The test statistic is the difference between the two minimum values.

If the null hypothesis is true, then the test statistic G has, if the sample size is large,
an approximate chisquare distribution, with degrees of freedom equal to the difference of the
dimension of © and ©y. For example, if the null hypothesis is that 4 elements of 6 equal zero,



then the degrees of freedom are equal to 4. More generally, if the null hypothesis imposes k
linear restrictions on 6, then the degrees of freedom equal k.

Think of the usual normal multiple regression model. Here, § = (3,02). Consider the null
hypothesis Hy : L3 = ~, where L is a k£ X p matrix. This null hypothesis imposes k linear
restrictions on the parameter, one for each row of L. The dimension of © is p+ 1; the dimension
of Ogisp+1—k.

The p-value associated with the test statistic G is Pr{X > G}, where X is a chisquare ran-
dom variable with k degrees of freedom. If p < «, we reject Hg and call the results “statistically
significant.”

Example Let Xi,...,X,, be arandom sample from a Poisson distribution with parameter ;.
Independently of the X values, let Yi,...,Y,, be a random sample from a Poisson distribution
with parameter Ao. We will test Hg : A1 = As.

The parameter for this problem is 6 = (A1, A2), and the null hypothesis imposes one linear
restriction on the parameter. So, the degrees of freedom of the large-sample likelihood ratio
chisquare test will equal one.

The likelihood function is
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Partially differentiating the log (or -2 times the log) with respect to A\; and setting the result to
zero, we get A\ =T Similarly, Ay = 7. Thus, we get = (Xl,/):Q) = (T, 7).

Next we need to calculate the restricted MLE. There are two ways to do this, the easy
way and the hard way. The hard way is to set A\; = A2 = X in (2), take the log and start
differentiating with respect to A. The smart way is to recognize that you’ve already done the
problem once. With Ay = Ay = A, this is just a single random sample from a Poisson distribution
with parameter A, and the MLE is the sample mean of all the data combined. That is,
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The next step is to calculate the test statistic G as te difference between two -2 log likelihoods.



