Chapter 4

Multiple Regression: Part One

4.1 Three Meanings of Control

In this class, we will use the word control to refer to procedures designed
to reduce the influence of extraneous variables on our results. The definition
of extraneous is “not properly part of a thing,” and we will use it to refer
to variables we’re not really interested in, and which might get in the way
of understanding the relationship between the independent variable and the
dependent variable.

There are two ways an extraneous variable might get in the way. First,
it could be a confounding variable — related to both the independent vari-
able and the dependent variable, and hence capable of creating masking or
even reversing relationships that would otherwise be evident. Second, it
could be unrelated to the independent variable and hence not a confounding
variable, but it could still have a substantial relationship to the dependent
variable. If it is ignored, the variation that it could explain will be part of
the "background noise,” making it harder to see the relationship between IV
and DV, or at least causing it to appear relatively weak, and possibly to be
non-significant.

The main way to control potential extraneous variables is by holding them
constant. In experimental control, extraneous variables are literally held
constant by the procedure of data collection or sampling of cases. For exam-
ple, in a study of problem solving conducted at a high school, background
noise might be controlled by doing the experiment at the same time of day for
each subject (and not when classes are changing). In learning experiments
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with rats, males are often employed because their behavior is less variable
than that of females.

An alternative to experimental control is statistical control, which takes
two main forms. One version, subdivision, is to subdivide the sample into
groups with identical or nearly identical values of the extraneous variable(s),
and then to examine the relationship between independent and dependent
variable separately in each subgroup — possibly pooling the subgroup analy-
ses in some way. The analysis of the Berkeley graduate admissions data in
Chapter 3 is our prime example. As another example where the relation-
ship of interest is between quantitative rather than categorical variables, the
correlation of education with income might be studied separately for men
and women. The drawback of this subdivision approach is that if extraneous
variables have many values or combinations of values, you need a very large
sample.

The second form of statistical control, model-based control, is to ex-
ploit details of the statistical model to accomplish the same thing as the
subdivision approach, but without needing a huge sample size. The primary
example is multiple linear regression, which is the topic of this chapter.

4.2 Population Parameters

Recall we said two variables are “related” if the distribution of the dependent
variable depends on the value of the independent variable. Classical regres-
sion and analysis of variance are concerned with a particular way in which
the independent and dependent variables might be related, one in which the
population mean of Y depends on the value of X.

Think of a population histogram manufactured out of a thin sheet of
metal. The point (along the horizontal axis) where the histogram balances
is called the expected value or population mean; it is usually denoted by
E[Y] or p (the Greek letter mu). The conditional population mean of Y
given X = x is just the balance point of the conditional distribution. It will
be denoted by E[Y|X = z|. The vertical bar | should be read as ”given.”

Again, for every value of X, there is a separate distribution of Y, and the
expected value (population mean) of that distribution depends on the value
of X. Furthermore, that dependence takes a very specific and simple form.
When there is only one independent variable, the population mean of Y is

91



EY|X = x] = By + bz (4.1)

This is the equation of a straight line. The slope (rise over run) is /; and
the intercept is (y. If you want to know the population mean of Y for any
given x value, all you need are the two numbers 3, and ;.

But in practice, we never know [y and (3;. To estimate them, we use the
slope and intercept of the least-squares line:

~

If you want to estimate the population mean of Y for any given z value,
all you need are the two numbers by and by, which are calculated from the
sample data.

This has a remarkable implication, one that carries over into multiple
regression. Ordinarily, if you want to estimate a population mean, you need
a reasonable amount of data. You calculate the sample mean of those data,
and that’s your estimate of the population mean. If you want to estimate a
conditional population mean, that is, the population mean of the conditional
distribution of Y given a particular X = x, you need a healthy amount of
data with that value of x. For example, if you want to estimate the average
weight of 50 year old women, you need a sample of 50 year old women —
unless you are willing to make some assumptions.

What kind of assumptions? Well, the simple structure of (4.1) means
that you can use formula (4.2) to estimate the population mean of Y for a
given value of X = x without having any data at that x value. This is not
“cheating,” or at any rate, it need not be. If

e the x value in question is comfortably within the range of the data in
your sample, and if

e the straight-line model is a reasonable approximation of reality within
that range,

then the estimate can be quite good.

The ability to estimate a conditional population mean without a lot of
data at any given x value means that we will be able to control for extraneous
variables, and remove their influence from a given analysis without having the
massive amounts of data required by the subdivision approach to statistical
control.
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We are getting away with this because we have adopted a model for the
data that makes reasonably strong assumptions about the way in which the
population mean of Y depends on X. If those assumptions are close to the
truth, then the conclusions we draw will be reasonable. If the assumptions
are badly wrong, we are just playing silly games. There is a general principle
here, one that extends far beyond multiple regression.

Data Analysis Hint 4 There is a direct tradeoff between amount of data
and the strength (restrictiveness) of model assumptions. If you have a lot
of data, you do not need to assume as much. If you have a small sample
size, you will probably have to adopt fairly restrictive assumptions in order
to conclude anything from your data.

Multiple Regression Now consider the more realistic case where there is
more than one independent variable. With two independent variables, the
model for the population mean of Y is

ElY|X = x| = 8y + p121 + Boxo,

which is the equation of a plane in 3 dimensions (x1, z3,y). The general case
is

EY|X =x] =06y + ixyr + ... + Bp—1Tp-1,

which is the equation of a hyperplane in p dimensions.

Comments

e Since there is more than one independent variable, there is a condi-
tional distribution of Y for every combination of independent variable
values. Matrix notation (boldface) is being used to denote a collection
of independent variables.

e There are p — 1 independent variables. This may seem a little strange,
but we’re doing this to keep the notation consistent with that of stan-
dard regression texts such as [7]. If you want to think of an independent
variable Xy = 1, then there are p independent variables.

e What is (3,7 It’s the height of the population hyperplane when all the
independent variables are zero, so it’s the intercept.
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e Most regression models have an intercept term, but some do not (Xg =
0); it depends on what you want to accomplish.

o [3y is the intercept. We will now see that the other 8 values are slopes.

Consider
ElY|X = x| = [y + fix1 + Paxa + Bsxs + [axy

What is (37 If you speak calculus, %E [Y] = 5, so (3 is the rate at which
the population mean is increasing as a function of x3, when other independent
variables are held constant (this is the meaning of a partial derivative).

If you speak high school algebra, (35 is the change in the population mean
of Y when z3 is increased by one unit and all other independent variables
are held constant. Look at

Bo + Brx1 + Poxy +03(x3+ 1) +Paxy
— (Bo+ Bix1 + Poxe +P573 +04xy)

= Bo+ Bix1 + Boxo + Baxz +PB3 +Baxy
— Bo— bz — Baxo — P3w3 — B4y

= s

The mathematical device of holding other variables constant is very im-
portant. This is what is meant by statements like “Controlling for parents’
education, parents’ income and number of siblings, quality of day care is still
positively related to academic performance in Grade 1.” We have just seen
the prime example of model-based statistical control — the third type of
control in the “Three meanings of control” section that began this chapter.

We will describe the relationship between X} and Y as positive (control-
ling for the other independent variables) if G, > 0 and negative if 5, < 0.

Here is a useful definition. A quantity (say w) is a linear combination
of quantities 21,29 and z3 if w = a121 + as2o + asz3, where ay,as and as
are constants. Common multiple regression is linear regression because the
population mean of Y is a linear combination of the 3 values. It does not
refer to the shape of the curve relating x to F[Y'|X = z]. For example,
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EY|X =2] = Bo+ bz Simple linear regression

EY|X =z] = [o+ pia? Also simple linear regression
ElY|X =x2] = o+ fiz + Box? + B32° Polynomial regression — still linear
EY|X =z = o+ fix+ Pacos(l/x) Still linear in the 3 values

EY|X =2 = o+ [1cos(fax) Truly non-linear

When the relationship between the independent and dependent variables
is best represented by a curve, we’ll call it curvilinear, whether the regres-
sion model is linear or not. All the examples just above are curvilinear,
except the first one.

Notice that in the polynomial regression example, there is really only
one independent variable, . But in the regression model, z, 22 and 2® are
considered to be three separate independent variables in a multiple regression.
Here, fitting a curve to a cloud of points in two dimensions is accomplished
by fitting a hyperplane in four dimensions. The origins of this remarkable
trick are lost in the mists of time, but whoever thought of it was having a
good day.

4.3 Estimation by least squares

In the last section, the conditional population mean of the dependent vari-
able was modelled as a (population) hyperplane. It is natural to estimate a
population hyperplane with a sample hyperplane. This is easiest to imagine
in three dimensions. Think of a three-dimensional scatterplot, in a room.
The independent variables are X; and Xs. The (x1,x2) plane is the floor,
and the value of Y is height above the floor. Each subject (case) in the
sample contributes three coordinates (1, s, y), which can be represented by
a soap bubble floating in the air.

In simple regression, we have a two-dimensional scatterplot, and we seek
the best-fitting straight line. In multiple regression, we have a three (or
higher) dimensional scatterplot, and we seek the best fitting plane (or hyper-
plane). Think of lifting and tilting a piece of plywood until it fits the cloud
of bubbles as well as possible.

What is the “best-fitting” plane? We’'ll use the least-squares plane,
the one that minimizes the sum of squared vertical distances of the bubbles
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from the piece of plywood. These vertical distances can be viewed as errors
of prediction.

It’s hard to visualize in higher dimension, but the algebra is straightfor-
ward. Any sample hyperplane may be viewed as an estimate (maybe good,
maybe terrible) of the population hyperplane. Following the statistical con-
vention of putting a hat on a population parameter to denote an estimate of
it, the equation of a sample hyperplane is

Bo + lel +... .+ Bp—lxp—lv

and the error of prediction (vertical distance) is the difference between y and
the quantity above. So, the least squares plane must minimize

n
L ~ 2
Q= Z (yz - Bo — 5133'1,1 .. ﬁpflxi,pfl)
i=1
over all combinations of BO, ﬁl, . 7Bp—1-

Provided that no independent variable (including the peculiar X, = 1)
is a perfect linear combination of the others, the B quantities that minimize
the sum of squares ) exist and are unique. We will denote them by by (the
estimate of 3y, by (the estimate of 3;), and so on.

Again, a population hyperplane is being estimated by a sample hyperplane.

EY|X =x] = [+ Bz + fazz + P35 + faza
Y = bo + bll’l + bgl’g + bg$3 + b4$4

e Y means predicted Y. Tt is the height of the best-fitting (least squares)
piece of plywood above the floor, at the point represented by the com-
bination of x values. The equation for Y is the equation of the least-
squares hyperplane.

e “Fitting the model” means calculating the b values.

4.3.1 Residuals

The residual, or error of prediction, is
e=Y -Y.

The residuals (there are n) represents errors in prediction. A positive residual
means over-performance (or under-prediction). A negative residual means
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under-performance. Examination of residuals can reveal a lot, since we can’t
look at 12-dimensional scatterplots.

e Single variable plots (histograms, box plots, stem and leaf diagrams
etc.) can identify outliers. (Data errors? Source of new ideas? What
might a bimodal distribution of residuals indicate?)

e Plot (scatterplot) of residuals versus potential independent variables
not in the model might suggest they be included, or not. How would
you plot residuals vs a categorical IV?

e Plot of residuals vs. variables that are in the model may reveal

— Curvilinear trend (may need transformation of x, or polynomial
regression, or even real non-linear regression)

— Non-constant variance over the range of z, so the DV may depend
on the IV not just through the mean. May need transformation
of Y, or weighted least squares, or a different model.

e Plot of residuals vs. ¥ may also reveal unequal variance.

4.3.2 Categorical Independent Variables

Independent variables need not be continuous — or even quantitative. For
example, suppose subjects in a drug study are randomly assigned to either
an active drug or a placebo. Let Y represent response to the drug, and

. 1 if the subject received the active drug, or
~ | 0 if the subject received the placebo.

The model is E[Y'|X = z] = o+ fiz. For subjects who receive the active
drug (so # = 1), the population mean is

Bo + Brx = By + B

For subjects who receive the placebo (so x = 0), the population mean is

Bo + Bix = [o.

Therefore, [y is the population mean response to the placebo, and
is the difference between response to the active drug and response to the
placebo. We are very interested in testing whether 3 is different from zero,
and guess what? We get exactly the same t value as from a two-sample ¢-test,
and exactly the same F' value as from a one-way ANOVA for two groups.
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Exercise Suppose a study has 3 treatment conditions. For example Group
1 gets Drug 1, Group 2 gets Drug 2, and Group 3 gets a placebo, so that
the Independent Variable is Group (taking values 1,2,3) and there is some
Dependent Variable Y (maybe response to drug again).

Sample Question 4.3.1 Why is E[Y|X = z] = o+ f1x (with x = Group)
a silly model?

Answer to Sample Question 4.3.1 Designation of the Groups as 1, 2
and 3 is completely arbitrary.

Sample Question 4.3.2 Suppose x1 = 1 if the subject is in Group 1, and
zero otherwise, and xo = 1 if the subject is in Group 2, and zero otherwise,
and E[Y|X = x] = [y + f1x1 + Paxe. Fill in the table below.

Group | x1 | 9 | Bo + (i1 + (oxa

1 n1 =
2 Mo =
3 M3 =

Answer to Sample Question 4.3.2
Group | x1 | @2 | Bo + Brx1 + Boxs
1 1|0 |w=0+05k
2 01 |p=0+0
3 010 |ps=70

Sample Question 4.3.3 What does each [ value mean?

Answer to Sample Question 4.3.3 () = us3, the population mean response
to the placebo. 31 is the difference between mean response to Drug 1 and mean
response to the placebo. By is the difference between mean response to Drug
21 and mean response to the placebo.

Sample Question 4.3.4 Why would it be nice to simultaneously test whether
Gy and B are different from zero?

Answer to Sample Question 4.3.4 This is the same as testing whether
all three population means are equal; this is what a one-way ANOVA does.
And we get the same F and p values (not really part of the sample answer).

It is worth noting that all the traditional one-way and higher-way models
for analysis of variance and covariance emerge as special cases of multiple
regression, with dummy variables representing the categorical independent
variables.
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More about Dummy Variables The exercise above was based on indi-
cator dummy variables, which take a value of 1 for observations where a
categorical independent variable takes a particular value, and zero otherwise.
Notice that z; and x5 contain the same information as the three-category
variable Group. If you know Group, you know x; and x5, and if you know
x1 and 9, you know Group. In models with an intercept term, a categor-
ical independent variable with &k categories is always represented by k£ — 1
dummy variables. If the dummy variables are indicators, the category that
does not get an indicator is actually the most important. The intercept is
that category’s mean, and it is called the reference category, because the
remaining regression coefficients represent differences between the reference
category and the other category. To compare several treatments to a control,
make the control group the reference category by not giving it an indicator.

Sample Question 4.3.5 What would happen if you used k indicator dummy
variables instead of k — 17

Answer to Sample Question 4.3.5 The dummy variables would add up
to the intercept; the independent variables would be linearly dependent, and
the least-squares estimators would not exist.

Your software might try to save you by throwing one of the dummy variables
out, but which one would it discard?

4.3.3 Explained Variation

Before considering any independent variables, there is a certain amount of
variation in the dependent variable. The sample mean is the value around
which the sum of squared errors of prediction is at a minimum, so it’s a least
squares estimate of the population mean of Y when there are no independent
variables. We will measure the total variation to be explained by the sum of
squared deviations around the mean of the dependent variable.

When we do a regression, variation of the data around the least-squares
plane represents errors of prediction. It is variation that is unexplained by
the regression. But it’s always less than the variation around the sample
mean (Why? Because the least-squares plane could be horizontal). So, the
independent variables in the regression have explained some of the variation
in the dependent variable. Variation in the residuals is variation that is still
unexplained.
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Variation to explain: Total Sum of Squares
SSTO = Z(Yz —-Y)?
i=1

Variation that the regression does not explain: Error Sum of Squares

Variation that is explained: Regression (or Model) Sum of Squares

n n n

~

SSR= (¥, ~ V)? = 3 (¥~ V) = Y(¥; ¥’

i=1 =1 i=1

)

Regression software (including SAS) displays the sums of squares above
in an analysis of variance summary table. “Analysis” means to “split up,”
and that’s what we’re doing here — splitting up the variation in dependent
variable into explained and unexplained parts.

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model p—1 SSR MSR=SSR/(p—1) F =238 pyalue
Error n—p SSE  MSE=SSE/(n—p)
Total n—-1 SSTO

Variance estimates consist of sums of squares divided by degrees of free-
dom. “DF” stands for Degrees of Freedom. Sums of squares and degrees of
freedom each add up to Total. The F-test is for whether 3, = B, = ... =
Bp—1 = 0 — that is, for whether any of the independent variables makes a
difference.

The proportion of variation in the dependent variable that is explained
by the independent variables (representing strength of relationship) is

SSR
2 R
" =5s70
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The R? from a simple regression is the same as the square of the correlation
coefficient: R? = 2.

What is a good value of R?? Well, the weakest relationship I can visually
perceive in a scatterplot is around r = .3, so I am unimpressed by R? values
under 0.09. By this criterion, most published results in the social sciences,
and many published results in the biological sciences are not strong enough
to be scientifically interesting. But this is just my opinion.

4.4 Testing for Statistical Significance in Re-
gression

We are already assuming that there is a separate population defined by each
combination of values of the independent variables (the conditional distribu-
tions of Y given X), and that the conditional population mean is a linear
combination of the (3 values; the weights of this linear combination are 1 for
0o, and the x values for the other  values. The classical assumptions are
that in addition,

e Sample values of Y represent independent observations, conditionally
upon the values of the independent variables.

e Each conditional distribution is normal.
e Each conditional distribution has the same population variance.

How important are the assumptions? Well, important for what? The
main thing we want to avoid is incorrect p-values, specifically ones that ap-
pear smaller than they are. This would increase the chances of concluding
that a relationship is present when really it is not. Such “Type I error”
is very undesirable, because it tends to load the scientific literature with
random garbage.

For large samples, the assumption of normality is not important provided
no single observation has too much influence. What is meant by a “large”
sample? It depends on how severe the violations are. What is “too much” in-
fluence? It’s not too much if the influence of the most influential observation
tends to zero as the sample size approaches infinity. You’re welcome.

The assumption of equal variances can be safely violated provided that
the numbers of observations at each combination of IV values are large and
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close to equal. This is most likely to be the case with designed experiments
having categorical independent variables.

The assumption of independent observations is very important, almost
always. Examples where this does not hold is if a student takes a test more
than once, members of the same family respond to the same questionnaire
about eating habits, litter-mates are used in a study of resistance to cancer
in mice, and so on.

When you know in advance which observations form non-independent
sets, one option is to average them, and let n be the number of independent
sets of observations. There are also ways to incorporate non-independence
into the statistical model. We will discuss repeated measures designs, multi-
variate analysis and other examples later.

4.4.1 The standard F' and t-tests

SAS proc reg (like other programs) usually starts with an overall F-test,
which tests all the independent variables in the equation simultaneously. If
this test is significant, we can conclude that one or more of the independent
variables is related to the dependent variable.

Again like most programs that do multiple regression, SAS produces t-
tests for the individual regression coefficients. If one of these is significant, we
conclude that controlling for all other independent variables in the model,
the independent variable in question is related to the dependent variable.
That is, each variable is tested controlling for all the others.

It is also possible to test subsets of independent variables, controlling for
all the others. For example, in an educational assessment where students
use 4 different textbooks, the variable "textbook” would be represented by 3
dummy variables. These variables could be tested simultaneously, controlling
for several other variables such as parental education and income, child’s past
academic performance, experience of teacher, and so on.

In general, to test a subset A of independent variables while controlling for
another subset B, fit a model with both sets of variables, and simultaneously
test the b coefficients of the variables in subset A; there is an F' test for this.

This is 100% equivalent to the following. Fit a model with just the
variables in subset B, and calculate R?. Then fit a second model with the
A variables as well as the B variables, and calculate R? again. Test whether
the increase in R? is significant. It’s the same F test.
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Call the regression model with all the independent variables the Full
Model, and call the model with fewer independent variables (that is, the
model without the variables being tested) the Reduced Model. Let SSRp
represent the explained sum of squares from the full model, and SSRp rep-
resent the explained sum of squares from the reduced model.

Sample Question 4.4.1 Why is SSRr > SSRr?

Answer to Sample Question 4.4.1 In the full model, if the best-fitting
hyperplane had all the b coefficients corresponding to the extra variables equal
to zero, it would fit exactly as well as the hyperplane of the reduced model. It
could not do any worse.

Since R? = S%%%, it is clear that SSRr > SSRp implies that adding
independent variables to a regression model can only increase R?. When these
additional independent variables are correlated with independent variables

already in the model (as they usually are in an observational study),

e Statistical significance can appear when it was not present originally,
because the additional variables reduce error variation, and make esti-
mation and testing more precise.

e Statistical significance that was originally present can disappear, be-
cause the new variables explain some of the variation previously at-
tributed to the variables that were significant, so when one controls for
the new variables, there is not enough explained variation left to be
significant. This is especially true of the t-tests, in which each variable
is being controlled for all the others.

e Even the signs of the bs can change, reversing the interpretation of how
their variables are related to the dependent variable. This is why it’s
very important not to leave out important independent variables in an
observational study.

Suppose the full model contains all the variables in the reduced model,
plus s additionnal variables. These are the ones you are testing. The F'-test
for the full versus reduced model is based on the test statistic

SSRr — SSRgr)/s

|
F= MSER ’

(4.3)
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where M SEF is the mean square error for the full model: MSEr = %.
Equation 4.3 is a very general formula. As we will see, all the standard tests
in regression and the usual (fixed effects) Analysis of Variance are special

cases of this F'-test.

Examples of Full and Reduced Models

At this point, it might help to have some concrete examples. Recall the
SENIC data set (catching infection in hospital) that was used to illustrate
a collection of elementary significance tests in lecture. For reference, here is
the label statement again.

label id ’Hospital identification number’
stay ’Av length of hospital stay, in days’
age = ’Average patient age’

infrisk = ’Prob of acquiring infection in hospital’
culratio = ’# cultures / # no hosp acq infect’
xratio = ’# x-rays / # no signs of pneumonia’
nbeds = ’Average # beds during study period’
medschl = ’Medical school affiliation’

region = ’Region of country (usa)’

census = ’Aver # patients in hospital per day’
nurses = ’Aver # nurses during study period’
service = '} of 35 potential facil. & services’ ;

The SAS program senicread.sas could have defined dummy variables
for region and medschl in the data step as follows:

if region 1 then ri1=1; else ri1=0;
if region = 2 then r2=1; else r2=0;

if region = 3 then r3=1; else r3=0;
if medschl = 2 then mschool = 0; else mschool = medschl;
/* mschool is an indicator for medical school = yes */

The definition of r1, r2 and r2 above is correct, but it is risky. It works
only because the data file happens to have no missing values for region. If
there were missing values for region, the else statements would assign them
to zero for r1, r2 and r3, because else means anything else. The definition
of mschool is a bit more sophisticated; missing values for medschl will also
be missing for mschool.
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Here is what I’d recommend for region. It’s more trouble, but it’s worth
it.

/* Indicator dummy variables for region */
if region = . then ril=.;

else if region = 1 then rl = 1;
else rl = 0;

if region = . then r2=.;
else if region = 2 then r2 = 1;
else r2 = 0;

if region = . then r3=.;
else if region = 3 then r3 = 1;
else r3 = 0;

When you create dummy variables with if statements, always do crosstab-
ulations of the new dummy variables by the categorical variable they repre-
sent, to make sure you did it right. Use the option of proc freq to see what
happened to the missing values (missprint makes “missing” a value of the
variables).

proc freq;
tables region * (r1-r3) / missprint nocol norow nopercent ;

Sample Question 4.4.2 Controlling for hospital size as represented by num-
ber of beds and number of patients, is average patient age related to infection
risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?
Answer to Sample Question 4.4.2

1. nbeds, census, age

2. nbeds, census

I would never ask for SAS syntax on a test, but for completeness,
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proc reg;
model infrisk = nbeds, census, age;
size: test age=0;

Sample Question 4.4.3 Controlling for average patient age and hospital
size as represented by number of beds and number of patients, does infection
risk differ by region of the country?

1. What are the variables in the full model?

2. What are the variables in the reduced model?
Answer to Sample Question 4.4.3

1. age, nbeds, census, rl, r2, r3

2. age, nbeds, census

To test the full model versus the reduced model,

proc reg;
model infrisk = age nbeds census rl r2 r3;
regn: test rl=r2=r3=0;

Sample Question 4.4.4 Controlling for number of beds, number of patients,
average length of stay and region of the country, are number of nurses and
medical school affiliation (considered simultaneously) significant predictors of
infection risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?
Answer to Sample Question 4.4.4

1. nbeds, census, stay, rl, r2, r3, nurses, mschool

2. nbeds, census, stay, rl, r2, r3

To test the full model versus the reduced model,
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proc reg;
model infrisk = nbeds census stay rl r2 r3 nurses mschool;
nursmeds: test nurses=mschool=0;

Sample Question 4.4.5 Controlling for average age of patient, average length
of stay and region of the country, is hospital size (as represented by number
of beds and number of patients) related to infection risk?

1. What are the variables in the full model?
2. What are the variables in the reduced model?
Answer to Sample Question 4.4.5
1. age, stay, rl, r2, r3, nbeds, census
2. age, stay, rl, r2, r3
To test the full model versus the reduced model,

proc reg;
model infrisk = nbeds census stay rl r2 r3 nurses mschool;
size2: test nurses=mschool=0;

Sample Question 4.4.6 Controlling for region of the country and medical
school affiliation, are average length of stay and average patient age (consid-
ered simultaneously) related to infection risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?
Answer to Sample Question 4.4.6

1. r1, r2, r3, mschool, stay age

2. rl, r2, r3, mschool

To test the full model versus the reduced model,

proc reg;
model infrisk = nbeds census stay rl r2 r3 nurses mschool;
agestay: test age=stay=0;

The pattern should be clear. You are “controlling for” the variables in
the reduced model. You are testing for the additional variables that appear
in the full model but not the reduced model.
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Looking at the Formula for F

Formula 4.3 reveals some important properties of the F-test. Bear in mind
that the p-value is the area under the F-distribution curve above the value
of the F' statistic. Therefore, anything that makes the F' statistic bigger
will make the p-value smaller, and if it is small enough, the results will be
significant. And significant results are what we want, if in fact the full model
is closer to the truth than the reduced model.

e Since there are s more variables in the full model than in the reduced
model, the numerator of (4.3) is the average improvement in explained
sum of squares when we compare the full model to the reduced model.
Thus, some of the extra variables might be useless for prediction, but
the test could still be significant at least one of them contributes a
lot to the explained sum of squares, so that the average increase is
substantially more than one would expect by chance.

e On the other hand, useless extra independent variables can dilute the
contribution of extra independent variables with modest but real ex-
planatory power.

e The denominator is a variance estimate based on how spread out the
residuals are. The smaller this denominator is, the larger the F' statistic
is, and the more likely it is to be significant. Therefore, control all the
sources of extraneous variation you can.

— If possible, always collect data on any potential independent vari-
able that is known to have a strong relationship to the dependent
variable, and include it in both the full model and the reduced
model. This will make the analysis more sensitive, because in-
creasing the explained sum of squares will reduce the unexplained
sum of squares. You will be more likely to detect a real result as
significant, because it will be more likely to show up against the
reduced background noise.

— On the other hand, the denominator of formula (4.3) for F is
MSEr = SSZF , where the number of independent variables is
p — 1. Adding useless independent variables to the model will in-
crease the explained sum of squares by at least a little, but the
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denominator of M SEr will go down by one, making M SFEr big-
ger, and F' smaller. The smaller the sample size n, the worse the
effect of useless independent variables. You have to be selective.

— The (internal) validity of most experimental research depends on
experimental designs and procedures that balance sources of ex-
traneous variation evenly across treatments. But even better are
careful experimental procedures that eliminate random noise al-
together, or at least hold it to very low levels. Reduce sources of
random variation, and the residuals will be smaller. The MSFEp
will be smaller, and F' will be bigger if something is really going
on.

— Most dependent variables are just indirect reflections of what the
investigator would really like to study, and in designing their stud-
ies, scientists routinely make decisions that are tradeoffs between
expense (or convenience) and data quality. When dependent vari-
ables represent low-quality measurement, they essentially contain
random variation that cannot be explained. This variation will
show up in the denominator of (4.3), reducing the chance of de-
tecting real results against the background noise. An example of
a dependent variable that might have too much noise would be a
questionnaire or subscale of a questionnaire with just a few items.

The comments above sneaked in the topic of statistical power by dis-
cussing the formula for the F'-test. Statistical power is the probability of
getting significant results when something is really going on in the popula-
tion. It should be clear that high power is good. We have just seen that
statistical power can be increased by including important explanatory vari-
ables in the study, by carefully controlled experimental conditions, and by
quality measurement. Power can also be increased by increasing the sam-
ple size. All this is true in general, and does not depend on the use of the
traditional F' test.

4.4.2 Connections between Explained Variation and
Significance Testing

If you divide numerator and denominator of Equation (4.3) by SSTO, the
numerator becomes (R%— R%)/s, so we see that the F test is based on change
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in R? when one moves from the reduced model to the full model. But the F
test for the extra variables (controlling for the ones in the reduced model) is

based not just on R% — R%, but on a quantity I'll denote by a = RE}I?. This
expresses change in R? as a proportion of the variation left unexplained by
the reduced model. That is, it’s the proportion of remaining variation that
the additional variables explain.

This is actually a more informative quantity than simple change in R?.
For example, suppose you're controlling for a set of variables that explain
80% of the variation in the dependent variable, and you test a variable that
accounts for an additional 5%. You have explained 25% of the remaining
variation — much more impressive than 5%.

The a notation is non-standard. It’s sometimes called a squared multiple
partial correlation, but the usual notation for partial correlations is intricate
and hard to look at, so we’ll just use a.

You may recall that an F' test has two degree of freedom values, a nu-
merator degrees of freedom and a denominator degrees of freedom. In the F'
test for a full versus reduced model, the numerator degrees of freedom is s,
the number of extra variables. The denominator degrees of freedom is n — p.
Recall that the sample size is n, and if the regression model has an intercept,
there are p — 1 independent variables. Applying a bit of high school algebra
to Equation (4.3), we see that the relationship between F' and a is

F:<n;p) <1ia>' (4.4)

so that for any given sample size, the bigger a becomes, the bigger F'is. Also,
for a given value of a # 0, F increases as a function of n. This means you
can get a large F' (and if it’s large enough it will be significant) from strong
results and a small sample, or from weak results and a large sample. Again,
examining the formula for the F' statistic yields a valuable insight.

Expression (4.4) for F' can be turned around to express a in terms of F,
as follows:

sk

qagi =
n—p+ sk

(4.5)

This is a useful formula, because scientific journals often report just F'
values, degrees of freedom and p-values. It’s easy to tell whether the results
are significant, but not whether the results are strong in the sense of explained
variation. But the equality (4.5) above lets you recover information about
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strength of relationship from the F' statistic and its degrees of freedom. For
example, based on a three-way ANOVA where the dependent variable is
rot in potatoes, suppose the authors write “The interaction of bacteria by
temperature was just barely significant (F'=3.26, df=2,36, p=0.05).” What
we want to know is, once one controls for other effects in the model, what
proportion of the remaining variation is explained by the temperature-by-
bacteria interaction?

We have s=2, n — p = 36, and a = % = 0.153. So this effect is

explaining a respectable 15% of the variation that remains after controlling
for all the other main effects and interactions in the model.

4.5 Multiple Regression with SAS

It is always good to start with a textbook example, so that interested students
can locate a more technical discussion of what is going on. The following ex-
ample is based on the “Dwaine Studios” Example from Chapter 6 of Neter
et al.’s textbook [7]. The observations correspond to photographic portrait
studios in 21 towns. In addition to sales (the dependent variable), the data
file contains number of children 16 and younger in the community (in thou-
sands of persons), and per capita disposable income in thousands of dollars.
Here is the SAS program.

/* appdwainel.sas */

options linesize=79;

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;
title2 ’Just the defaults’;

data portrait;
infile ’dwaine.dat’;
input kids income sales;
proc reg;
model sales
/*  model DV(s)

kids income;
IV(s); */

Here is the list file appdwainel.1st.
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1
Just the defaults 15:52 Sunday, January 13, 2002

Model: MODEL1
Dependent Variable: SALES

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F
Model 2 24015.28211 12007.64106 99.103 0.0001
Error 18  2180.92741 121.16263
C Total 20 26196.20952

Root MSE 11.00739 R-square 0.9167

Dep Mean 181.90476 Adj R-sq 0.9075

Cc.V. 6.05118

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T]|
INTERCEP 1 -68.857073 60.01695322 -1.147 0.2663
KIDS 1 1.454560 0.21178175 6.868 0.0001
INCOME 1 9.365500 4.06395814 2.305 0.0333

Here are some comments on the list file.

First the ANOVA summary table for the overall F-test, testing all the
independent variables simultaneously. In C Total, C means corrected
for the sample mean. The p-value of 0.0001 actually means p < 0.0001,
in this version of SAS. It’s better in later versions.

e Root MSE is the square root of MSE.
e Dep Mean is the mean of the dependent variable.

e C.V. is the coefficient of variation — the standard deviation divided by
the mean. Who cares?

e R-square is R?

e Adj R-sq: Since R? never goes down when you add independent vari-
ables, models with more variables always look as if they are doing
better. Adjusted R? is an attempt to penalize the usual R? for the
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number of independent variables in the model. It can be useful if you
are trying to compare the predictive usefulness of models with different
numbers of variables.

e Parameter Estimates are the b values. Standard Error is the (esti-
mated) standard deviation of the sampling distribution of b. It’s the
denominator of the ¢ test in the next column.

e The last column is a two-tailed p-value for the t-test.
Here are some sample questions based on the list file.

Sample Question 4.5.1 Suppose we wish to test simultaneously whether
number of kids 16 and under and average family income have any relationship
to sales. Give the value of the test statistic, and the associated p-value.

Answer to Sample Question 4.5.1 F' =99.103, p < 0.0001
Sample Question 4.5.2 What can you conclude from just this one test?

Answer to Sample Question 4.5.2 Sales is related to either number of
kids 16 and under, or average family income, or both. But you’d never do
this. You have to look at the rest of the printout to tell what’s happening.

Sample Question 4.5.3 What percent of the variation in sales is explained
by number of kids 16 and under and average family income?

Answer to Sample Question 4.5.3 91.67%

Sample Question 4.5.4 Controlling for average family income, is number
of kids 16 and under related to sales?

1. What is the value of the test statistic?
2. What is the p-value?
3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?

Answer to Sample Question 4.5.4
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1. t = 6.868
2. p < 0.0001
3. Yes.

4. Positive.

Sample Question 4.5.5 Controlling for number of kids 16 and under is
average family income related to sales?

1. What is the value of the test statistic?

2. What is the p-value?

3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?
Answer to Sample Question 4.5.5

1. t =2.305

2. p=10.0333

3. Yes.

4. Positive.

Sample Question 4.5.6 What do you conclude from this entire analysis?
Direct your answer to a statistician or researcher.

Answer to Sample Question 4.5.6 Number of kids 16 and under and av-
erage family income are both related to sales, even when each variable is
controlled for the other.

Sample Question 4.5.7 What do you conclude from this entire analysis?
Direct your answer to a person without statistical training.

Answer to Sample Question 4.5.7 Fven when you allow for the number
of kids 16 and under in a town, the higher the average family income in the
town, the higher the average sales. When you allow for the average family
income in a town, the higher the number of children under 16, the higher the
average sales.
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Sample Question 4.5.8 A new studio is to be opened in a town with 65,400
children 16 and under, and an average household income of $17,600. What
annual sales do you predict?

Answer to Sample Question 4.5.8 Y = bo + b1z + boxy = -68.857073
+ 1.454560%65.4 + 9.365500%17.6 = 191.10/, so predicted annual sales =
$191,104.

Sample Question 4.5.9 For any fized value of average income, what hap-
pens to predicted annual sales when the number of children under 16 increases
by one thousand?

Answer to Sample Question 4.5.9 Predicted annual sales goes up by $1,454.

Sample Question 4.5.10 What do you conclude from the t-test for the in-
tercept?

Answer to Sample Question 4.5.10 Nothing. Who cares if annual sales
equals zero for towns with no children under 16 and an average household
income of zero?

The final two questions ask for a proportion of remaining variation, the
quantity we are denoting by a. If you were doing an analysis yourself and
wanted this statistic, you'd likely fit a full and a reduced model (or obtain
sequential sums of squares; we'll see how to do this in the next example),
and calculate the answer directly. But in the published literature, sometimes
all you have are reports of t-tests for regression coefficients.

Sample Question 4.5.11 Controlling for average household income, what

proportion of the remaining variation is explained by number of children un-
der 167

Answer to Sample Question 4.5.11 Using F' = t* and plugging into (4.5),

_ _ 1x6.868%  _ . ;-
we have a = 557 5eeez = 0-691944, or around 70% of the remaining vari
ation.

Sample Question 4.5.12 Controlling for number of children under 16, what
proportion of the remaining variation is explained by average household in-
come?
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AI;WGF to Sample Question 4.5.12 a = lgﬁ% = 0.2278994, or about
283%.

These a values are large, but the sample size is small; after all, it’s a
textbook example, not real data. Now here is a program file that illustrates
some options, and gives you a hint of what a powerful tool SAS can be.

/* appdwaine2.sas */

options linesize=79 pagesize=35;

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;
title2 ’With bells and whistles’;

data portrait;
infile ’dwaine.dat’;
input kids income sales;

proc reg simple corr; /* "simple" prints simple descriptive statistics */

model sales = kids income / ssi; /* "ssl1" prints Sequential SS x/
output out=resdata predicted=presale residual=resale;
/* Creates new SAS data set with Y-hat and e as additional variables*/
/* Now all the default F-test, in order */

allivs: test kids = 0, income = O;

inter: test intercept=0;

child: test kids=0;

money: test income=0;

proc iml; /* Income controlling for kids: Full vs reduced by "hand" */
fcrit = finv(.95,1,18); print fcrit;
/* Had to look at printout from an earlier run to get these numbers*/
f = 643.475809 / 121.16263; /* Using the first F formula */
pval = 1-probf(f,1,18);
tsq = 2.306%*%2; /* t-squared should equal Fx*/
a = 643.475809/(26196.20952 - 23372);
print f tsq pval;
print "Proportion of remaining variation is " a;

proc glm; /* Use proc glm to get a y-hat more easily */
model sales=kids income;
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estimate ’Xh p249’ intercept 1 kids 65.4 income 17.6;

proc print; /* To see the new data set with residualsx*/
proc univariate normal plot;

var resale;
proc plot;

plot resale * (kids income sales);

Here are some comments on appdwaine2.sas.

e simple corr You could get means and standard deviations from proc
means and correlations from proc corr, but this is convenient.

e ssl1 These are Type I Sums of Squares, produced by default in proc
glm. In proc reg, you must request them is you want to see them.
The independent variables in the model statement are added to the
model in order, so that for each variable, the reduced model has all the
variables that come before it, and the full model has all those variables
plus the current one. The ss1 option shows the increase in explained
sum of squares that comes from adding each variable to the model, in
the order they appear in the model statement.

e output creates a new sas data set called resdata. It has all the
variables in the data set portrait, and in addition it has Y (named
presale for predicted sales) and e (named resale for residual of sales).

e Then we have some custom tests, all of them equivalent to what we
would get by testing a full versus reduced model. SAS takes the ap-
proach of testing whether s linear combinations of 3 values equal s
specified constants (usually zero). Again, this is the same thing as
testing a full versus a reduced model. The form of a custom test in
proc reg is

1. A name for the test, 8 characters or less, followed by a colon; this
name will be used to label the output.
2. the word test.

3. s linear combinations of independent variable names, each set
equal to some constant, separated by commas.

4. A semi-colon to end, as usual.
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If you want to think of the significance test in terms of a collection of lin-
ear combinations that specify constraints on the § values (this is what
a statistician would appreciate), then we would say that the names of
the independent variables (including the weird variable “intercept”) are
being used to refer to the corresponding (s. But usually, you are test-
ing a subset of independent variables controlling for some other subset.
In this case, include all the variables in the model statement, and set
the variables you are testing equal to zero in the test statement. Com-
mas are optional. As an example, for the test allivs (all independent
variables) we could have written allivs: test kids = income = O;.

Now suppose you wanted to use the Sequential Sums of Squares to test
income controlling for kids. You could use a calculator and a table
of the F' distribution from a textbook, but for larger sample sizes the
exact denominator degrees of freedom you need are seldom in the table,
and you have to interpolate in the table. With proc iml (Interactive
Matrix Language), which is actually a nice programming environment,
you can use SAS as your calculator. Among other things, you can get
exact critical values and p-values quite easily. Statistical tables are
obsolete.

In this example, we first get the critical value for F'; if the test statis-
tic is bigger than the critical value, the result is significant. Then we
calculate F' using formula 4.3 and its p-value. This F' should be equal
to the square of the t statistic from the printout, so we check. Then we
use (4.5) to calculate a, and print the results.

proc glm The glm procedure is very useful when you have categorical
independent variables, because it makes your dummy variables for you.
But it also can do multiple regression. This example calls attention to
the estimate command, which lets you calculate Y values more easily
and with less chance of error than with a calculator or proc iml.

proc print prints all the data values, for all the variables. This is a
small data set, so it’s not producing a telephone book here. You can
limit the variables and the number of cases it prints; see the manual or
Applied statistics and the SAS programming language [2]. By default,
all SAS procedures use the most recently created SAS data set; this is
resdata, which was created by proc reg — so the predicted values and
residuals will be printed by proc print.
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e You didn’t notice, but proc glmalso used resdata rather than portrait.
But it was okay, because resdata has all the variables in portrait,
and also the predicted Y and the residuals.

e proc univariate produces a lot of useful descriptive statistics, along
with a fair amount of junk. The normal option gives some tests for
normality, and textttplot generates some line-printer plots like boxplots
and stem-and-leaf displays. These are sometimes informative. It’s a
good idea to run the residuals (from the full model) through proc
univariate if you're starting to take an analysis seriously.

e proc plot This is how you would plot residuals against variables in the
model. It the data file had additional variables you were thinking of
including in the analysis, you could plot them against the residuals too,
and look for a correlation. My personal preference is to start plotting
residuals fairly late in the exploratory game, once I am starting to get
attached to a regression model.

Here is the list file appdwaine2.1st.

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1
With bells and whistles
10:58 Saturday, January 19, 2002

Descriptive Statistics

Variables Sum Mean Uncorrected SS
INTERCEP 21 1 21
KIDS 1302.4 62.019047619 87707 .94
INCOME 360 17.142857143 6190.26
SALES 3820 181.9047619 721072.4
Variables Variance Std Deviation
INTERCEP 0 0
KIDS 346.71661905 18.620328113
INCOME 0.9415714286 0.9703460355
SALES 1309.8104762 36.191303875
Correlation
CORR KIDS INCOME SALES
KIDS 1.0000 0.7813 0.9446
INCOME 0.7813 1.0000 0.8358
SALES 0.9446 0.8358 1.0000
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

With bells and whistles

10:58 Saturday, January 19, 2002

Model: MODEL1
Dependent Variable: SALES

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F
Model 2 24015.28211 12007.64106 99.103 0.0001
Error 18  2180.92741 121.16263
C Total 20 26196.20952

Root MSE 11.00739 R-square 0.9167

Dep Mean 181.90476 Adj R-sq 0.9075

C.V. 6.05118

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0
INTERCEP 1 -68.857073 60.01695322 -1.147
KIDS 1 1.454560 0.21178175 6.868
INCOME 1 9.365500 4.06395814 2.305
Variable DF Type I SS
INTERCEP 1 694876
KIDS 1 23372
INCOME 1 643.475809

Dwaine Studios Example from Chapter 6 (Section 6.9)

With bells and whistles

of

10:58 Saturday,

Dependent Variable: SALES
Test: ALLIVS Numerator: 12007.6411 DF: 2 F value:
Denominator: 121.1626 DF: 18 Prob>F:

Dependent Variable: SALES
Test: INTER Numerator: 159.4843 DF: 1 F value:
Denominator: 121.1626 DF: 18 Prob>F:

Dependent Variable: SALES
Test: CHILD Numerator: 5715.5058 DF: 1 F value:
Denominator: 121.1626 DF: 18 Prob>F:

Dependent Variable: SALES
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Prob > |T|

0.2663
0.0001
0.0333

Neter et al

January 19, 2002

1035

.3163
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Test: MONEY 643.4758 DF: 1

121.1626 DF: 18

5.3108
0.0333

F value:
Prob>F:

Numerator:
Denominator:

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

1
With bells and whistles
10:58 Saturday, January 19, 2002
FCRIT
4.4138734
F TsQ PVAL
5.3108439 5.313025 0.0333214
A
Proportion of remaining variation is 0.2278428
Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al
5
With bells and whistles
10:58 Saturday, January 19, 2002
General Linear Models Procedure
Number of observations in data set = 21
Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al
6

With bells and whistles
10:58 Saturday, January 19, 2002

General Linear Models Procedure

Dependent Variable: SALES

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 2 24015.282112 12007.641056 99.10 0.0001
Error 18 2180.927411 121.162634
Corrected Total 20 26196.209524
R-Square C.V. Root MSE SALES Mean
0.916746 6.051183 11.007390 181.90476
Source DF Type I SS Mean Square F Value Pr > F
KIDS 1 23371.806303 23371.806303  192.90 0.0001
INCOME 1 643.475809 643.475809 5.31 0.0333
Source DF Type III SS Mean Square F Value Pr > F
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KIDS 1 5715.5058347 5715.5058347 47.17 0.0001
INCOME 1 643.4758090 643.4758090 5.31 0.0333
Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al
7
With bells and whistles
10:58 Saturday, January 19, 2002

General Linear Models Procedure

Dependent Variable: SALES

T for HO: Pr > |TI Std Error of
Parameter Estimate Parameter=0 Estimate
Xh p249 191.103930 69.07 0.0001 2.76679783

T for HO: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
INTERCEPT -68.85707315 -1.15 0.2663 60.01695322
KIDS 1.45455958 6.87 0.0001 0.21178175
INCOME 9.36550038 2.30 0.0333 4.06395814

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al
With bells and whistles
11:32 Tuesday, January 15, 2002

0BS KIDS INCOME SALES PRESALE RESALE
1 68.5 16.7 174.4 187.184 -12.7841
2 45.2 16.8 164.4 154.229 10.1706
3 91.3 18.2 244.2 234.396 9.8037
4 47.8 16.3 154.6 163.329 1.2715
5 46.9 17.3 181.6 161.385 20.2151
6 66.1 18.2 207.5 197.741 9.7586
7 49.5 15.9 152.8 152.0565 0.7449
8 52.0 17.2 163.2 167.867 -4.6666
9 48.9 16.6 145.4 157.738 -12.3382
10 38.4 16.0 137.2 136.846 0.3540
11 87.9 18.3 241.9 230.387 11.5126
12 72.8 17.1 191.1 197.185 -6.0849
13 88.4 17.4 232.0 222.686 9.3143
14 42.9 15.8 145.3 141.518 3.7816
15 52.5 17.8 161.1 174.213 -13.1132
16 85.7 18.4 209.7 228.124 -18.4239
17 41.3 16.5 146.4 145.747 0.6530
18 51.7 16.3 144.0 159.001 -15.0013
19 89.6 18.1 232.6 230.987 1.6130
20 82.7 19.1 224.1 230.316 -6.2161
21 52.3 16.0 166.5 157.064 9.4356

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al
With bells and whistles

With bells and whistles
11:41 Saturday, January 19, 2002
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Univariate Procedure

Variable=RESALE Residual
Moments
N 21 Sum Wgts 21
Mean 0 Sum 0

Std Dev 10.44253 Variance 109.0464
Skewness -0.09705 Kurtosis -0.79427

Uss 2180.927 CSS 2180.927
Cv . Std Mean 2.278746
T:Mean=0 0 Pr>|T| 1.0000
Num "= 0 21 Num > O 13
M(Sign) 2.5 Pr>=|M| 0.3833
Sgn Rank 1.5 Pr>=|S| 0.9599
W:Normal 0.955277 Pr<w 0.4190

Quantiles(Def=5)

100% Max 20.21507 99% 20.21507
75% Q3  9.435601 957, 11.51263
50% Med 0.744918 90% 10.17057
25% Q1  -6.21606 10% -13.1132

0% Min -18.4239 6%, -15.0013
1% -18.4239

Range 38.63896

Q3-Q1 15.65166

Mode -18.4239

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

0
With bells and whistles
11:41 Saturday, January 19, 2002
Univariate Procedure
Variable=RESALE Residual
Extremes
Lowest Obs Highest Obs

-18.4239¢( 16) 9.758578( 6)

-15.0013( 18) 9.803676( 3)

-13.1132¢( 15) 10.17057( 2)

-12.7841( 1) 11.51263( 11)

-12.3382( 9) 20.21507( 5)
Stem Leaf # Boxplot
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

1
With bells and whistles
11:41 Saturday, January 19, 2002
Univariate Procedure
Variable=RESALE Residual
Normal Probability Plot
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9
With bells and whistles
11:32 Tuesday, January 15, 2002
Plot of RESALE*KIDS. Legend: A = 1 obs, B = 2 obs, etc.
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al
With bells and whistles

11:32 Tuesday, January 15, 2002

Plot of RESALE*INCOME. Legend: A = 1 obs, B = 2 obs, etc.
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al
With bells and whistles
11:32 Tuesday, January 15, 2002

Plot of RESALE*SALES. Legend: A = 1 obs, B = 2 obs, etc.
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SALES

Here are some comments.

® proc reg

— In the descriptive statistics produced by the simple option, one of
the “variables” is INTERCEP; it’s our friend Xy = 1. The SAS pro-
grammers (or the statisticians directing them) are really thinking
of this as an independent variable.

— The Type I (sequential) sum of squares starts with INTERCEP, and
a really big number for the explained sum of squares. Well, think
of a reduced model that does not even have an intercept — that
is, one in which there are not only no independent variables, but
the population mean is zero. Then add an intercept, so the full
model is E[Y] = (y. The least squares estimate of 3, is Y, so
the improvement in explained sum of squares is 37, (V; — Y)? =
SSTO. That’s the first line. It makes sense, in a twisted way.

— Then we have the custom tests, which reproduce the default tests,
in order. See how useful the names of the custom tests can be?

e proc iml: Everything works as advertised. F' = t? except for rounding
error, and a is exactly what we got as the answer to Sample Ques-
tion 4.5.12.

e proc glm
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— After an overall test, we get tests labelled Type I SS and Type
III SS. As mentioned earlier, Type One sums of squares are se-
quential. Each variable is added in turn to the model, in the order
specified by the model statement. Each one is tested controlling
for the ones that precede it.

— When independent variables are correlated with each other and
with the dependent variable, some of the variation in the depen-
dent variable is being explained by the variation shared by the
correlated independent variables. Which one should get credit?
If you use sequential sums of squares, the variable named first by
you gets all the credit. And your conclusions can change radically
as a result of the order in which you name the independent vari-
ables. This may be okay, if you have strong reasons for testing A
controlling for B and not the other way around.

In Type Three sums of squares, each variable is controlled for all
the others. This way, nobody gets credit for the overlap. It’s
conservative, and valuable. Naturally, the last lines of Type I and
Type III summary tables are identical, because in both cases, the
last variable named is being controlled for all the others.

— I can never remember what Type II and Type IV sums of squares
are.

— The estimate statement yielded an Estimate, that is, a |widehatY
value, of 191.103930, which is what we got with a calculator as the
answer to Sample Question 4.5.8. We also get a t-test for whether
this particular linear combination differs significantly from zero
— insane in this particular case, but useful at other times. The
standard error would be very useful if we were constructing con-
fidence intervals or prediction intervals around the estimate, but
we are not.

— Then we get a display of the b values and associated t-tests, as in
proc reg. I believe these are produced by proc glm only when
none of the independent variables is declared categorical with the
class statement.

e proc print output is self-explanatory. If you are using proc print
to print a large number of cases, consider specifying a large page size
in the options statement. Then, the logical page length will be very
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long, as if you were printing on a long roll of paper, and SAS will not
print a new page header with the date and title and so on every 24 line
or 35 lines or whatever.

e proc univariate: There is so much output to explain, I almost can’t
stand it. I'll do most of it in class, and just hit a few high points here.

— T:Mean=0 A t-test for whether the mean is zero. If the variable
consisted of difference scores, this would be a matched ¢-test. Here,
because the mean of residuals from a multiple regression is always
zero as a by-product of least-squares, t is exactly zero and the
p-value is exactly one.

— M(Sign) Sign test, a non-parametric equivalent to the matched ¢.

— Sgn Rank Wilcoxon’s signed rank test, another non-parametric
equivalent to the matched ¢.

— W:Normal A test for normality. As you might infer from Pr<w, the
associated p-valuelower tail area of some distribution. If p < 0.05,
conclude that the data are not normally distributed.

The assumptions of the hypothesis tests for multiple regression
imply that the residuals are normally distributed, though not quite
independent. The lack of independence makes the W test a bit too
likely to indicate lack of normality. If the test is non-significant,
can one conclude that the data are normal? This is an example
of a more general question: When can one conclude that the null
hypothesis is true?

To answer this question “Never” is just plain stupid, but still I
don’t want to go there right now. Instead, just two comments:

x Like most tests, the W test for normality is much more sen-
sitive when the sample size is large. So failure to observe a
significant departure from normality does not imply that the
data really are normal, for a small sample like this one (n=21).

* In an observational study, residuals can appear non-normal
because important independent variables have been omitted
from the full model.

— Extremes are the 5 highest and 5 lowest scores. Very useful for
locating outliers. The largest residual in this data set is 20.21507;
it’s observation 5.
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— Normal Probability Plot is supposed to be straight-line if the
data are normal. Even though I requested pagesize=35, this plot
is pretty squashed. Basically it’s useless.

e proc plot Does not show much of anything in this case. This is ba-
sically good news, though again the data are artificial. The default
plotting symbol is A; if two points get too close together, they are plot-
ted as B, and so on.

Here are a few sample questions.

Sample Question 4.5.13 What is the mean of the average household in-
comes of the 21 towns?

Answer to Sample Question 4.5.13 $17,143

Sample Question 4.5.14 [s this the same as the average income of all the
households in the 21 towns?

Answer to Sample Question 4.5.14 No way.

Sample Question 4.5.15 The custom test labelled MONEY is identical to
what default test?

Answer to Sample Question 4.5.15 The t-test for INCOME. F = t%, and
the p-value is the same.

Sample Question 4.5.16 In the proc iml output, what can you learn from
comparing F to FCRIT?

Answer to Sample Question 4.5.16 p < 0.05

Sample Question 4.5.17 For a town with 68,500 children 16 and under,
and an average household income of $16,700, does the full model overpredict
or underpredict sales? By how much?

Answer to Sample Question 4.5.17 Underpredict by $12,784. This is
the first residual produced by proc print.
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