
Chapter Four: Multiple Regression II

Interactions as Products of Independent Variables

Categorical by Quantitative

An interaction between a quantitative variable and a categorical variable means that differences in E[Y] between

categories depend on the value of the quantitative variable, or (equivalently) that the slope of the lines relating x to

E[Y] are different, depending on category membership.  Such an interaction is represented by products of the

quantitative variable and the dummy variables for the categorical variable.  

For example, consider the metric cars data (mcars.dat).  It has length, weight, origin and fuel efficiency in

kilometers per litre, for a sample of cars.  The three origins are US, Japanese and Other. Presumably these refer to

the location of the head office, not to where the car was manufactured.  

Let's use indicator dummy variable coding for origin, with an intercept.  In an Analysis of Covariance

(ANCOVA), we'd test country of origin controlling, say, for weight.  Letting x represent weight and c1 and c2

the dummy variables for country of origin, the model would be

E[Y|X] = b0 + b1x + b2c1 + b3c2.

This model assumes no interaction between country and weight.  The following model includes product terms for

the interaction, and would allow you to test it.

E[Y|X] = β0 + β1x + β2c1 + β3c2 + β4c1x + β5c2x
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Country c1 c2 Expected KPL (let x = weight)

U. S. 1 0 (β0 + β2) + (β1+β4)x

Japan 0 0  β0           +  β1        x

European 0 1 (β0 + β3) + (β1+β5)x

It's clear that the slopes are parallel if and only if β4=β5=0, and that in this case the relationship of fuel efficiency

to country would not depend on weight of the car.

As the program below shows, interaction terms are created by literally multiplying independent variables, and

using products as additional independent variables in the regression equation.

/********************** mcars.sas **************************/
options linesize=79 pagesize=100 noovp formdlim='-';
title 'Metric Cars Data: Dummy Vars and Interactions';

proc format; /* Used to label values of the categorical variables */
     value carfmt    1 = 'US'
                     2 = 'Japanese'
                     3 = 'European' ;
data auto;
     infile 'mcars.dat';
     input id country kpl weight length;
/* Indicator dummy vars: Ref category is Japanese */
     if country = 1 then c1=1;  else c1=0;
     if country = 3 then c2=1;  else c2=0;
     /* Interaction Terms */
     cw1 = c1*weight; cw2 = c2*weight;
     label country = 'Country of Origin'
           kpl = 'Kilometers per Litre';
     format country carfmt.;

proc means;
     class country;
     var weight kpl;

proc glm;
     title 'One-way ANOVA';
     class country;
     model kpl = country;
     means country / tukey;

proc reg;
     title 'ANCOVA';
     model kpl = weight c1 c2;
     country: test c1 = c2 = 0;

Chapter 4, Page 2



proc reg;
     title 'Test parallel slopes (Interaction)';
     model kpl = weight c1 c2 cw1 cw2;
     interac: test cw1 = cw2 = 0;
     useuro:  test cw1=cw2;
     country: test c1 = c2 = 0;
     eqreg:   test c1=c2=cw1=cw2=0;

proc iml; /* Critical value for Scheffe tests */
     critval = finv(.95,4,94) ; print critval;

/* Could do most of it with proc glm: ANCOVA, then test interaction */

proc glm;
     class country;
     model kpl = weight country;
     lsmeans country;

proc glm;
     class country;
     model kpl = weight country weight*country;

Let's take a look at the output.  First, proc means indicates that the US cars get lower gas mileage, and that weight

is a potential confounding variable.

       COUNTRY  N Obs  Variable  Label                   N          Mean
      ------------------------------------------------------------------
      US           73  WEIGHT                           73       1540.23
                       KPL       Kilometers per Litre   73     8.1583562

      Japanese     13  WEIGHT                           13       1060.27
                       KPL       Kilometers per Litre   13     9.8215385

      European     14  WEIGHT                           14       1080.32
                       KPL       Kilometers per Litre   14    11.1600000
      ------------------------------------------------------------------

   COUNTRY  N Obs  Variable  Label                      Std Dev       Minimum
  ---------------------------------------------------------------------------
  US           73  WEIGHT                           327.7785402   949.5000000
                   KPL       Kilometers per Litre     1.9760813     5.0400000

  Japanese     13  WEIGHT                           104.8370989   891.0000000
                   KPL       Kilometers per Litre     2.3976719     7.5600000

  European     14  WEIGHT                           240.9106607   823.5000000
                   KPL       Kilometers per Litre     4.2440764     5.8800000
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  ---------------------------------------------------------------------------

          COUNTRY  N Obs  Variable  Label                      Maximum
         -------------------------------------------------------------
         US           73  WEIGHT                               2178.00
                          KPL       Kilometers per Litre    12.6000000

         Japanese     13  WEIGHT                               1237.50
                          KPL       Kilometers per Litre    14.7000000

         European     14  WEIGHT                               1539.00
                          KPL       Kilometers per Litre    17.2200000
         -------------------------------------------------------------

The one-way ANOVA indicates that fuel efficiency is significantly related to country of origin; country explains

17% of the variation in fuel efficiency.

                        General Linear Models Procedure

Dependent Variable: KPL   Kilometers per Litre
                                     Sum of            Mean
Source                  DF          Squares          Square  F Value    Pr > F

Model                    2     121.59232403     60.79616201    10.09    0.0001
Error                   97     584.29697197      6.02368012
Corrected Total         99     705.88929600

                  R-Square             C.V.        Root MSE           KPL Mean
                  0.172254         27.90648       2.4543187          8.7948000

The Tukey follow-ups are not shown, but they indicate that only the US-European difference is significant.

Maybe the US cars are less efficient because they are big and heavy. So let's do the same test, controlling for

weight of car. Here's the SAS code.  Note this is a standard Analysis of Covariance, and we're assuming no

interaction.

proc reg;
     title 'ANCOVA';
     model kpl = weight c1 c2;
     country: test c1 = c2 = 0;

Dependent Variable: KPL        Kilometers per Litre

                             Analysis of Variance
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                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            3    436.21151    145.40384       51.761       0.0001
       Error           96    269.67779      2.80914
       C Total         99    705.88930

           Root MSE       1.67605     R-square       0.6180
           Dep Mean       8.79480     Adj R-sq       0.6060
           C.V.          19.05728

                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     16.226336    0.76312281        21.263        0.0001
     WEIGHT     1     -0.006041    0.00057080       -10.583        0.0001
     C1         1      1.236147    0.57412989         2.153        0.0338
     C2         1      1.459591    0.64565633         2.261        0.0260

-------------------------------------------------------------------------------

Dependent Variable: KPL
Test: COUNTRY  Numerator:      8.6168  DF:    2   F value:   3.0674
               Denominator:  2.809144  DF:   96   Prob>F:    0.0511

First notice that by including weight, we're now explaining 61% of the variation, while before we explained just

17%. Also, while the effect for country was comfortably significant before we controlled for weight, now it

narrowly fails to reach the traditional criterion (p = 0.0511). But to really appreciate these results, we need to

make a table.

Country c1 c2 E[Y] = β0 + β1x + β2c1 + β3c2

U. S. 1 0 (β0 + β2) + β1x

Japan 0 0  β0           + β1x

European 0 1 (β0 + β3) + β1x

                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|
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     INTERCEP   1     16.226336    0.76312281        21.263        0.0001
     WEIGHT     1     -0.006041    0.00057080       -10.583        0.0001
     C1         1      1.236147    0.57412989         2.153        0.0338
     C2         1      1.459591    0.64565633         2.261        0.0260

Observe that both b2 and b3 are positive -- and significant.  Before we controlled for weight, Japanese gas mileage
was a little better than US, though not significantly so.  Now, because b2 estimates β2, and β2 is the population
difference between U.S. and Japanese mileage (for any fixed weight), a positive value of b2 means that once you
control for weight, the U.S. cars are getting better gas mileage than the Japanese -- significantly better, too, if you
believe the t-test and not the F-test.  

The direction of the results has changed because we controlled for weight.  This can happen. 

Also, may seem strange that the tests for β2 and β3 are each significant individually, but the simultaneous test for

both of them is not.  But this the simultaneous test implicitly includes a comparison between U.S. and European

cars, and they are very close, once you control for weight.

The best way to summarize these results would be to calculate Y-hat for each country of origin, with weight set

equal to its mean value in the sample. Instead of doing that, though, let's first test the interaction, which this

analysis is assuming to be absent. 

proc reg;
     title 'Test parallel slopes (Interaction)';
     model kpl = weight c1 c2 cw1 cw2;

     interac: test cw1 = cw2 = 0;
     useuro:  test cw1=cw2;
     country: test c1 = c2 = 0;
     eqreg:   test c1=c2=cw1=cw2=0;

Dependent Variable: KPL        Kilometers per Litre

                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            5    489.27223     97.85445       42.463       0.0001
       Error           94    216.61706      2.30444
       C Total         99    705.88930

           Root MSE       1.51804     R-square       0.6931
           Dep Mean       8.79480     Adj R-sq       0.6768
           C.V.          17.26062
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                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     29.194817    4.45188417         6.558        0.0001
     WEIGHT     1     -0.018272    0.00418000        -4.371        0.0001
     C1         1    -12.973668    4.53404398        -2.861        0.0052
     C2         1     -4.891978    4.85268101        -1.008        0.3160
     CW1        1      0.013037    0.00421549         3.093        0.0026
     CW2        1      0.006106    0.00453064         1.348        0.1810

-------------------------------------------------------------------------------

Dependent Variable: KPL
Test: INTERAC  Numerator:     26.5304  DF:    2   F value:  11.5127
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Dependent Variable: KPL
Test: USEURO   Numerator:     33.0228  DF:    1   F value:  14.3301
               Denominator:  2.304437  DF:   94   Prob>F:    0.0003

Dependent Variable: KPL
Test: COUNTRY  Numerator:     24.4819  DF:    2   F value:  10.6238
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Dependent Variable: KPL
Test: EQREG    Numerator:     17.5736  DF:    4   F value:   7.6260
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Now the coefficients for the dummy variables are both negative, and the coefficients for the interaction terms are

positive. To see what's going on, we need a table and a picture -- of  Y .

 Y  = b0 + b1x + b2c1 + b3c2 + b4c1x + b5c2x

    = 29.194817 - 0.018272x - 12.973668c1 - 4.891978c2 + 0.013037c1x + 0.006106c2x
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Country c1 c2 Predicted KPL (let x = weight)

U. S. 1 0 (b0 + b2) + (b1+b4)x      = 16.22 - 0.005235 x

Japan 0 0  b0           +  b1       x       = 29.19 - 0.018272 x

European 0 1 (b0 + b3) + (b1+b5)x       = 24.30 - 0.012166 x

From the proc means output, we find that the lightest car was 823.5kg, while the heaviest was 2178kg.  So we

will let the graph range from 820 to 2180.
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When there were no interaction terms, b2 and b3 represented a main effect for country.  What do they represent

now?

From the picture, it is clear that the most interesting thing is that the slope of the line relating weight to fuel

efficiency is least steep for the U.S.  Is it significant?  0.05/3 = 0.0167.
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Repeating earlier material, ...

                             Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     29.194817    4.45188417         6.558        0.0001
     WEIGHT     1     -0.018272    0.00418000        -4.371        0.0001
     C1         1    -12.973668    4.53404398        -2.861        0.0052
     C2         1     -4.891978    4.85268101        -1.008        0.3160
     CW1        1      0.013037    0.00421549         3.093        0.0026
     CW2        1      0.006106    0.00453064         1.348        0.1810

     useuro:  test cw1=cw2;

Dependent Variable: KPL
Test: USEURO   Numerator:     33.0228  DF:    1   F value:  14.3301
               Denominator:  2.304437  DF:   94   Prob>F:    0.0003

The conclusion is that with a Bonferroni correction, the slope is less (less steep) for US than for either Japanese or

European, but Japanese and European are not significantly different from each other.

Another interesting follow-up would be to use Scheffé tests to compare the heights of the regression lines at many

values of weight; infinitely many comparisons would be protected simultaneously.  This is not a proper follow-up

to the interaction. What is the initial test?
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Quantitative by Quantitative

An interaction of two quantitative variables is literally represented by their product.  For example, consider the

model

E[Y] = β
0
 + β

1
x

1
 + β

2
x

2
 + β

3
x

1
x

2

Hold x
2
 fixed at some particular value, and re-arrange the terms.  This yields

E[Y] =(β
0
 + β

2
x

2
) + (β

1
+ β

3
x

2
 )x

1
.

so that there is a linear relationship between x
1
 and E[Y], with both the slope and the intercept depending on the

value of x
2
.  Similarly, for a fixed value of x

1
,

E[Y] =(β
0
 + β

1
x

1
) + (β

2
+ β

3
x

1
 )x

2
,

and the (linear) relationship of x2 to E[Y] depends on the value of x1.  We always have this kind of symmetry.

Three-way interactions are represented by 3-way products, etc.  Its interpretation would be "the 2-way interaction

depends ..."

Product terms represent interactions ONLY when all the variables involved and all lower order interactions

involving those variables are also included in the model!
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Categorical by Categorical

It is no surprise that interactions between categorical independent variables are represented by products.  If A and

B are categorical variables, IVs representing the A by B interaction are obtained by multiplying each dummy

variable for A by each dummy variable for B.  If there is a third IV cleverly named C and you want the 3-way

interaction, multiply each of the dummy variables for C by each of the products representing the A by B

interaction.  This rule extends to interactions of any order.  

Up till now, we have represented categorical independent variables with indicator dummy variables, coded 0 or 1.

If interactions between categorical IVs are to be represented, it is much better to use "effect coding," so that the

regression coefficients for the dummy variables correspond to main effects.  (In a 2-way design, products of

indicator dummy variables still correspond to interaction terms, but if an interaction is present, the interpretation of

the coefficients for the indicator dummy variables is not what you might guess.)

Effect coding.  There is an intercept.  As usual, a categorical independent variable with k categories is

represented by k-1 dummy variables.  The rule is

Dummy var 1:  First value of the IV gets a 1, last gets a minus 1, all others get zero.

Dummy var 2:  Second value of the IV gets a 1, last gets a minus 1, all others get zero.

. . .

Dummy var k-1:  k-1st value of the IV gets a 1, last gets a minus 1, all others get zero.

In the Greenhouse data, there are six genetically different types of fungus growing on three varieties of Canola

plant.  The dependent variablle is lesion length -- how hig a wound the fungus made on the plant after ten days.

Here is a table showing effect coding for Plant.

Plant p1 p2 E[Y|XXXX] = β0 + β1p1 + β2p2

GP159  1  0 µ1 = β0 + β1

Hanna  0  1 µ2 = β0 + β2

Westar -1 -1 µ3 = β0 − β1 − β2
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It is clear that µ1 = µ2 = µ3 if and only if β1=β2=0, so it's a valid dummy variable coding scheme even though it

looks strange.

Country p1 p2 E[Y] = β0 + β1p1 + β2p2

GP159  1  0 µ1 = β0 + β1

Hanna  0  1 µ2 = β0 + β2

Westar -1 -1 µ3 = β0 − β1 − β2

Effect coding has these properties, which extend to any number of categories.

° µ1 = µ2 = µ3 if and only if β1=β2=0.  

° The average population mean (grand mean) is (µ1+µ2+µ3)/3 = β0.

° β1, β2 and -(β1+β2) are deviations from the grand mean.

The real advantage of effect coding is that the dummy variables behave nicely when multiplied together, so that

main effects correspond to collections of dummy variables, and interactions correspond to their products -- in a

simple way. This is illustrated for Plant by Fungus Type.  Fungus type is called MCG for "Mycelial Compatibility

Group."  This strange name comes from the way that the botanists decided whether two types of fungus were

genetically distinct.  They would grow two samples on the same dish in a nutrient solution, and if the two fungus

patches stayed separate, they were genetically different.  If they grew together into a single patch of fungus (that

is, they were compatible), then they were genetically identical.  Apparently, this phenomenon is well established.

data nasty;

     set yucky;

     /* Two dummy variables for plant */

        if plant=. then p1=.;

        else if plant=1 then p1=1;

        else if plant=3 then p1=-1;

        else p1=0;
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     if plant=. then p2=.;

        else if plant=2 then p2=1;

        else if plant=3 then p2=-1;

        else p2=0;

     /* Five dummy variables for mcg */

     if mcg=. then f1=.;

        else if mcg=1 then f1=1;

        else if mcg=9 then f1=-1;

        else f1=0;

     if mcg=. then f2=.;

        else if mcg=2 then f2=1;

        else if mcg=9 then f2=-1;

        else f2=0;

     if mcg=. then f3=.;

        else if mcg=3 then f3=1;

        else if mcg=9 then f3=-1;

        else f3=0;

     if mcg=. then f4=.;

        else if mcg=7 then f4=1;

        else if mcg=9 then f4=-1;

        else f4=0;

     if mcg=. then f5=.;

        else if mcg=8 then f5=1;

        else if mcg=9 then f5=-1;

        else f5=0;

     /* Product terms for the interaction */

        p1f1 = p1*f1; p1f2=p1*f2 ; p1f3=p1*f3 ; p1f4=p1*f4; p1f5=p1*f5;

        p2f1 = p2*f1; p2f2=p2*f2 ; p2f3=p2*f3 ; p2f4=p2*f4; p2f5=p2*f5;
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proc reg;

     model meanlng = p1 -- p2f5;

     plant:  test p1=p2=0;

     mcg:    test f1=f2=f3=f4=f5=0;

     p_by_f: test p1f1=p1f2=p1f3=p1f4=p1f5=p2f1=p2f2=p2f3=p2f4=p2f5 = 0;     

Here is the output from the test statement.  For comparison, it is followed by proc glm output from

model meanlng = plant|mcg (a standard two-way ANOVA).

Dependent Variable: MEANLNG 
Test: PLANT    Numerator: 110847.5637  DF:    2   F value: 113.9032
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG 
Test: MCG      Numerator:  11748.0529  DF:    5   F value:  12.0719
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG 
Test: P_BY_F   Numerator:   4758.1481  DF:   10   F value:   4.8893
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

-------------------------------------------------------------------------------

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

PLANT                    2     221695.12747    110847.56373   113.90    0.0001
MCG                      5      58740.26456     11748.05291    12.07    0.0001
PLANT*MCG               10      47581.48147      4758.14815     4.89    0.0001

It worked.

Effect coding works as expected in conjunction with quantitative independent variables.  In particular, products of

quantitative and indicator variables still represent interactions.  In fact, the big advantage of effect coding is that

you can use it to test categorical independent variables, and interactions between categorical independent variables

-- in a bigger multiple regression context.
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