STA 431s09 Assignment 5

Do this assignment in preparation for the quiz on Friday, Feb. 13th. Answers to Question 1 are practice for the the quiz, and are not to be handed in. For Question 2, bring both your log file and your list file to the quiz; they may (or may not) be handed in.

1. Recall from lecture the *invariance principle* of maximum likelihood estimation. Let the parameter of a model be θ_1 , and $\theta_2 = g(\theta_1)$; then $\hat{\theta}_2 = g(\hat{\theta}_1)$. For structural equation models where Σ is not restricted by the model (that is, for "saturated" models) and $\boldsymbol{\theta} = g(\boldsymbol{\Sigma})$, one can use the invariance principle to obtain $\hat{\boldsymbol{\theta}}$ in closed form, with no need for numerical approximation.

So, consider the simple regression model

$$Y = \gamma X + \zeta,$$

where γ is an unknown constant, $X \sim N(0, \phi)$, $\zeta \sim N(0, \psi)$ and the random variables X and ζ are independent. X and Y are observable (manifest) variables.

- (a) What is the parameter vector $\boldsymbol{\theta}$ for this model? It has three elements.
- (b) What is the distribution of the data vector (X, Y)'? Of course the expected value is zero; obtain the covariance matrix in terms of $\boldsymbol{\theta}$ values. Show your work.
- (c) Now solve three equations in three unknowns to express the three elements of $\boldsymbol{\theta}$ in terms of $\sigma_{i,j}$ values. This gives you the function g in $\boldsymbol{\theta} = g(\boldsymbol{\Sigma})$.
- (d) For a sample of size n, give the MLE $\hat{\Sigma}$. Your answer is a matrix containing three scalar formulas (or four formulas, if you write down the same thing for $\hat{\sigma}_{1,2}$ and $\hat{\sigma}_{2,1}$). Write your answer in terms of X_i and Y_i quantities. You are not being asked to derive anything. Just translate the matrix MLE into scalar form.
- (e) Obtain the formula for $\hat{\gamma}$ and simplify. Show your work.
- (f) Give the formula for ϕ .
- (g) Obtain the formula for $\hat{\psi}$ and simplify. Show your work.
- 2. Use proc calis to fit the following model to the SAT data of Assignments Three and Four.

$$Y = \gamma_1 X_1 + \gamma_2 X_2 + e,$$

where the covariance matrix of $(X_1, X_2)'$ is Φ , $V(e) = \psi$, e is independent of X_1 and X_2 , all the expected values are zero (say the data have been "centered"), and all the random variables are normally distributed. Be ready to answer questions like the following:

- (a) Draw a path diagram for this model.
- (b) Why does "Chisquare" equal zero? Is something wrong? Answer Yes or No and explain in your own words.
- (c) Compare the "Independence Model Chisquare" to your numerical answer to 6g from Assignment 4. Close, right? Now multiply by 199 instead of 200. Hummm. What is going on here?
- (d) Do high Verbal scores lead to better GPA? (Remember, these are causal models.)
 - i. What test statistic would you use to answer this question? Your answer is a single number from the printout.
 - ii. What is the null hypothesis for this question? Answer in symbols from the model.
 - iii. Do you reject H_0 at $\alpha = 0.05$? Answer Yes or No.
 - iv. What (if anything) do you conclude about GPA? Answer in English. No Greek letters or statistical terminology is allowed.
- (e) Do high Math scores lead to better GPA?
 - i. What test statistic would you use to answer this question? Your answer is a single number from the printout.
 - ii. What is the null hypothesis for this question? Answer in symbols from the model.
 - iii. Do you reject H_0 at $\alpha = 0.05$? Answer Yes or No.
 - iv. What (if anything) do you conclude about GPA? Answer in English. No Greek letters or statistical terminology is allowed.
- (f) Compare numerical values of $\hat{\gamma}_1$ and $\hat{\gamma}_2$ from this assignment to $\hat{\beta}_1$ and $\hat{\beta}_2$ from Assignment 3. Comment.
- (g) Compare the numerical values of the test statistics (for γ_1 and γ_2) from this assignment to those for β_1 and β_2 from Assignment 3. Comment.
- (h) Of course the idea of scores on a standardized test *causing* good or poor performance in university is silly. Draw a path diagram for a more reasonable model for these data, one with two latent variables. One could make a case for correlated errors, but for simplicity please make the errors uncorrelated with the (latent) exogenous variables and with each other. The latent exogenous variables should be correlated.