
Choosing Sample Size

The purpose of this section is to describe three related methods for choosing sample size before data are

collected -- the classical power method, the sample variation method and the population variation method.

The classical power method applies to almost any statistical test.  After presenting general principles, the

discussion zooms in on the important special case of factorial analysis of variance with no covariates.

The sample variation method and the population variation methods are limited to multiple linear

regression, including the analysis of variance and covariance.   Throughout, it will be assumed that the

person designing the study is a scientist who will only be allowed to discuss results if a null hypothesis is

rejected at some conventional significance level such as α = 0.05 or α = 0.01.  Thus, it is vitally

important that the study be designed so that scientifically interesting effects are likely to be be detected as

statistically significant.  

The classical power method.  The term "null hypothesis" has mostly been avoided until now, but

it's much easier to talk about the classical power method if we're allowed to use it.  Most statistical tests

are based on comparing a full model to a reduced model.  Under the reduced model, the values of

population parameters are constrained in some way.  For example, in a one-way ANOVA comparing

three treatments, the parameters are  μ1, μ2, μ3 and σ2.  The reduced model says that μ1=μ2=μ3.  This is

a constraint on the parameter values.  The null hypothesis (symbolized H0) is a statement of how the

parameters are constrained under the reduced model. When a test of a null hypothesis yields a small p-

value, it means that the data are quite unlikely if the null hypothesis is true. We then reject the null

hypothesis -- that is, we conclude it's not true, and therefore that some effect of interest is present in the

population.

The following definition applies to hypothesis tests in general, not just those associated with common

multiple regression.  Assume that data are drawn from some population with parameter θ -- that's the

Greek letter theta. Theta is typically a vector; for example, in simple linear regression with normal errors,

θ = (β0, β1, σ2). 

The ppppoooowwwweeeerrrr of a statistical test is the probability of obtaining significa

the true parameter values. That is, it is a function of θ.
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The power of a statistical test is the probability of obtaining significant results. Power is a function of the

true parameter values. That is, it is a function of θ.

a) The common statistical tests have infinitely many power values.

b) If the null hypothesis is true, power cannot exceed å; in fact, this is the technical 

definition of α.  Usually, α = 0.05.

c) If the null hypothesis is false, more power is good.

d) For a good test, power  →  1 (for fixed n) as the true parameter values get farther 

from those specified by the null hypothesis. 

e) For a good test, power  →  1 as n  →   ∞  for any combination of fixed parameter 

values, provided the null hypothesis is false.  

Classical power analysis is used to select a sample size n as follows.  Choose an effect -- a particular

combination of parameter values that makes the null hypothesis false. If possible, select the weakest effect

that would still be scientifically important if it were present in the population.  If the null hypothesis is

false in this way, we would like to have a high probability of rejecting it and obtaining significance.

Choose a sample size n, and calculate the probability of significance (that is, calculate power) for that

sample size and that set of parameter values. Increase (or decrease) n, calculating power each time.  Stop

when the power is what you want. A common target value for power is 0.80.  My guess is that it would

be higher, except that, for common tests and effect sizes, the sample would have to be prohibitively large.

There are only two difficulties with carrying out a classical power analysis in practice; one is conceptual,

the other technical.  The conceptual problem is that scientists often have difficulty choosing a

configuration of parameter values corresponding to an effect that is scientifically interesting.  Maybe that's

not too surprising, because scientists usually think in terms of data rather than in terms of statistical

models.  It could be different if the statistical models were serious scientific models of what the scientists

are studying, but usually they're quite generic.  

The technical problem is that sometimes -- especially for statistical methods other than those based on

common multiple regression -- it can be difficult to calculate the probability of significance when the null

hypothesis is false.  This problem is not really serious; it can always be overcome with some effort and
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the right software.  Once you move beyond multiple regression, SAS is not the right software.

Power for Factorial ANOVA.  Considering this special case will provide a concrete example of the

classical power method.  It is also the most common example of power analysis.

The distributions commonly used for practical hypothesis testing (mainly the chi-square, t and F) are ones

that hold when the null hypothesis is true.  When the null hypothesis is false, these are no longer the

distributions of the common test statistics; instead, they have probability distributions that migrate more

into the rejection region (tail area, above the critical value) of the statistical test.  The F distribution used

for testing hypotheses in multiple regression is the central F distribution.  If the null hypothesis is false,

the F statistic has a non-central F distribution with parameters s, n-p and φ.  The quantity φ is a kind of

squared distance between the reduced model and the true model.  It is called the

non�centrality parameter of the non-central F distribution; φ≥0, and φ = 0 gives the usual central F

distribution.  The larger the non-centrality parameter, the greater the chance of significance -- that is, the

greater the power. 

The general formula for φ is best written in the notation of matrix algebra; it will not be given here. But

the general idea, and some of its essential properties, are shown by the special case where we are

comparing two treatment means (as in a two-sample t-test, or a simple regression with a binary

independent variable).  In this situation, the general formula for the non-centrality parameter of the non-

central F distribution reduces to

φ  =  
  (μ1 � μ2)

2

σ2( 1
n1

+ 1
n2

)
=   δ2

( 1
n1

+ 1
n2

)
, (4.3)

where δ = 
  |μ1 � μ2|
σ .  Right away, it is possible to make some useful comments.  
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, (4.3)

where δ = 
  |μ1 � μ2|
σ .

° The quantity δ is called effect size.  It specifies how wrong the statement  μ1=μ2 is, 

by expressing the absolute difference between  μ1 and μ2 in units of the common 

within-cell standard deviation σ.  

° For any statistical test, power is a function of the parameter values.  Here, the non-

centrality parameter (and hence, power) depends on the three parameters  μ1, μ2 and σ2

only through the effect size.  This is quite wonderful; it does not always happen, even 

in the analysis of variance.

° The larger the effect size (that is, the more wrong the reduced model is -- in this 

metric), the larger the non-centrality parameter φ, and therefore the larger the 

probability of significance.

° If μ1=μ2, then δ=0, φ=0,the non-central F distribution becomes the usual central F 

distribution, and the probability of significance becomes exactly α=0.05.  

° The size of the non-centrality parameter depends on another quantity involving both n1

and n2, not just the total sample size n = n1+n2.  
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This last point can be illuminated by a bit of algebra.  Let

°  δ = 
  |μ1 � μ2|
σ

° n = n1+n2

° q =  n1
n , the proportion of the sample allocated to Group One. 

Then expression (4.3) can be re-written

φ = n q(1-q) δ2. (4.4)

Now it's clear.  

° For any non-zero effect size and any (?) allocation of sample size to the two treatments,

the greater the total sample size, the greater the power.

° For any sample size and any (?) allocation of sample size to the two treatments, the 

greater the effect size, the greater the power.

° Power depends not just on sample size and effect size, but on an aspect of design -- 

the allocation of sample size to the two treatments.  This is a general feature of power in

the analysis of variance and other statistical methods.  It is important, but usually not 

mentioned.

Let's continue to pursue this interesting special case.  For any given sample size and any non-zero effect

size, we can maximize power by choosing q (the proportion of cases allocated to Group One) so that the

function f(q) = q(1-q) is as large as possible.  What's the best value of q?  

This is a simple calculus exercise, but the following plot gives the answer by brute force. I just computed

f(q) = q(1�q) for 100 equally spaced values of q ranging from zero to one.
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So the best value of q is 1/2.  That is, for comparing two means using the classical normal model, power

is highest when the sample sizes are equal -- and this holds regardless of the total sample size or the

magnitude of the effect.

This is a clear, simple example of something that holds for any classical ANOVA.  The non-centrality

parameter, and hence the power, depends on the total sample size, the effect, and the allocation of the

sample to treatment combinations.  

Equal sample sizes do not always yield the highest power.  In general, the optimal allocation depends on

the hypothesis being tested and the nature of the true effect.  For example, suppose you have a design

with 18 treatment combinations, and the test in question is to compare μ1 with the average of μ2 and μ3.

Further, suppose that  μ2 = μ3 ≠ μ1 (σ2 can be anything); this is the effect.  The optimal allocation is to

give half the sample to Treatment One, split the other half any way at all between Treatments 2 and 3, and

let n=0 for the other 15 treatments.   This is why observations are not usually allocated to treatments

based on a power analysis; it often advises you to put all your eggs in one basket. 
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In the analysis of variance, power analysis is used to select a sample size n as follows. 

1. Choose an allocation of observations to treatments; usually, this is done without 

formal analysis, equal sample sizes being the most common choice. 

2. Choose an effect.  Your null hypothesis says that some collection of contrasts (of the 

treatment combination means) are all zero in the population.  The "effect" you need 

to specify is that one or more of those contrasts is not zero.  You must provide 

exact non-zero values, in units of the common within-treatment population standard 

deviation σ -- like, the difference between μ1 and the average of μ2 and μ3 is minus

0.75σ. You don't need to know the numerical value of σ (thank goodness!), but you 

do need to be able to express differences between population means in units of σ.  If 

possible, select the weakest effect that is still scientifically important.  

3. Choose a desired power; again, a common choice is 0.80, but it's up to you.  

4. Start with a modest but realistic value for the total sample size n.  Increase it, each 

time determining the critical value of F, calculating the non-centrality parameter φ 

(you have enough information), and using φ to compute the probability that F will 

exceed the critical value.  When that power becomes high enough, stop.

This is a rational strategy for choosing sample size.  In practice, the hard part is selecting an effect.

Scientists often can say what's a scientifically meaningful difference between means, but they usually

have no clue about σ.  Statisticians respond with the suggestion that σ2 be estimated by MSEF from

similar studies. Scientists respond that there are no "similar" studies; the investigation being planned is

new -- that's why we're doing it.  In the end, the whole thing is based on so much guesswork that

everyone feels uncomfortable.  In my experience, this is what happens most of the time when people try

to do a classical power analysis.  Of course, there are exceptions; sometimes, everyone is happy.
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