Handout 1.5: Proportion of remaining variation for the Grades data

```
options linesize=79 noovp formdlim=' ';
title 'Predicting First-Year GPA from SAT Scores';
title2 'Test quadratic terms, calculate explained variation';
data sat;
    input id verbal math gpa;
    sat = verbal+math;
    v2 = verbal**2;
    m2 = math**2;
    label gpa = 'First-year GPA'
         sat = 'Total SAT score'
         v2 = 'Verbal Squared'
         m2 = 'Math Squared';
proc reg;
    model gpa = verbal v2 math m2;
    V2andM2: test v2=m2=0; /* Meaning: Test this null hypothesis about the
                          corresponding regression coefficients */
/* Calculate proportion of remaining variation with proc iml. First do the
contribution of v2 and m2, in two ways. The model with just verbal and math
had an R-squared of 0.116054 (from grades.lst). With verbal-squared and
math-squared, get R-squared = 0.1408 */
proc iml;
    title3 'Calculate explained variation 2 ways';
    print "Proportion of remaining variation explained by V2 and M2";
    a1 = (0.1408 - 0.116054)/(1 - 0.116054); print al;
    /* Now the formula based on the F statistic*/
    n = 200 ; p = 5 ; s = 2 ; F = 2.81;
    a2 = s*f / (n - p + s*F); print a2;
/* Controlling for the other variables, what proportion of the remaining
variation does verbal explain? For a test of one variable, F = t-squared. */
proc iml;
    title3 'Proportion of remaining variation from a t statistic';
    print "Proportion of remaining variation explained by verbal";
    T = 2.13; F = T^{**2};
    n = 200; p = 5; s = 1;
    a = s*f / (n - p + s*F); print a;
```

grades2.lst

Predicting First-Year GPA from SAT Scores 1 Test quadratic terms, calculate explained variation 22:08 Sunday, October 7, 2007

The REG Procedure Model: MODEL1 Dependent Variable: gpa First-year GPA

Analysis of Variance

DF	Sum of Squares	Mean Square	F Value	Pr > F
4	9.43549	2.35887	7.99	<.0001
195	57.58451	0.29531		
199	67.02000			
	4 195	DF Squares 4 9.43549 195 57.58451	DFSquaresSquare49.435492.3588719557.584510.29531	DFSquaresSquareF Value49.435492.358877.9919557.584510.29531

Root MSE	0.54342	R-Square	0.1408
Dependent Mean	2.63000	Adj R-Sq	0.1232
Coeff Var	20.66235		

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept verbal	Intercept	1 1	1.71058 0.01310	3.08521 0.00614	0.55 2.13	0.5799 0.0341
v2	Verbal Squared	1	-0.00000912	0.00000515	-1.77	0.0783
math		1	-0.01247	0.00806	-1.55	0.1235
m2	Math Squared	1	0.00001056	0.00000625	1.69	0.0926

Predicting First-Year GPA from SAT Scores 2 Test quadratic terms, calculate explained variation 22:08 Sunday, October 7, 2007

The REG Procedure Model: MODEL1

Test V2andM2 Results for Dependent Variable gpa

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 195	0.82878 0.29531	2.81	0.0629

Predicting First-Year GPA from SAT Scores 3 Test quadratic terms, calculate explained variation Calculate explained variation 2 ways 22:08 Sunday, October 7, 2007

Proportion of remaining variation explained by V2 and M2

A1

0.0279949

A2

0.0280132 /dos/brunner/429f07/grades > sas grades2 ; cat grades2.lst ; chk

> Predicting First-Year GPA from SAT Scores 1 Test quadratic terms, calculate explained variation 22:12 Sunday, October 7, 2007

The REG Procedure Model: MODEL1 Dependent Variable: gpa First-year GPA

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	9.43549	2.35887	7.99	<.0001
Error	195	57.58451	0.29531		
Corrected Total	199	67.02000			

Root MSE	0.54342	R-Square	0.1408
Dependent Mean	2.63000	Adj R-Sq	0.1232
Coeff Var	20.66235		

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	1.71058	3.08521	0.55	0.5799
verbal		1	0.01310	0.00614	2.13	0.0341
v2	Verbal Squared	1	-0.00000912	0.00000515	-1.77	0.0783
math		1	-0.01247	0.00806	-1.55	0.1235
m2	Math Squared	1	0.00001056	0.00000625	1.69	0.0926

Predicting First-Year GPA from SAT Scores

Test quadratic terms, calculate explained variation 22:12 Sunday, October 7, 2007 The REG Procedure Model: MODEL1 Test V2andM2 Results for Dependent Variable gpa Mean Source DF Square F Value Pr > F Numerator 2 0.82878 2.81 0.0629 Denominator 195 0.29531 Predicting First-Year GPA from SAT Scores 3 Test quadratic terms, calculate explained variation Calculate explained variation 2 ways 22:12 Sunday, October 7, 2007 Proportion of remaining variation explained by V2 and M2 A1

0.0279949

A2

0.0280132

Predicting First-Year GPA from SAT Scores 4 Test quadratic terms, calculate explained variation Proportion of remaining variation from a t statistic 22:12 Sunday, October 7, 2007

Proportion of remaining variation explained by verbal

А

0.0227371