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Chapter 1

Introduction

This course is about using statistical methods to draw conclusions from real
data. It is deliberately non-mathematical, relying on translations of statisti-
cal theory into English. For the most part, formulas are avoided. While this
involves some loss of precision, it also makes the course accessible to students
from non-statistical disciplines (particularly graduate students and advanced
undergraduates on their way to graduate school) who need to use statistics
in their research. Even for students with strong training in theoretical statis-
tics, the use of plain English can help reveal the connections between theory
and applications, while also suggesting a useful way to communicate with
non-statisticians.

We will avoid mathematics, but we will not avoid computers. Learning to
apply statistical methods to real data involves actually doing it, and the use
of software is not optional. Furthermore, we will not employ “user-friendly”
menu-driven statistical programs. Why?

• It’s just too easy to poke around in the menus trying different things,
produce some results that seem reasonable, and then two weeks later
be unable to say exactly what one did.

• Real data sets tend to be large and complex, and most statistical anal-
yses involve a sizable number of operations. If you discover a tiny
mistake after you produce your results, you don’t want to go back and
repeat two hours of menu selections and mouse clicks, with one tiny
variation.
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• If you need to analyze a data set that is similar to one you have analyzed
in the past, it’s a lot easier to edit a program than to remember a
collection of menu selections from last year.

Don’t worry! The word “program” does not mean we are going to write
programs in some true programming language like C or Java. We’ll use
statistical software in which most of the actual statistical procedures have
already been written by experts; usually, all we have to do is invoke them by
using high-level commands.

The statistical packages we will use in this course are SAS and R. These
packages are command-oriented rather than menu-oriented, and are very
powerful. They are industrial strength tools, and will be illustrated in an
industrial strength environment — unix. This is mostly for local convenience.
There are Windows versions of both SAS and R that work just as well as the
unix versions, except for very big jobs.

Applied Statistics really refers to two related enterprises. The first might
be more accurately termed “Applications of Statistics,” and consists of the
appropriate application of standard general techniques. The second enter-
prise is the development of specialized techniques that are designed specifi-
cally for the data at hand. The difference is like buying your clothes from
Walmart versus sewing them yourself (or going to a tailor). In this course,
we will do both. We’ll maintain the non-mathematical nature of the course
in the second half by substituting computing power and random number
generation for statistical theory.

1.1 Vocabulary of data analysis

We start with a data file. Think of it as a rectangular array of numbers,
with the rows representing cases (units of analysis, observations, subjects,
replicates) and the columns representing variables (pieces of information
available for each case).

• A physical data file might have several lines of data per case, but you
can imagine them listed on a single long line.

• Data that are not available for a particular case (for example because
a subject fails to answer a question, or because a piece of measuring
equipment breaks down) will be represented by missing value codes.
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Missing value codes allow observations with missing information to be
automatically excluded from a computation.

• Variables can be quantitative (representing amount of something) or
categorical. In the latter case the ”numbers” are codes representing
category membership. Categories may be ordered (small vs. medium
vs. large) or unordered (green vs. blue vs. yellow). When a quan-
titative variable reflects measurement on a scale capable of very fine
gradation, it is sometimes described as continuous. Some statistical
texts use the term qualitative to mean categorical. When an an-
thropologist uses the word “qualitative,” however, it usually refers to
ethnographic or case study research in which data are not explicitly
assembled into a data file.

Another very important way to classify variables is

Independent Variable (IV): Predictor = X (actually Xi, i = 1, . . . , n)

Dependent Variable (DV): Predicted = Y (actually Yi, i = 1, . . . , n)

Example: X = weight of car in kilograms, Y = fuel efficiency in litres per
kilometer

Sample Question 1.1.1 Why isn’t it the other way around?

Answer to Sample Question 1.1.1 Since weight of a car is a factor that
probably influences fuel efficiency, it’s more natural to think of predicting fuel
efficiency from weight.

The general principle is that if it’s more natural to think of predicting A
from B, then A is the dependent variable and B is the independent variable.
This will usually be the case when B is thought to cause or influence A.
Sometimes it can go either way or it’s not clear. But usually it’s easy to
decide.

Sample Question 1.1.2 Is it possible for a variable to be both quantitative
and categorical? Answer Yes or No, and either give an example or explain
why not.

Answer to Sample Question 1.1.2 Yes. For example, the number of cars
owned by a person or family.
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In some fields, you may hear about nominal, ordinal, interval and
ratio variables, or variables measured using “scales of measurement” with
those names. Ratio means the scale of measurement has a true zero point,
so that a value of 4 represents twice as much as 2. An interval scale means
that the difference (interval) between 3 and 4 means the same thing as the
difference between 9 and 10, but zero does not necessarily mean absence of
the thing being measured. The usual examples are shoe size and ring size.
In ordinal measurement, all you can tell is that 6 is less than 7, not how
much more. Measurement on a nominal scale consists of the assignment of
unordered categories. For example, citizenship is measured on a nominal
scale.

It is usually claimed that one should calculate means (and therefore,
for example, do multiple regression) only with interval and ratio data; it’s
usually acknowledged that people do it all the time with ordinal data, but
they really shouldn’t. And it is obviously crazy to calculate a mean on
numbers representing unordered categories. Or is it?

Sample Question 1.1.3 Give an example in which it’s meaningful to cal-
culate the mean of a variable measured on a nominal scale.

Answer to Sample Question 1.1.3 Code males as zero and females as
one. The mean is the proportion of females.

It’s not obvious, but actually all this talk about what you should and
shouldn’t do with data measured on these scales does not have anything to
do with statistical assumptions. That is, it’s not about the mathematical
details of any statistical model. Rather, it’s a set of guidelines for what
statistical model one ought to adopt. Are the guidelines reasonable? It’s
better to postpone further discussion until after we have seen some details
of multiple regression.

1.2 Statistical significance

We will often pretend that our data represent a random sample from some
population. We will carry out formal procedures for making inferences
about this (usually fictitious) population, and then use them as a basis for
drawing conclusions from the data.
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Why do we do all this pretending? As a formal way of filtering out things
that happen just by coincidence. The human brain is organized to find mean-
ing in what it perceives, and it will find apparent meaning even in a sequence
of random numbers. The main purpose of testing for statistical significance
is to protect Science against this. Even when the data do not fully satisfy
the assumptions of the statistical procedure being used (for example, the
data are not really a random sample) significance testing can be a useful as a
way of restraining scientists from filling the scientific literature with random
garbage. This is such an important goal that we will spend a substantial
part of the course on significance testing.

1.2.1 Definitions

Numbers that can be calculated from sample data are called statistics.
Numbers that could be calculated if we knew the whole population are called
parameters. Usually parameters are represented by Greek letters such as
α, β and γ, while statistics are represented by ordinary letters such as a, b,
c. Statistical inference consists of making decisions about parameters based
on the values of statistics.

The distribution of a variable corresponds roughly to a histogram of the
values of the variable. In a large population for a variable taking on many
values, such a histogram will be indistinguishable from a smooth curve.

For each value x of the independent variable X, in principle there is a
separate distribution of the dependent variable Y . This is called the condi-
tional distribution of Y given X = x.

We will say that the independent and dependent variables are unrelated
if the conditional distribution of the dependent variable is identical for each
value of the independent variable. That is, the histogram of the dependent
variable does not depend on the value of the independent variable. If the
distribution of the dependent variable does depend on the value of the in-
dependent variable, we will describe the two variables as related. All this
applies to sample as well as population data-sets (a population dataset may
be entirely hypothetical).

Most research questions involve more than one independent variable. It is
also common to have more than one dependent variable. When there is one
dependent variable, the analysis is called univariate. When more than one
dependent variable is being considered simultaneously, the analysis is called
multivariate.
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Sample Question 1.2.1 Give an example of a study with two categorical
independent variables, one quantitative independent variable, and two quan-
titative dependent variables.

Answer to Sample Question 1.2.1 In a study of success in university,
the subjects are first-year university students. The categorical independent
variables are Sex and Immigration Status (Citizen, Permanent Resident or
Visa), and the quantitative independent variable is family income. The de-
pendent variables are cumulative Grade Point Average at the end of first year,
and number of credits completed in first year.

Many problems in data analysis reduce to asking whether one or more
variables are related – not in the actual data, but in some hypothetical popu-
lation from which the data are assumed to have been sampled. The reasoning
goes like this. Suppose that the independent and dependent variables are ac-
tually unrelated in the population. If this null hypothesis is true, what is
the probability of obtaining a sample relationship between the variables that
is as strong or stronger than the one we have observed? If the probability
is small (say, p < 0.05), then we describe the sample relationship as statis-
tically significant, and it is socially acceptable to discuss the results. In
particular, there is some chance of having the results taken seriously enough
to publish in a scientific journal.

The number 0.05 is called the significance level. In principle, the exact
value of the significance level is arbitrary as long as it is fairly small, but
scientific practice has calcified around a suggestion of R. A. Fisher (in whose
honour the F -test is named), and the 0.05 level is an absolute rule in many
journals in the social and biological sciences.

We will willingly conform to this convention. We conform willingly be-
cause we understand that scientists can be highly motivated to get their
results into print, even if those “results” are just trends that could easily be
random noise. To restrain these people from filling the scientific literature
with random garbage, we need a clear rule.

For those who like precision, the formal definition of a p-value is this.
It is the minimum significance level α at which the null hypothesis (of no
relationship between IV and DV in the population) can be rejected.

Here is another useful way to talk about p-values. The p-value is the prob-
ability of getting our results (or better) just by chance. If p is small enough,
then the data are very unlikely to have arisen by chance, assuming there is
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really no relationship between the independent variable and the dependent
variable in the population. In this case we will conclude there really is a
relationship between the independent variable and the dependent variable.

What should we do if p > .05? Fisher suggested that we should not
conclude anything. In particular, he suggested that we should not conclude
that the independent and dependent variables are unrelated. Instead, we
can say that there is insufficient evidence evidence of a relationship between
the independent variable and the dependent variable. A good reference is
Fisher’s masterpiece, Statistical methods for research workers [5], which had
its first edition in 1925, and its 14th and last edition in 1970, eight years
after Fisher’s death.

The trouble with Fisher’s formulation is that it never allows us to conclude
that the null hypothesis is true. But sometimes, experimental treatments
just don’t do anything, and it is of scientific and practical importance to be
able to say so. For example, medical researchers frequently conclude that
drugs don’t work. On what basis are they drawing these conclusions? On
what basis should they draw such conclusions? We will get back to this
important issue later. For now, let us agree that if a test is not significant,
then we certainly can agree with Fisher that there is not enough evidence
to conclude that the independent and dependent variables are related. As
for concluding that the variables are not related, we don’t yet have a formal
rule.

1.2.2 Standard elementary significance tests

We will now consider some of the most common elementary statistical meth-
ods. For each one, you should be able to answer the following questions.

1. Make up your own original example of a study in which the technique
could be used.

2. In your example, what is the independent variable (or variables)?

3. In your example, what is the dependent variable (or variables)?

4. Indicate how the data file would be set up.
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Independent observations One assumption shared by most standard
methods is that of ”independent observations.” The meaning of the assump-
tion is this. Observations 13 and 14 are independent if and only if the con-
ditional distribution of observation 14 given observation 13 is the same for
each possible value observation 13. For example if the observations are tem-
peratures on consecutive days, this would not hold. If the dependent variable
is score on a homework assignment and students copy from each other, the
observations will not be independent.

When significance testing is carried out under the assumption that ob-
servations are independent but really they are not, results that are actually
due to chance will often be detected as significant with probability consid-
erably greater than 0.05. This is sometimes called the problem of inflated
n. In other words, you are pretending you have more separate pieces of in-
formation than you really do. When observations cannot safely be assumed
independent, this should be taken into account in the statistical analysis. We
will return to this point again and again.

Independent (two-sample) t-test

This is a test for whether the means of two independent groups are different.
Assumptions are independent observations, normality within groups, equal
variances. For large samples normality does not matter. For large samples
with nearly equal sample sizes, equal variance assumption does not matter.
The assumption of independent observations is always important.

Sample Question 1.2.2 Make up your own original example of a study in
which a two-sample t-test could be used.

Answer to Sample Question 1.2.2 An agricultural scientist is interested
in comparing two types of fertilizer for potatoes. Fifteen small plots of ground
receive fertilizer A and fifteen receive fertilizer B. Crop yield for each plot in
pounds of potatoes harvested is recorded.

Sample Question 1.2.3 In your example, what is the independent variable
(or variables)?

Answer to Sample Question 1.2.3 Fertilizer, a binary variable taking the
values A and B.
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Sample Question 1.2.4 In your example, what is the dependent variable
(or variables)?

Answer to Sample Question 1.2.4 Crop yield in pounds.

Sample Question 1.2.5 Indicate how the data file might be set up.

Answer to Sample Question 1.2.5

A 13.1
A 11.3
...

...
B 12.2
...

...

Matched (paired) t-test

Again comparing two means, but from paired observations. Pairs of observa-
tions come from the same case (subject, unit of analysis), and presumably are
non-independent. Again, the data from a given pair are not really separate
pieces of information, and if you pretend they are, then you are pretending
to have more accurate estimation of population parameters — and a more
sensitive test — than you really do. The probability of getting results that
are statistically significant will be greater than 0.05, even if nothing is going
on.

In a matched t-test, this problem is taken care of by computing a differ-
ence for each pair, reducing the volume of data (and the apparent sample
size) by half. This is our first example of a repeated measures analysis. Here
is a general definition. We will say that there are repeated measures on
an independent variable if a case (unit of analysis, subject, participant in
the study) contributes a value of the dependent variable for each value of
the independent variable in question. A variable on which there are repeated
measures is sometimes called a within-subjects variable. When this lan-
guage is being spoken, variables on which there are not repeated measures
are called between-subjects.

The assumptions of the matched t-test are that the differences repre-
sent independent observations from a normal population. For large samples,
normality does not matter. The assumption that different cases represent
independent observations is always important.
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Sample Question 1.2.6 Make up your own original example of a study in
which a matched t-test could be used.

Answer to Sample Question 1.2.6 Before and after a 6-week treatment,
participants in a quit-smoking program were asked “On the average, how
many cigarettes do you smoke each day?”

Sample Question 1.2.7 In your example, what is the independent variable
(or variables)?

Answer to Sample Question 1.2.7 Presence versus absence of the pro-
gram, a binary variable taking the values “Absent” or “Present” (or maybe
“Before” and “After”). We can say there are repeated measures on this
factor, or that it is a within-subjects factor.

Sample Question 1.2.8 In your example, what is the dependent variable
(or variables)?

Answer to Sample Question 1.2.8 Reported number of cigarettes smoked
per day.

Sample Question 1.2.9 Indicate how the data file might be set up.

Answer to Sample Question 1.2.9 The first column is “Before,” and the
second column is “After.”

22 18
40 34
20 10
...

...

One-way Analysis of Variance

Extension of the independent t-test to two or more groups. Same assump-
tions, everything. F = t2 for two groups.

Sample Question 1.2.10 Make up your own original example of a study
in which a one-way analysis of variance could be used.
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Answer to Sample Question 1.2.10 Eighty branches of a large bank were
chosen to participate in a study of the effect of music on tellers’ work be-
haviour. Twenty branches were randomly assigned to each of the following
4 conditions. 1=No music, 2=Elevator music, 3=Rap music, 4=Individual
choice (headphones). Average customer satisfaction and worker satisfaction
were assessed for each bank branch, using a standard questionnaire.

Sample Question 1.2.11 In your example, what are the cases?

Answer to Sample Question 1.2.11 Branches, not people answering the
questionnaire.

Sample Question 1.2.12 Why do it that way?

Answer to Sample Question 1.2.12 To avoid serious potential problems
with independent observations within branches. The group of interacting peo-
ple within social setting is the natural unit of analysis, like an organism.

Sample Question 1.2.13 In your example, what is the independent vari-
able (or variables)?

Answer to Sample Question 1.2.13 Type of music, a categorical vari-
able taking on 4 values.

Sample Question 1.2.14 In your example, what is the dependent variable
(or variables)?

Answer to Sample Question 1.2.14 There are 2 dependent variables, av-
erage customer satisfaction and average worker satisfaction. If they were
analyzed simultaneously the analysis would be multivariate (and not elemen-
tary).

Sample Question 1.2.15 Indicate how the data file might be set up.

Answer to Sample Question 1.2.15 The columns correspond to Branch,
Type of Music, Customer Satisfaction and Worker Satisfaction

1 2 4.75 5.31
2 4 2.91 6.82
...

...
...

...
80 2 5.12 4.06
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Sample Question 1.2.16 How could this be made into a repeated measures
study?

Answer to Sample Question 1.2.16 Let each branch experience each of
the 4 music conditions in a random order (or better, use only 72 branches,
with 3 branches receiving each of the 24 orders). There would then be 10
pieces of data for each bank: Branch, Order (a number from 1 to 24), and
customer satisfaction and worker satisfaction for each of the 4 conditions.

Including all orders of presentation in each experimental condition is an
example of counterbalancing — that is, presenting stimuli in such a way
that order of presentation is unrelated to experimental condition. That way,
the effects of the treatments are not confused with fatigue or practice effects
(on the part of the experimenter as well as the subjects). In counterbalanc-
ing, it is often not feasible to include all possible orders of presentation it
each experimental condition, because sometimes there are two many. The
point is that order of presentation has to be unrelated to any manipulated
independent variable.

Two (and higher) way Analysis of Variance

Extension of One-Way ANOVA to allow assessment of the joint relationship
of several categorical independent variables to one quantitative dependent
variable that is assumed normal within treatment combinations. Tests for
interactions between IVs are possible. An interaction means that the rela-
tionship of one independent variable to the dependent variable depends on
the value of another independent variable. More on this later.

Crosstabs and chi-squared tests

Cross-tabulations (Crosstabs) are joint frequency distribution of two categor-
ical variables. One can be considered an IV, the other a DV if you like. In
any case (even when the IV is manipulated in a true experimental study) we
will test for significance using the chi-squared test of independence. Assump-
tion is independent observations are drawn from a multinomial distribution.
Violation of the independence assumption is common and very serious.

Sample Question 1.2.17 Make up your own original example of a study
in which this technique could be used.
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Answer to Sample Question 1.2.17 For each of the prisoners in a Toronto
jail, record the race of the offender and the race of the victim. This is illegal;
you could go to jail for publishing the results. It’s totally unclear which is the
IV and which is the DV, so I’ll make up another example.

For each of the graduating students from a university, record main field
of study and and gender of the student (male or female).

Sample Question 1.2.18 In your example, what is the independent vari-
able (or variables)?

Answer to Sample Question 1.2.18 Gender

Sample Question 1.2.19 In your example, what is the dependent variable
(or variables)?

Answer to Sample Question 1.2.19 Main field of study (many numeric
codes).

Sample Question 1.2.20 Indicate how the data file would be set up.

Answer to Sample Question 1.2.20 The first column is Gender (0=Male,
1=F). The second column is Field.

1 2
0 14
0 9
...

...

Correlation and Simple Regression

Correlation Start with a scatterplot showing the association between
two (quantitative, usually continuous) variables. A scatterplot is a set of
Cartesian coordinates with a dot or other symbol showing the location of
each (x, y) pair. If one of the variables is clearly the independent variable,
it’s traditional to put it on the x axis. There are n points on the scatterplot,
where n is the number of cases in the data file.

Often, the points in a scatterplot cluster around a straight line. The
correlation coefficient (Pearson’s r) expresses the extent to which the points
cluster tightly around a straight line.
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Here are some properties of the correlation coefficient r:

• −1 ≤ r ≤ 1

• r = +1 indicates a perfect positive linear relationship. All the points
are exactly on a line with a positive slope.

• r = −1 indicates a perfect negative linear relationship. All the points
are exactly on a line with a negative slope.

• r = 0 means no linear relationship (curve possible)

• r2 represents explained variation, reduction in (squared) error of pre-
diction. For example, the correlation between scores on the Scholas-
tic Aptitude Test (SAT) and first-year grade point average (GPA) is
around +0.50, so we say that SAT scores explain around 25% of the
variation in first-year GPA.

The test of significance for Pearson’s r assumes a bivariate normal distri-
bution for the two variables; this means that the only possible relationship
between them is linear. As usual, the assumption of independent observa-
tions is always important.

Here are some examples of scatterplots and the associated correlation
coefficients. The number 2 on a plot means that two points are on top of
each other, or at least too close to be distinguished in this crude line printer
graphic.
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Simple Regression One independent variable, one dependent. In the
usual examples both are quantitative (continuous). We fit a least-squares
line to the cloud of points in a scatterplot. The least-squares line is the
unique line that minimizes the sum of squared vertical distances between
the line and the points in the scatterplot. That is, it minimizes the total
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(squared) error of prediction.
Denoting the slope of the least-squares line by b1 and the intercept of the

least-squares line by b0,

b1 = r
sy

sx

and b0 = Y − b1X.

That is, the slope of the least squares has the same sign as the correlation
coefficient, and equals zero if and only if the correlation coefficient is zero.

Usually, you want to test whether the slope is zero. This is the same as
testing whether the correlation is zero, and mercifully yields the same p-value.
Assumptions are independent observations (again) and that within levels of
the IV, the DV has a normal distribution with the same variance (variance
does not depend on value of the DV). Robustness properties are similar to
those of the 2-sample t-test. The assumption of independent observations is
always important.

Multiple Regression

Regression with several independent variables at once; we’re fitting a (hyper)
plane rather than a line. Multiple regression is very flexible; all the other
techniques mentioned above (except the chi-squared test) are special cases
of multiple regression. More details later.

1.3 Experimental versus observational stud-

ies

Why might someone want to predict a dependent variable from an indepen-
dent variable? There are two main reasons.

• There may be a practical reason for prediction. For example, a com-
pany might wish to predict who will buy a product, in order to max-
imize the productivity of its sales force. Or, an insurance company
might wish to predict who will make a claim, or a university computer
centre might wish to predict the length of time a type of hard drive
will last before failing. In each of these cases, there will be some in-
dependent variables that are to be used for prediction, and although
the people doing the study may be curious and may have some ideas
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about how things might turn out and why, they don’t really care why it
works, as long as they can predict with some accuracy. Does variation
in the IV cause variation in the DV? Who cares?

• This may be science (of some variety). The goal may be to understand
how the world works — in particular, to understand the dependent
variable. In this case, most likely we are implicitly or explicitly thinking
of a causal relationship between the IV and DV. Think of attitude
similarity and interpersonal attraction . . . .

Sample Question 1.3.1 A study finds that high school students who have
a computer at home get higher grades on average than students who do not.
Does this mean that parents who can afford it should buy a computer to
enhance their children’s chances of academic success?

Here is an answer that gets zero points. “Yes, with a computer the stu-
dent can become computer literate, which is a necessity in our competitive
and increasingly technological society. Also the student can use the computer
to produce nice looking reports (neatness counts!), and obtain valuable in-
formation on the World Wide Web.” ZERO.

The problem with this answer is that while it makes some fairly reasonable
points, it is based on personal opinion, and fails to address the real question,
which is “Does this mean . . . ” Here is an answer that gets full marks.

Answer to Sample Question 1.3.1 Not necessarily. While it is possible
that some students are doing better academically and therefore getting into
university because of their computers, it is also possible that their parents
have enough money to buy them a computer, and also have enough money to
pay for their education. It may be that an academically able student who is
more likely to go to university will want a computer more, and therefore be
more likely to get one somehow. Therefore, the study does not provide good
evidence that a computer at home will enhance chances of academic success.

Note that in this answer, the focus is on whether the study provides good
evidence for the conclusion, not whether the conclusion is reasonable on
other grounds. And the answer gives specific alternative explanations for the
results as a way of criticizing the study. If you think about it, suggesting
plausible alternative explanations is a very damaging thing to say about any
empirical study, because you are pointing out that the investigators expended
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a huge amount of time and energy, but didn’t establish anything conclusive.
Also, suggesting alternative explanations is extremely valuable, because that
is how research designs get improved and knowledge advances.

Now here are the general principles. If X and Y are measured at roughly
the same time, X could be causing Y , Y could be causing X, or there might
be some third variable (or collection of variables) that is causing both X
and Y . Therefore we say that ”Correlation does not necessarily imply cau-
sation.” Here, by correlation we mean association (lack of independence)
between variables. It is not limited to situations where you would compute
a correlation coefficient.

A confounding variable is a variable not included as an independent
variable, that might be related to both the independent variable and the
dependent variable – and that might therefore create a seeming relationship
between them where none actually exists, or might even hide a relationship
that is present. Some books also call this a “lurking variable.” You are
responsible for the vocabulary “confounding variable.”

An experimental study is one in which cases are randomly assigned to
the different values of an independent variable (or variables). An observa-
tional study is one in which the values of the independent variables are not
randomly assigned, but merely observed.

Some studies are purely observational, some are purely experimental, and
many are mixed. It’s not really standard terminology, but in this course we
will describe independent variables as experimental (i.e., randomly assigned,
manipulated) or observed.

In an experimental study, there is no way the dependent variable could
be causing the independent variable, because values of the IV are assigned by
the experimenter. Also, it can be shown (using the Law of Large Numbers)
that when units of observation are randomly assigned to values of an IV, all
potential confounding variables are cancelled out as the sample size increases.
This is very wonderful. You don’t even have to know what they are!

Sample Question 1.3.2 Is it possible for a continuous variable to be ex-
perimental, that is, randomly assigned?

Answer to Sample Question 1.3.2 Sure. In a drug study, let one of the
independent variables consist of n equally spaced dosage levels spanning some
range of interest, where n is the sample size. Randomly assign one participant
to each dosage level.

21



Sample Question 1.3.3 Give an original example of a study with one quan-
titative observed independent variable and one categorical manipulated inde-
pendent variable. Make the study multivariate, with one dependent variable
consisting of unordered categories and two quantitative dependent variables.
categorical

Answer to Sample Question 1.3.3 Stroke patients in a drug study are
randomly assigned to either a standard blood pressure drug or one of three
experimental blood pressure drugs. The categorical dependent variable is
whether the patient is alive or not 5 years after the study begins. The quanti-
tative dependent variables are systolic and diastolic blood pressure one week
after beginning drug treatment.

In practice, of course there would be a lot more variables; but it’s still a
good answer.

Because of possible confounding variables, only an experimental study
can provide good evidence that an independent variable causes a dependent
variable. Words like effect, affect, leads to etc. imply claims of causality and
are only justified for experimental studies.

Sample Question 1.3.4 Design a study that could provide good evidence
of a causal relationship between having a computer at home and academic
success.

Answer to Sample Question 1.3.4 High school students without comput-
ers enter a lottery. The winners (50% of the sample) get a computer and
modem to use at home. The dependent variable is whether or not the student
enters university.

Sample Question 1.3.5 Is there a problem with independent observations
here? Can you fix it?

Answer to Sample Question 1.3.5 Oops. Yes. Students who win may
be talking to each other, sharing software, etc.. Actually, the losers will be
communicating too. Therefore their behaviour is non-independent and stan-
dard significance tests will be invalid. One solution is to hold the lottery in
n separate schools, with one winner in each school. If the dependent variable
were GPA, we could do a matched t-test comparing the performance of the
winner to the average performance of the losers.
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Sample Question 1.3.6 What if the DV is going to university or not?

Answer to Sample Question 1.3.6 We are getting into deep water here.
Here is how I would do it. In each school, give a score of “1” to each student
who goes to university, and a “0” to each student who does not. Again,
compare the scores of the winners to the average scores of the losers in each
school using a matched t-test. Note that the mean difference that is to be
compared with zero here is the mean difference in probability of going to
university, between students who get a computer to use and those who do
not. While the differences for each school will not be normally distributed, the
central limit theorem tells us that the mean difference will be approximately
normal if there are more than about 20 schools, so the t-test is valid. In fact,
the t-test is conservative, because the tails of the t distribution are heavier
than those of the standard normal. This answer is actually beyond the scope
of the present course.

Artifacts and Compromises

Random assignment to experimental conditions will take care of confounding
variables, but only if it is done right. It is amazingly easy for for confounding
variables to sneak back into a true experimental study through defects in the
procedure. For example, suppose you are interested in studying the roles
of men and women in our society, and you have a 50-item questionnaire
that (you hope) will measure traditional sex role attitudes on a scale from
0 = Very Non-traditional to 50 = Very Traditional. However, you suspect
that the details of how the questionnaire is administered could have a strong
influence on the results. In particular, the sex of the person administering
the questionnaire and how he or she is dressed could be important.

Your subjects are university students, who must participate in your study
in order to fulfill a course requirement in Introductory Psychology. You ran-
domly assign your subjects to one of four experimental conditions: Female re-
search assistant casually dressed, Female research assistant formally dressed,
Male research assistant casually dressed, or Male research assistant formally
dressed. Subjects in each experimental condition are instructed to report to
a classroom at a particular time, and they fill out the questionnaire sitting
all together.

This is an appealing procedure from the standpoint of data collection,
because it is fast and easy. However, it is so flawed that it may be a com-
plete waste of time to do the study at all. Here’s why. Because subjects are
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run in four batches, an unknown number of confounding variables may have
crept back into the study. To name a few, subjects in different experimental
conditions will be run at different times of day or different days of the week.
Suppose subjects in the the male formally dressed condition fill out the ques-
tionnaire at 8 in the morning. Then all the subjects in that condition are
exposed to the stress and fatigue of getting up early, as well as the treatment
to which they have been randomly assigned.

There’s more, of course. Presumably there are just two research assis-
tants, one male and one female. So there can be order effects; at the very
least, the lab assistant will be more practiced the second time he or she ad-
ministers the questionnaire. And, though the research assistants will surely
try to administer the questionnaire in a standard way, do you really believe
that their body language, facial expressions and tone of voice will be identical
both times?

Of course, the research assistants know what condition the subjects are
in, they know the hypotheses of the study, and they probably have a strong
desire to please the boss — the investigator (professor or whatever) who is
directing this turkey, uh, excuse me, I mean this research. Therefore, their
behaviour could easily be slanted (perhaps unconsciously so) to produce the
hypothesized effects.

This kind phenomenon is well-documented. It’s called experimenter ex-
pectancy. Experimenters find what they expect to find. If they are led to
believe that certain mice are very intelligent, then those mice will do better
on all kinds of learning tasks, even though in fact the mice were randomly
assigned to be labeled as “intelligent.” This kind of thing applies all the
way down to flatworms. The classic reference is Robert Rosenthal’s Experi-
menter expectancy in behavioral research [9]. Naturally, the expectancy phe-
nomenon applies to teachers and students in a classroom setting, where it is
called teacher expectancy. The reference for this is Rosenthal and Jacobson’s
Pygmalion in the classroom [10].

It is wrong (and complacent) to believe that expectancy effects are con-
fined to psychological research. In medicine, placebo effects are well-documented.
Patients who are given an inert substance like a sugar pill do better than pa-
tients who are not, provided that they (or their doctors) believe that they are
getting medicine that works. Is it the patients’ expectancies that matter, or
the doctors’? Probably both. The standard solution, and the only accept-
able solution in clinical trials of new drugs, is the so called double blind, in
which subjects are randomly assigned to receive either the drug or a placebo,
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and neither the patient nor the doctor knows which it is. This is the gold
standard. Accept no substitutes.

Until now, we have been discussing threats to the Internal Validity of
research. A study has good internal validity if it’s designed to eliminate the
influence of confounding variables, so one can be reasonably sure that the
observed effects really are being produced by the independent variables of
interest. But there’s also External Validity. External validity refers to how
well the phenomena outside the laboratory or data-collection situation are
being represented by the study. For example, well-controlled, double-blind
taste tests indicated that the Coca-cola company had a recipe that consumers
liked better than the traditional one. But attempts to market “New” Coke
were an epic disaster. There was just more going on in the real world of
soft drink consumption than in the artificial laboratory setting of a taste
test. Cook and Campbell’s Quasi-experimentation [3] contains an excellent
discussion of internal versus external validity.

In Industrial-Organizational psychology, we have the Hawthorne Effect,
which takes its name from the Hawthorne plant of General Electric, where
some influential studies of worker productivity were carried out in the 1930’s.
The basic idea is that when workers know that they are part of a study,
almost anything you do will increase productivity. Make the lights brighter?
Productivity increases. Make the lights dimmer? Productivity increases.
This is how the Hawthorne Effect is usually described. The actual details of
the studies and their findings are more complex [8], but the general idea is
that when people know they are particpating in a study, they tend to feel
more valued, and act accordingly. In this respect, the fact that the subjects
know that a study is being carried can introduce a serious distortion into the
way things work, and make the results unrepresentative of what normally
happens.

Medical research on non-human animals is always at least subject to dis-
cussion on grounds of external validity, as is almost any laboratory research
in Psychology. Do you know why the blood vessels running away from the
heart are called “arteries?” It’s because they were initially thought to con-
tain air. Why? Because medical researchers were basing their conclusions
entirely on dissections of dead bodies. In live bodies, the arteries are full of
blood.

Generally speaking, the controlled environments that lead to the best
internal validity also produce the greatest threats to external validity. Is a
given laboratory setup capturing the essence of the phenomena under con-
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sideration, or is it artificial and irrelevant? It’s usually hard to tell. The
best way to make an informed judgement is to compare laboratory studies
and field studies that are trying to answer the same questions. The labora-
tory studies usually have better internal validity, and the field studies usually
have better external validity. When the results are consistent, we feel more
comfortable.
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Chapter 2

First set of tools: SAS running
under unix (including linux)

The SAS language is the same regardless of what hardware you use or what
operating system is running on the hardware. SAS programs are simple text
files that can be transported from one machine to another with minimal
difficulty. In this course, everything will be illustrated with SAS running
under the unix operating system, but it’s not a problem even if the next
place you go only has PCs. The adjustment to SAS-PC should be fast and
fairly painless.

2.1 Unix

Unix is a line-oriented operating system. Well, there’s X-windows (a graph-
ical shell that runs on top of unix), but we won’t bother with it. Basically,
you type a command, press Enter, and unix does something for (or to) you.
It may help to think of unix as DOS on steroids, if you remember DOS.
The table below has all the unix commands you will need for this course.
Throughout, fname stands for the name of a file.
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A Minimal Set of unix Commands

exit Logs you off the system: ALWAYS log off before leaving!

passwd Lets you change your password. Recommended.

man command name Online help: explains command name, (like man

sort).

ls Lists names of the files in your directory.

less fname Displays fname on screen, one page at a time. Spacebar for
next page, q to quit.

lpr fname Prints hard copy on a laser printer. lpr stands for line printer.
These physical devices no longer exist in most installations.

rm fname Removes fname, erasing it forever.

cp fname1 fname2 Makes a copy of fname1. The new copy is named
fname2.

mv fname1 fname2 Moves (renames) fname1

emacs fname Starts the emacs text editor, editing fname (can be new file).

R Gets you into the R implementation of the S environment.

sas fname Executes SAS commands in the file fname.sas, yielding fname.log
and (if no fatal errors) fname.lst.

ps Shows active processes

kill -9 # Kills process (job) number #. Sometimes you must do this when
you can’t log off because there are stopped jobs. Use ps to see the job
numbers.

mail yourname@yourisp.com < fname Email a file to yourself. Very
handy for getting files to your home computer for printing.

curl URL > fname A URL is a Web address. This command is intended
to help you get a copy of the source code of Web pages. But when the
web page contains just a data file, as it sometimes does in this course,
this is a great way to get a copy of the data. Copy the URL from your
browser. curl http://fisher.utstat.toronto.edu/~brunner/429s07/code_n_data/drp.dat > drp.dat
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This really is a minimal set of commands. The unix operating system is
extremely powerful, and has an enormous number of commands. You can’t
really see the power from the minimal set above, but you can see the main
drawback from the standpoint of the new user. Commands tend to be terse,
consisting of just a few keystrokes. They make sense once you are familiar
with them (like ls for listing the files in a directory, or rm for remove),
but they are hard to guess. The man command (short for manual) gives very
accurate information, but you have to know the name of the command before
you can use man to find out about it.

Just for future reference, here are a few more commands that you may
find useful, or otherwise appealing.

A Few More unix Commands

mkdir dirname Makes a new sub-directory (like a folder) named dirname.
You can have sub-directories within sub-directories; it’s a good way to
organize your work.

cp fname dirname Copies the file fname into the directory dirname.

cd dirname Short for Change Directory. Takes you to the sub-directory
dirname.

cd .. Moves you up a directory level.

cd Moves you to your main directory from wherever you are.

ls > fname Sends the output of the ls command to the file fname instead
of to the screen.

cat fname Lists the whole file on your screen, not one page at a time. It
goes by very fast, but usually you can scroll back up to see the entire
file, if it’s not too long.

cat fname1 fname2 > fname3 Concatenates fname1 and fname2 (sticks
them together) and re-directs the output to fname3

grep ERROR cartoon1.log Searches for the string ERROR in the file
cartoon1.log. Echos each line containing the string. Silent if ERROR
does not occur. Case sensitive.
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alias chk ”grep ERROR *.log ; grep WARN *.log” Makes a new com-
mand called chk. It checks for the string ERROR and the string WARN
in any log file.

cal Displays a calendar for this month

cal 1 3002 Displays a calendar for January 3002.

unset noclobber Are you tired of being asked if you really want to remove
or overwrite a file?

rm fname1 fname2 Remove both

rm -f fname Remove without asking for confirmation, this time only.

alias rm ”rm -f” rm now means rm -f.

rm -r dirname Remove the directory, and everything in it recursively.

R –vanilla < fname1 > fname2 Execute the S language commands in
fname1, sending output to fname2. Run in “plain vanilla” mode.

Printing files at home This is a question that always comes up. Almost
surely, the printer connected to your printer at home is not directly connected
to the university network. If you want to do something like print your SAS
output at home, you have to transfer the file on the unix machine to the hard
drive of your home computer, and print it from there. One way is to use some
kind of ftp (file transfer protocol) tool to get the file in question onto your
hard drive. For short files, you can also use the less or cat command to
list the file on your screen, select it with your mouse, copy it, paste it to a
word processing document, and print it from there. It is a good idea to use
a fixed-width font like Courier, and not the Times or Times Roman font.
Everything will be lined up better.

Perhaps easiest of all is to email yourself the file. This is illustrated in the
first set of unix commands. To repeat, mail yourname@yourisp.com < fname .

2.2 Introduction to SAS

SAS stands for “Statistical Analysis System.” Even though it runs on PCs
as well as on bigger computers, it is truly the last of the great old mainframe
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statistical packages. The first beta release was in 1971, and the SAS Institute,
Inc. was spun off from North Carolina State University in 1976, the year after
Bill Gates dropped out of Harvard. This is a serious pedigree, and it has both
advantages and disadvantages.

The advantages are that the number of statistical procedures SAS can do
is truly staggering, and the most commonly used ones have been tested so
many times by so many people that their correctness and numerical efficiency
is beyond any question. For the purposes of this class, there are no bugs. The
disadvantages of SAS are all related to the fact that it was designed to run in
a batch-oriented mainframe environment. So, for example, the SAS Institute
has tried hard to make SAS an “interactive” program, but the interface still
basically file and text oriented, not graphical.

2.2.1 The Four Main File Types

A typical SAS job will involve four main types of file.

• The Raw Data File: A file consisting of rows and columns of num-
bers; or maybe some of the columns have letters (character data) in-
stead of numbers. The rows represent observations and the columns
represent variables, as described at the beginning of Section 1.1. In the
first example we will consider below, the raw data file is called drp.dat.

• The Program File: This is also sometimes called a “command file,”
because it’s usually not much of a program. It consists of commands
that the SAS software tries to follow. You create this file with a text
editor like emacs. The command file contains a reference to the raw
data file (in the infile statement), so SAS knows where to find the
data. In the first example we will consider below, the command file is
called reading.sas. SAS expects program files to have the extension
.sas, and you should always follow this convention.

• The Log File: This file is produced by every SAS run, whether it is
successful of unsuccessful. It contains a listing of the command file,
as well any error messages or warnings. The name of the log file is
automatically generated by SAS; it combines the first part of the com-
mand file’s name with the extension .log. So for example, when SAS
executes the commands in reading.sas, it writes a log file named
reading.log.
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• The List File: The list file contains the output of the statistical
procedures requested by the command file. The list file has the ex-
tension .lst — so, for example, running SAS on the command file
reading.sas will produce reading.lst as well as reading.log. A
successful SAS run will almost always produce a list file. The absence
of a list file indicates that there was at least one fatal error. The pres-
ence of a list file does not mean there were no errors; it just means that
SAS was able to do some of what you asked it to do. Even if there
are errors, the list file will usually not contain any error messages; they
will be in the log file.

2.2.2 Running SAS from the Command Line

There are several ways to run SAS. In this text, all the examples will be run
from the unix command line (terminal). In my view, this way is simplest
and also the best way to start. Also, it is by far the easiest way to use SAS
from home, assuming that SAS is running on a remote server and not your
home computer.

The following illustrates a simple SAS run from the command line (using
an application called terminal in some unix and linux environments). Ini-
tially, there are only two files in the directory — reading.sas (the program
file) and drp.dat (the raw data file). The command sas reading produces
two additional files — reading.log and reading.lst. In this and other
examples, the unix prompt is appsrv01.srv (the name of the unix machine
used to produce the examples), followed by a > sign.

appsrv01.srv> ls

drp.dat reading.sas

appsrv01.srv> sas reading

appsrv01.srv> ls

drp.dat reading.log reading.lst reading.sas

2.2.3 Structure of the Program File

A SAS program file is composed of units called data steps and proc steps. The
typical SAS program has one data step and at least one proc step, though
other structures are possible.
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• Most SAS commands belong either in data step or in a proc step; they
will generate errors if they are used in the wrong kind of step.

• Some statements, like the title and options commands, exist outside
of the data and proc steps, but there are relatively few of these.

The Data Step The data step takes care of data acquisition and modi-
fication. It almost always includes a reference to at least one raw data file,
telling SAS where to look for the data. It specifies variable names and labels,
and provides instructions about how to read the data; for example, the data
might be read from fixed column locations. Variables from the raw data file
can be modified, and new variables can be created.

Each data step creates a SAS data set, a file consisting of the data
(after modifications and additions), labels, and so on. Statistical procedures
operate on SAS data sets, so you must create a SAS data set before you can
start computing any statistics.

A SAS data set is written in a binary format that is very convenient for
SAS to process, but is not readable by humans. In the old days, SAS data
sets were always written to temporary scratch files on the computer’s hard
drive; these days, they may be maintained in RAM if they are small enough.
In any case, the default is that a SAS data set disappears after the job has
run. If the data step is executed again in a later run, the SAS data set is
re-created.

Actually, it is possible to save a SAS data set on disk for later use. We
won’t do this here, but it makes sense when the amount of processing in
a data step is large relative to the speed of the computer. As an extreme
example, one of my colleagues uses SAS to analyze data from Ontario hospital
admissions; the data files have millions of cases. Typically, it takes around
20 hours of CPU time on a very strong unix machine just to read the data
and create a SAS data set. The resulting file, hundreds of gigabytes in size, is
saved to disk, and then it takes just a few minutes to carry out each analysis.
You wouldn’t want to try this on a PC.

To repeat, SAS data steps and SAS data sets sound similar, but they are
distinct concepts. A SAS data step is part of a SAS program; it generates a
SAS data set, which is a file – usually a temporary file.

SAS data sets are not always created by SAS data steps. Some statistical
procedures can create SAS data sets, too. For example, proc tandard can
take an ordinary SAS data set as input, and produce an output data set that
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has all the original variables, and also some of the variables converted to z-
scores (by subtracting off the mean and dividing by the standard deviation).
Proc reg (the main multiple regression procedure) can produce a SAS data
set containing residuals for plotting and use in further analysis; there are
many other examples.

The proc Step “Proc” is short for procedure. Most procedures are sta-
tistical procedures; the most noticeable exception is proc format, which is
used to provide labels for the values of categorical variables. The proc step
is where you specify a statistical procedure that you want to carry out. A
statistical procedures in the proc step will take a SAS data set as input,
and write the results (summary statistics, values of test statistics, p-values,
and so on) to the list file. The typical SAS program includes one data step
and several proc steps, because it is common to produce a variety of data
displays, descriptive statistics and significance tests in a single run.

2.2.4 A First Example: reading.sas

Earlier, we ran SAS on the file reading.sas, producing reading.log and
reading.lst. Now we will look at reading.sas in some detail. This pro-
gram is very simple; it has just one data step and one proc step. More details
will be given later, but it’s based on a study in which one group of grade
school students received a special reading programme, and a control group
did not. After a couple of months, all students were given a reading test.
We’re just going to do an independent groups t-test, but first take a look at
the raw data file. You’d do this with the unix less command.

Actually, it’s so obvious that you should look at your data that nobody
ever says it. But experienced data analysts always do it — or else they
assume everything is okay and get a bitter lesson in something they already
knew. This is so important that it gets the formal status of a data analysis
hint.

Data Analysis Hint 1 Always look at your raw data file. It the data file
is big, do it anyway. At least page through it a screen at a time, looking for
anything strange. Check the values of all the variables for a few cases. Do
they make sense? If you have obtained the data file from somewhere, along
with a description of what’s in it, never believe that the description you have
been given is completely accurate.

34



Anyway, here is the file drp.dat, with the middle and end cut out to save
space.

Treatment 24
Treatment 43
Treatment 58

...
...

Control 55
Control 28
Control 48

...
...

Now we can look at reading.sas.

/******************* reading.sas **********************

* Simple SAS job to illustrate a two-sample t-test *

*******************************************************/

options linesize=79 noovp formdlim=’_’;

title ’More & McCabe (1993) textbook t-test Example 7.8’;

data reading;

infile ’drp.dat’;

input group $ score;

label group = ’Get Directed Reading Programme?’

score = ’Degree of Reading Power Test Score’;

proc ttest;

class group;

var score;

Here are some detailed comments about reading.sas.

• The first three lines are a comment. Anything between a /* and */

is a comment, and will be listed on the log file but otherwise ignored
by SAS. Comments can appear anywhere in a program. You are not
required to use comments, but it’s a good idea.

The most common error associated with comments is to forget to end
them with */. In the case of reading.sas, leaving off the */ (or
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typing \* by mistake) would cause the whole program to be treated
as a comment. It would generate no errors, and no output — because
as far as SAS would be concerned, you never requested any. A longer
program would eventually exceed the default length of a comment (it’s
some large number of characters) and SAS would end the “comment”
for you. At exactly that point (probably in the middle of a command)
SAS would begin parsing the program. Almost certainly, the first thing
it examined would be a fragment of a legal command, and this would
cause an error. The log file would say that the command caused an
error, and not much else. It would be very confusing, because probably
the command would be okay, and there would be no indication that SAS
was only looking at part of it.

• The next two lines (the options statement and the title statement)
exist outside the proc step and the data step. This is fairly rare.

• All SAS statements end with a semi-colon (;). SAS statements can
extend for several physical lines in the program file (for example, see
the label statement). Spacing, indentation, breaking up s statement
into several lines of text – these are all for the convenience of the human
reader, and are not part of the SAS syntax.

• The most common error in SAS programming is to forget the semi-
colon. When this happens, SAS tries to interpret the following state-
ment as part of the one you tried to end. This often causes not one
error, but a cascading sequence of errors. The rule is, if you have an
error and you do not immediately understand what it is, look for a miss-
ing semi-colon. It will probably be before the portion of the program
that (according to SAS) caused the first error.

• Cascading errors are not caused just by the dreaded missing semi-colon.
They are common in SAS; for example, a runaway comment statement
can easily cause a chain reaction of errors (if the program is long enough
for it to cause any error messages at all). If you have a lot of errors in
your log file, fix the first one and don’t waste time trying to figure out
the others. Some or all of them may well disappear.

• options linesize=79 noovp formdlim=’_’;
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These options are highly recommended. The linesize=79 option is so
highly recommended it’s almost obligatory. It causes SAS to write the
output 79 columns across, so it can be read on an ordinary terminal
screen that’s 80 characters across. You specify an output width of 79
characters rather than 80, because SAS uses one column for printer
control characters, like page ejects (form feeds).

If you do not specify options linesize=79;, SAS will use its default of
132 characters across, the width of sheet of paper from an obsolete line
printer you probably have never seen. Why would the SAS Institute
hang on to this default, when changing it to match ordinary letter
paper would be so easy? It probably tells you something about the
computing environments of some of SAS’s large corporate clients.

• The noovp option makes the log files more readable if you have errors.
When SAS finds an error in your program, it tries to underline the
word that caused the error. It does this by going back and overprinting
the offending word with a series of “underscores” ( characters). On
many printers this works, but when you try to look at the log file
on a terminal screen (one that is not controlled by the SAS Display
Manager), what often appears is a mess. The noovp option specifies no
overprinting. It causes the “underlining” to appear on a separate line
under the program line with the error. If you’re running SAS from the
unix command line and looking at your log files with the less command
or the cat command, you will probably find the noovp option to be
helpful.

• The formdlim=’_’ option specifies a “form delimiter” to replace most
form feeds (new physical pages) in the list file. This can save a lot of
paper (and page printing charges). You can use any string you want
for a form delimiter. The underscore (the one specified here) causes a
solid line to be printed instead of going to a new sheet of paper.

• title This is optional, but recommended. The material between the
single quotes will appear at the top of each page. This can be a lifesaver
when you are searching through a stack of old printouts for something
you did a year or two ago.

• data reading; This begins the data step, specifying that the name of
the SAS data set being created is “reading.” The names of data sets
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are arbitrary, but you should make them informative.

• infile Specifies the name of the raw data file. The file name, en-
closed in single quotes, can be the full unix path to the file, like
/dos/brunner/public/senic.raw. If you just give the name of the
raw data file, as in this example, SAS assumes that the file is in the
same directory as the command file.

• input Gives the names of the variables.

– A character variable (the values of group are “Treatment’ and
“Control”) must be followed by a dollar sign.

– Variable names must be eight characters or less, and should begin
with a letter. They will be used to request statistical procedures
in the proc step. They should be meaningful (related to what the
variable is), and easy to remember.

– This is almost the simplest form of the input statement. It can
be very powerful; for example, you can read data from different
locations and in different orders, depending on the value of a vari-
able you’ve just read, and so on. It can get complicated, but if
the data file has a simple structure, the input statement can be
simple too.

• label Provide descriptive labels for the variables; these will be used
to label the output, usually in very nice way. Labels can be quite
useful, especially when you’re trying to recover what you did a while
ago. Notice how this statement extends over two physical lines.

• proc ttest; Now the proc step begins. This program has only one
data step and one proc step. We are requesting a two-sample t-test.

• class Specifies the independent variable.

• var Specifies the dependent variable(s). You can give a list of depen-
dent variables. A separate univariate test (actually, as you will see,
collection of tests is performed for each dependent variable.
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reading.log Log files are not very interesting when everything is okay, but
here is an example anyway. Notice that in addition to a variety of technical
information (where the files are, how long each step took, and so on), it
contains a listing of the SAS program — in this case, reading.sas. If there
were syntax errors in the program, this is where the error messages would
appear.

appsrv01.srv> cat reading.log

1 The SAS System

11:40 Thursday, September 2, 2007

NOTE: Copyright (c) 1999-2001 by SAS Institute Inc., Cary, NC, USA.

NOTE: SAS (r) Proprietary Software Release 8.2 (TS2M0)

Licensed to UNIVERSITY OF TORONTO/COMPUTING & COMMUNICATIONS, Site 0008987001.

NOTE: This session is executing on the Linux 2.6.8.1-smp-athlon-bk platform.

This message is contained in the SAS news file, and is presented upon

initialization. Edit the files "news" in the "misc/base" directory to

display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: SAS initialization used:

real time 0.08 seconds

cpu time 0.01 seconds

1 /******************* reading.sas **********************

2 * Simple SAS job to illustrate a two-sample t-test *

3 *******************************************************/

4

5 options linesize=79 noovp formdlim=’_’;

6 title ’More & McCabe (1993) textbook t-test Example 7.8’;

7

8 data reading;
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9 infile ’drp.dat’;

10 input group $ score;

11 label group = ’Get Directed Reading Programme?’

12 score = ’Degree of Reading Power Test Score’;

NOTE: The infile ’drp.dat’ is:

File Name=/homes/students/u0/stats/brunner/drp.dat,

Owner Name=brunner,Group Name=stats,

Access Permission=rw-r-----,

File Size (bytes)=660

NOTE: 44 records were read from the infile ’drp.dat’.

The minimum record length was 14.

The maximum record length was 14.

NOTE: The data set WORK.READING has 44 observations and 2 variables.

NOTE: DATA statement used:

real time 0.01 seconds

cpu time 0.01 seconds

13 proc ttest;

14 class group;

15 var score;

NOTE: There were 44 observations read from the data set WORK.READING.

NOTE: The PROCEDURE TTEST printed page 1.

NOTE: PROCEDURE TTEST used:

real time 0.08 seconds

cpu time 0.01 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

2 The SAS System

11:40 Thursday, September 2, 2007

NOTE: The SAS System used:

real time 0.24 seconds

cpu time 0.03 seconds
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reading.lst Here is the list file. Notice that the title specified in the title
statement appears at the top, along with the time and date the program
was executed. Then we get statistical output — the t-test we want, and also
a bunch of other stuff, whether we want it or not. This is typical of SAS,
and most other mainstream statistical packages as well. The default output
from any given statistical procedures will contain more information than you
wanted, and probably some things you don’t understand at all. There are
usually numerous options that can add more information, but almost never
options to reduce the default output. So, you just learn what to ignore. It
is helpful, but not essential,to have at least a superficial understanding of
everything in the default output from procedures you use a lot.

appsrv01.srv> cat reading.lst

_______________________________________________________________________________

More & McCabe (1993) textbook t-test Example 7.8 1

11:40 Thursday, September 2, 2007

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL

Variable group N Mean Mean Mean Std Dev Std Dev

score Control 23 34.106 41.522 48.937 13.263 17.149

score Treatmen 21 46.466 51.476 56.487 8.4213 11.007

score Diff (1-2) -18.82 -9.954 -1.091 11.998 14.551
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Statistics

Upper CL

Variable group Std Dev Std Err Minimum Maximum

score Control 24.271 3.5758 10 85

score Treatmen 15.895 2.402 24 71

score Diff (1-2) 18.495 4.3919

T-Tests

Variable Method Variances DF t Value Pr > |t|

score Pooled Equal 42 -2.27 0.0286

score Satterthwaite Unequal 37.9 -2.31 0.0264

Equality of Variances

Variable Method Num DF Den DF F Value Pr > F

score Folded F 22 20 2.43 0.0507

Now here are some comments about reading.lst.

• The first part of the output is labelled “Statistics,” containing confi-
dence intervals and some descriptive statistics. There are three rows to
this display: one for the Control group, one for the Treatment group,
and one for the difference between groups.

– Variable: score The first column, labelled “Variable,” tells you
what the dependent variable is – particularly useful if you have
more than one.

– group The independent variable. Underneath are the values of
the independent variable in the first two rows. The third row is
for the difference, computed as Control minus Treatment (1-2).
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Well actually, if you look carefully, you see that we do not quite
get the values of the independent variable under GROUP. The val-
ues of the (alphanumeric, or character-valued) variable group are
Control and Treatment, but the printout says “Treatmen.” This
is not a printing error; it is a subtle error in the reading of the
data. The default length of an alphanumeric data value is 8 char-
acters, but “Treatment” has 9 characters. So SAS just read the
first eight. No error message was generated and no harm was done
in this case, but in other circumstances this error can turn a data
file into a giant pile of trash, without warning. Later we will see
how to override the default and read longer strings if necessary.

– N The third column gives sample sizes; n=23 for the control group,
and n=21 for the treatment group.

– The next three columns contain means and their associated 95%
confidence intervals. The middle column has the means. For the
Control group, the sample mean score on the DRP test was 41.522;
for the Treatment group, the sample mean was 51.476. The differ-
ence between means is -9.954 = 41.522-51.476 (One minus Two).

To the left of the mean, labelled “Lower CL Mean,” is the lower
confidence limit of the 95% confidence interval for the population
mean. Thus, the 95% confidence interval for the Treatment mean
is from 46.466 to 56.487, and the 95% confidence interval for the
difference between means is from -18.82 to -1.091. The fact that
this last interval does not contain zero means that the usual two-
tailed t-test will be statistically significantly at the 0.05 level. Thre
is a lovely consistency between the classical tests and confidence
intervals.

– The next three columns give confidence intervals for the standard
deviations. We have the lower confidence limit, the standard de-
viation, and the upper confidence limit in the continuation below.

– Then we get standard errors (estimated standard deviations of
the sample mean or difference between means), and finally the
minimum and maximum for each group.

• Then finally, under “T-Tests,” we get what we want – a t-test for the
difference between the means of the Control and Treatment groups.
Two tests are given; as usual there seems to be more output than
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we were expecting or wishing for. Probably we were looking for the
first one, using the Pooled Method. This is the traditional test, which
assumes equal population variances, and therefore is based on a Pooled
estimate of the common within-groups standard deviation.

– The value of the test statistic is -2.27.

– The degrees of freedom n1 + n2 − 2 is given in the DF column.

– The column Prob>|t| gives the two-tailed (two-sided) p-value.
It is less than the traditional value of 0.05, so the results are
statistically significant.

Sample Question 2.2.1 What do we conclude from this study? Say some-
thing about reading, using non-technical language.

Answer to Sample Question 2.2.1 Students who received the Directed Read-
ing Program got higher average reading scores than students in the control
condition.

It’s worth emphasizing here that the main objective of doing a statistical
analysis is to draw conclusions about the data — or to refrain from drawing
such conclusions. The question “What do we conclude from this study?” will
always be asked. For now, the right answer will always be either “Nothing;
the results were not statistically significant,” or else it will be something
about reading, or fish, or potatoes, or AIDS, or whatever is being studied.
Later we will take up the possibility of concluding that the effect we are
testing is actually absent (or at least trivially small).

Many students, even when they have been warned, respond to the “what
do you conclude” question with a barrage of statistical terminology. They
go on and on about the null hypothesis and Type I error, and usually say
nothing that would tell a reasonable person what actually happened in the
study. In the working world, a memo filled with such garbage could get you
fired. Here, it will get you a zero for the question, even if the technical details
you give are correct.

Remember, the purpose of writing up a statistical analysis is not to sound
impressive and technical, but to impart information. To say things in a simple
way is a virtue. It shows you understand what is going on. Now back to the
printout.
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• The Satterthwaite method gives a sort of t-test that does not assume
equal variances. Well, it’s not really a t-test, because the test statistic
does not really have a t distribution, even when the data are exactly
normal. But, the (very unpleasant) distribution of the test statistic is
well approximated by a t distribution with the right degrees of freedom
— not n1 + n2 − 2, but something messy that depends on the data.
See the odd fractional degrees of freedom? See [6], or lots of other
elementary texts, for details. In any case, it does not matter much in
this case, because the p-value is almost the same as the p-value from
the traditional test. They lead to the same conclusions, and there is
no problem. What should you do when they disagree? I’d go with the
test that makes fewer assumptions.

• Next we see a test for Equality of Variances. This “Folded” F is the
traditional test for whether the variances of two groups are equal, and
it’s almost significant. This test is provided so people can test for
differences between variances; if it is significantly different they can use
the unequal variance t-test, and otherwise they can use the traditional
test. This seems reasonable, except for the following.

Both the two-sample t-test and the F -test for equality of variances
assume that the data are normally distributed. However, the normal-
ity assumption does not matter much for the t-test when the sample
sizes are large, while for the variance test it matters a lot, regardless
of how much data you have. When the data are non-normal, the test
for variances will be significant more than 5% of the time even when
the population variances are equal. If you have equal population vari-
ances and a large sample of non-normal data, the F -test for variances
could easily be significant, leading you to worry unnecessarily about
the validity of the t-test.

2.2.5 Background of the First Example

We don’t do statistical analysis in a vacuum. Before proceeding with more
computing details, let’s find out more about the reading data. This first
example is from an introductory text. It’s Example 7.8 (p. 534) in More
and McCabe’s excellent Introduction to the practice of statistics [6]. We are
interested in analyzing real data, not in doing textbook exercises. But we
will not turn up our noses just yet, because
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Data Analysis Hint 2 When learning how to carry out a procedure using
unfamiliar statistical software, always do a textbook example first, and com-
pare the output to the material in the text. Regardless of what the manual
might say, never assume you know what the software is doing until you see
an example.

More and McCabe do a great job of explaining the t-test with unequal vari-
ances, something SAS produces (along with usual t-test that assumes equal
variances) without being asked when you request a t-test. Besides, the data
actually come from someone’s Ph.D. thesis, so there is an element of realism.
Here is Moore and McCabe’s description of the study.

An educator believes that new directed reading activities in the
classroom will help elementary school pupils improve some as-
pects of their reading ability. She arranges for a third grade class
of 21 students to take part in these activities. A control class-
room of 23 third graders follows the same curriculum without the
activities. At the end of 8 weeks, all students are given a De-
gree of Reading Power (DRP) test, which measures the aspects
of reading ability that the program is designed to improve.

Sample Question 2.2.2 What’s wrong with this study?

Answer to Sample Question 2.2.2 The independent variable was manip-
ulated by the experimenter, but it is not an experimental study. Even if class-
rooms were assigned randomly to conditions (it is impossible to tell whether
they were, from this brief description), a large number of unobserved vari-
ables are potentially confounded with treatment. The teacher in the classroom
that received the treatment might be better than the teacher in the control
classroom, or possibly there was a particularly aggressive bully in the control
classroom, or maybe a mini-epidemic of some childhood disease hit the con-
trol classroom . . . . The list goes on. The point here is that there are many
ways in which the classroom experiences of children in the treatment group
differ systematically from the experiences of children in the control group.

Sample Question 2.2.3 How could the problem be fixed?

Answer to Sample Question 2.2.3 Assign classrooms at random to treat-
ments. The unit of analysis should be the classroom, not the individual stu-
dent.
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2.2.6 SAS Example Two: The statclass data

These data come from a statistics class taught many years ago. Students took
eight quizzes, turned in nine computer assignments, and also took a midterm
and final exam. The data file also includes gender and ethnic background;
these last two variables are just guesses by the professor, and there is no way
to tell how accurate they were. The data file looks like this. There are 21
columns and 62 rows of data; columns not aligned. Here are the first few
lines.

appsrv01.srv> less statclass1.dat

1 2 9 1 7 8 4 3 5 2 6 10 10 10 5 0 0 0 0 55 43

0 2 10 10 5 9 10 8 6 8 10 10 8 9 9 9 9 10 10 66 79

1 2 10 10 5 10 10 10 9 8 10 10 10 10 10 10 9 10 10 94 67

1 2 10 10 8 9 10 7 10 9 10 10 10 9 10 10 9 10 10 81 65

0 1 10 1 0 0 8 6 5 2 10 9 0 0 10 6 0 5 0 54 .

1 1 10 6 7 9 8 8 5 7 10 9 10 9 5 6 4 8 10 57 52

0 1 0 0 9 9 10 5 2 2 8 7 7 10 10 6 3 7 10 49 .

0 1 10 9 5 8 9 8 5 6 8 7 5 6 10 6 5 9 9 77 64

0 1 10 8 6 8 9 5 3 6 9 9 6 9 10 6 5 7 10 65 42

1 1 10 5 6 7 10 4 6 0 10 9 10 9 10 6 7 8 10 73 .

0 1 9 0 4 6 10 5 3 3 10 8 10 5 10 10 9 9 10 71 37

...

Notice the periods at the ends of lines 5, 7 and 10. The period is the SAS
missing value code. These people did not show up for the final exam. They
may have taken a makeup exam, but if so their scores did not make it into
this data file. When a case has a missing value recorded for a variable, SAS
automatically excludes that case from any statistical calculation involving the
variable. If a new variable is being created based on the value of a variable
with a missing value, the new variable will usually have a missing value for
that case too.

Here is the SAS program textttstatmarks1.sas. It reads and labels the
data, and then does a variety of significance tests. They are all elemen-
tary except the last one, which illustrates testing for one set of independent
variables controlling for another set in multiple regression.

47



appsrv01.srv> cat statmarks1.sas

/* statmarks1.sas */

options linesize=79 noovp formdlim=’_’;

title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;

title2 ’Illustrate Elementary Tests’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;

value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’Other’ ;

data grades;

infile ’statclass1.dat’;

input sex ethnic quiz1-quiz8 comp1-comp9 midterm final;

/* Drop lowest score for quiz & computer */

quizave = ( sum(of quiz1-quiz8) - min(of quiz1-quiz8) ) / 7;

compave = ( sum(of comp1-comp9) - min(of comp1-comp9) ) / 8;

label ethnic = ’Apparent ethnic background (ancestry)’

quizave = ’Quiz Average (drop lowest)’

compave = ’Computer Average (drop lowest)’;

mark = .3*quizave*10 + .1*compave*10 + .3*midterm + .3*final;

label mark = ’Final Mark’;

diff = quiz8-quiz1; /* To illustrate matched t-test */

label diff = ’Quiz 8 minus Quiz 1’;

mark2 = round(mark);

/* Bump up at grade boundaries */

if mark2=89 then mark2=90;

if mark2=79 then mark2=80;

if mark2=69 then mark2=70;

if mark2=59 then mark2=60;

/* Assign letter grade */

if mark2=. then grade=’Incomplete’;

else if mark2 ge 90 then grade = ’A’;

else if 80 le mark2 le 89 then grade=’B’;

else if 70 le mark2 le 79 then grade=’C’;

else if 60 le mark2 le 69 then grade=’D’;

else grade=’F’;
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format sex sexfmt.; /* Associates sex & ethnic */

format ethnic ethfmt.; /* with formats defined above */

/* Now the proc steps */

proc freq;

title3 ’Frequency distributions of the categorical variables’;

tables sex ethnic grade;

proc means n mean std;

title3 ’Means and SDs of quantitative variables’;

var quiz1 -- mark; /* single dash only works with numbered

lists, like quiz1-quiz8 */

proc ttest;

title3 ’Independent t-test’;

class sex;

var mark;

proc means n mean std t;

title3 ’Matched t-test: Quiz 1 versus 8’;

var quiz1 quiz8 diff;

proc glm;

title3 ’One-way anova’;

class ethnic;

model mark = ethnic;

means ethnic;

means ethnic / Tukey Bon Scheffe;

proc freq;

title3 ’Chi-squared Test of Independence’;

tables sex*ethnic sex*grade ethnic*grade / chisq;

proc freq; /* Added after seeing warning from chisq test above */

title3 ’Chi-squared Test of Independence: Version 2’;

tables sex*ethnic grade*(sex ethnic) / norow nopercent chisq expected;

proc corr;

title3 ’Correlation Matrix’;

var final midterm quizave compave;

proc plot;

title3 ’Scatterplot’;
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plot final*midterm; /* Really should do all combinations */

proc reg;

title3 ’Simple regression’;

model final=midterm;

/* Predict final exam score from midterm, quiz & computer */

proc reg simple;

title3 ’Multiple Regression’;

model final = midterm quizave compave / ss1;

smalstuf: test quizave = 0, compave = 0;

run;

/* Note that the final run statement is not needed when

running SAS from the unix command line. */

Noteworthy features of this program include

• options: Already discussed in connection with reading.sas.

• title2: Subtitle

• proc format: This is a non-statistical procedure – a rarity in the SAS
language. It is the way SAS takes care of labelling categorical vari-
ables when the categories are coded as numbers. proc format defines
printing formats. For any variable associated with the printing format
named sexfmt, any time it would print the value “0” (in a table or
something) it instead prints the string “Male.” The associations be-
tween variables and printing formats are accomplished in the format

statement at the end of the data step. The names of formats have a
period at the end to distinguish them from variable names. Of course
formats must be defined before they can be associated with variables.
This is why proc format precedes the data step.

• quiz1-quiz8: One may refer to a range of variables ending with con-
secutive numbers using a minus sign. In the input statement, a range
can be defined (named) this way. It saves typing and is easy to read.

• Creating new variables with assignment statements. The variables
quizave, compave and mark are not in the original data file. They
are created here, and they are appended to the end of the SAS data
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set in oder of creation. Variables like this should never be in the raw
data file.

Data Analysis Hint 3 When variables are exact mathematical func-
tions of other variables, always create them in the data step rather than
including them in the raw data file. It saves data entry, and makes the
data file smaller and easier to read. If you want to try out a different
definition of the variable, it’s easy to change a few statements in the
data step.

• sum(of quiz1-quiz8): Without the word “of,” the minus sign is am-
biguous. In the SAS language, sum(quiz1-quiz8) is the sum of a single
number, the difference between quiz1 and quiz8.

• format sex sexfmt.; Associates the variable sex with its printing
format. In questionnaire studies where a large number of items have
the same potential responses (like a scale from 1 = Strongly Agree to
7=Strongly Disagree), it is common to associate a long list of variables
with a single printing format.

• quiz1 -- mark in the first proc means: A double dash refers to a list
of variables in the order of their creation in the data step. Single dashes
are for numerical order, while double dashes are for order of creation;
it’s very handy.

• Title inside a procedure labels just that procedure.

• proc means n mean std t A matched t-test is just a single-variable
t-test carried out on differences, testing whether the mean difference is
equal to zero.

• proc glm

– class Tells SAS that the IV ethnic is categorical.

– model Dependent variable(s) = independent variable(s)

– means ethnic: Mean of mark separately for each value of ethnic.

– means ethnic / Tukey Bon Scheffe: Post hoc tests (multiple
comparisons, probing, follow-ups). Used if the overall F -test is
significant, to see which means are different from which other
means.
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• chisq option on proc freq: Gives a large collection of chisquare tests.
The first one is the familiar Pearson chisquare test of independence
(the one comparing observed and expected frequencies).

• tables sex*ethnic / norow nopercent chisq expected; In this sec-
ond version of the crosstab produced proc freq, we suppress the row
and total percentages, and look at the expected frequencies because
SAS warned us that some of them were too small. SAS issues a warn-
ing if any expected frequency is below 5; this is the old-fashioned rule
of thumb. But it has been known for some time that Type I eror rates
are affected mostly by expected frequencies smaller than one, not five
— so I wanted to take a look.

• proc corr After var, list the variables you want to see in a correlation
matrix.

• proc plot; plot final*midterm; Scatterplot: First variable named
goes on the y axis.

• proc reg: model Dependent variable(s) = independent variable(s) again

• simple option on proc reg gives simple descriptive statistics. This
last procedure is an example of multiple regression, and we will return
to it later once we have more background.

statmarks1.lst

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 1

Illustrate Elementary Tests

Frequency distributions of the categorical variables

10:10 Sunday, September 5, 2007

The FREQ Procedure

Cumulative Cumulative

sex Frequency Percent Frequency Percent

-----------------------------------------------------------

Male 39 62.90 39 62.90

Female 23 37.10 62 100.00
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Apparent ethnic background (ancestry)

Cumulative Cumulative

ethnic Frequency Percent Frequency Percent

-------------------------------------------------------------

Chinese 41 66.13 41 66.13

European 15 24.19 56 90.32

Other 6 9.68 62 100.00

Cumulative Cumulative

grade Frequency Percent Frequency Percent

---------------------------------------------------------------

A 3 4.84 3 4.84

B 6 9.68 9 14.52

C 18 29.03 27 43.55

D 21 33.87 48 77.42

F 10 16.13 58 93.55

Incomplete 4 6.45 62 100.00

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 2

Illustrate Elementary Tests

Means and SDs of quantitative variables

10:10 Sunday, September 5, 2007

The MEANS Procedure

Variable Label N Mean Std Dev

----------------------------------------------------------------------------

quiz1 62 9.0967742 2.2739413

quiz2 62 5.8870968 3.2294995

quiz3 62 6.0483871 2.3707744

quiz4 62 7.7258065 2.1590022

quiz5 62 9.0645161 1.4471109

quiz6 62 7.1612903 1.9264641

quiz7 62 5.7903226 2.1204477

quiz8 62 6.3064516 2.3787909

comp1 62 9.1451613 1.1430011

comp2 62 8.8225806 1.7604414

comp3 62 8.3387097 2.5020880

comp4 62 7.8548387 3.2180168

comp5 62 9.4354839 1.7237109

comp6 62 7.8548387 2.4350364

comp7 62 6.6451613 2.7526248

comp8 62 8.8225806 1.6745363

comp9 62 8.2419355 3.7050497

midterm 62 70.1935484 13.6235557

final 58 50.3103448 17.2496701

quizave Quiz Average (drop lowest) 62 7.6751152 1.1266917

compave Computer Average (drop lowest) 62 8.8346774 1.1204997

mark Final Mark 58 68.4830049 10.3902874

----------------------------------------------------------------------------

_______________________________________________________________________________
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Grades from STA3000 at Roosevelt University: Fall, 1957 3

Illustrate Elementary Tests

Independent t-test

10:10 Sunday, September 5, 2007

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL

Variable sex N Mean Mean Mean Std Dev Std Dev

mark Male 36 65.604 68.57 71.535 7.1093 8.7653

mark Female 22 62.647 68.341 74.036 9.8809 12.843

mark Diff (1-2) -5.454 0.2284 5.9108 8.8495 10.482

Statistics

Upper CL

Variable sex Std Dev Std Err Minimum Maximum

mark Male 11.434 1.4609 54.057 89.932

mark Female 18.354 2.7382 48.482 95.457

mark Diff (1-2) 12.859 2.8366

T-Tests

Variable Method Variances DF t Value Pr > |t|

mark Pooled Equal 56 0.08 0.9361

mark Satterthwaite Unequal 33.1 0.07 0.9418

Equality of Variances

Variable Method Num DF Den DF F Value Pr > F

mark Folded F 21 35 2.15 0.0443

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 4

Illustrate Elementary Tests

Matched t-test: Quiz 1 versus 8

10:10 Sunday, September 5, 2007

The MEANS Procedure

Variable Label N Mean Std Dev t Value

---------------------------------------------------------------------------

quiz1 62 9.0967742 2.2739413 31.50

quiz8 62 6.3064516 2.3787909 20.87

diff Quiz 8 minus Quiz 1 62 -2.7903226 3.1578011 -6.96

---------------------------------------------------------------------------
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Illustrate Elementary Tests

One-way anova 10:10 Sunday, September 5, 2007

The GLM Procedure

Class Level Information

Class Levels Values

ethnic 3 Chinese European Other

Number of observations 62

NOTE: Due to missing values, only 58 observations can be used in this analysis.
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Grades from STA3000 at Roosevelt University: Fall, 1957 6

Illustrate Elementary Tests

One-way anova 10:10 Sunday, September 5, 2007

The GLM Procedure

Dependent Variable: mark Final Mark

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 1238.960134 619.480067 6.93 0.0021

Error 55 4914.649951 89.357272

Corrected Total 57 6153.610084

R-Square Coeff Var Root MSE mark Mean

0.201339 13.80328 9.452898 68.48300

Source DF Type I SS Mean Square F Value Pr > F

ethnic 2 1238.960134 619.480067 6.93 0.0021

Source DF Type III SS Mean Square F Value Pr > F

ethnic 2 1238.960134 619.480067 6.93 0.0021
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One-way anova 10:10 Sunday, September 5, 2007

The GLM Procedure

Level of -------------mark------------

ethnic N Mean Std Dev

Chinese 37 65.2688224 7.9262171

European 15 76.0142857 11.2351562

Other 6 69.4755952 13.3097753
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Illustrate Elementary Tests

One-way anova 10:10 Sunday, September 5, 2007

The GLM Procedure

Tukey’s Studentized Range (HSD) Test for mark

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of Studentized Range 3.40649

Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.460 17.538

European - Chinese 10.745 3.776 17.715 ***

Other - European -6.539 -17.538 4.460

Other - Chinese 4.207 -5.814 14.228

Chinese - European -10.745 -17.715 -3.776 ***

Chinese - Other -4.207 -14.228 5.814

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 9

Illustrate Elementary Tests

One-way anova 10:10 Sunday, September 5, 2007

The GLM Procedure

Bonferroni (Dunn) t Tests for mark

NOTE: This test controls the Type I experimentwise error rate, but it

generally has a higher Type II error rate than Tukey’s for all pairwise

comparisons.
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Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of t 2.46941

Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.737 17.814

European - Chinese 10.745 3.600 17.891 ***

Other - European -6.539 -17.814 4.737

Other - Chinese 4.207 -6.067 14.480

Chinese - European -10.745 -17.891 -3.600 ***

Chinese - Other -4.207 -14.480 6.067
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Illustrate Elementary Tests

One-way anova 10:10 Sunday, September 5, 2007

The GLM Procedure

Scheffe’s Test for mark

NOTE: This test controls the Type I experimentwise error rate, but it

generally has a higher Type II error rate than Tukey’s for all pairwise

comparisons.

Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of F 3.16499

Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.950 18.027

European - Chinese 10.745 3.466 18.025 ***

Other - European -6.539 -18.027 4.950

Other - Chinese 4.207 -6.260 14.674

Chinese - European -10.745 -18.025 -3.466 ***

Chinese - Other -4.207 -14.674 6.260
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Grades from STA3000 at Roosevelt University: Fall, 1957 11

Illustrate Elementary Tests

Chi-squared Test of Independence

10:10 Sunday, September 5, 2007

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Percent |

Row Pct |

Col Pct |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 43.55 | 11.29 | 8.06 | 62.90

| 69.23 | 17.95 | 12.82 |

| 65.85 | 46.67 | 83.33 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 22.58 | 12.90 | 1.61 | 37.10

| 60.87 | 34.78 | 4.35 |

| 34.15 | 53.33 | 16.67 |

---------+--------+--------+--------+

Total 41 15 6 62

66.13 24.19 9.68 100.00

Statistics for Table of sex by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Illustrate Elementary Tests

Chi-squared Test of Independence

10:10 Sunday, September 5, 2007
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The FREQ Procedure

Table of sex by grade

sex grade

Frequency|

Percent |

Row Pct |

Col Pct |A |B |C |D |F |Incomple| Total

| | | | | |te |

---------+--------+--------+--------+--------+--------+--------+

Male | 1 | 3 | 13 | 14 | 5 | 3 | 39

| 1.61 | 4.84 | 20.97 | 22.58 | 8.06 | 4.84 | 62.90

| 2.56 | 7.69 | 33.33 | 35.90 | 12.82 | 7.69 |

| 33.33 | 50.00 | 72.22 | 66.67 | 50.00 | 75.00 |

---------+--------+--------+--------+--------+--------+--------+

Female | 2 | 3 | 5 | 7 | 5 | 1 | 23

| 3.23 | 4.84 | 8.06 | 11.29 | 8.06 | 1.61 | 37.10

| 8.70 | 13.04 | 21.74 | 30.43 | 21.74 | 4.35 |

| 66.67 | 50.00 | 27.78 | 33.33 | 50.00 | 25.00 |

---------+--------+--------+--------+--------+--------+--------+

Total 3 6 18 21 10 4 62

4.84 9.68 29.03 33.87 16.13 6.45 100.00

Statistics for Table of sex by grade

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 5 3.3139 0.6517

Likelihood Ratio Chi-Square 5 3.2717 0.6582

Mantel-Haenszel Chi-Square 1 0.2342 0.6284

Phi Coefficient 0.2312

Contingency Coefficient 0.2253

Cramer’s V 0.2312

WARNING: 58% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Illustrate Elementary Tests

Chi-squared Test of Independence

10:10 Sunday, September 5, 2007

The FREQ Procedure
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Table of ethnic by grade

ethnic(Apparent ethnic background (ancestry)) grade

Frequency|

Percent |

Row Pct |

Col Pct |A |B |C |D |F |Incomple| Total

| | | | | |te |

---------+--------+--------+--------+--------+--------+--------+

Chinese | 0 | 2 | 11 | 17 | 7 | 4 | 41

| 0.00 | 3.23 | 17.74 | 27.42 | 11.29 | 6.45 | 66.13

| 0.00 | 4.88 | 26.83 | 41.46 | 17.07 | 9.76 |

| 0.00 | 33.33 | 61.11 | 80.95 | 70.00 | 100.00 |

---------+--------+--------+--------+--------+--------+--------+

European | 2 | 4 | 5 | 3 | 1 | 0 | 15

| 3.23 | 6.45 | 8.06 | 4.84 | 1.61 | 0.00 | 24.19

| 13.33 | 26.67 | 33.33 | 20.00 | 6.67 | 0.00 |

| 66.67 | 66.67 | 27.78 | 14.29 | 10.00 | 0.00 |

---------+--------+--------+--------+--------+--------+--------+

Other | 1 | 0 | 2 | 1 | 2 | 0 | 6

| 1.61 | 0.00 | 3.23 | 1.61 | 3.23 | 0.00 | 9.68

| 16.67 | 0.00 | 33.33 | 16.67 | 33.33 | 0.00 |

| 33.33 | 0.00 | 11.11 | 4.76 | 20.00 | 0.00 |

---------+--------+--------+--------+--------+--------+--------+

Total 3 6 18 21 10 4 62

4.84 9.68 29.03 33.87 16.13 6.45 100.00

Statistics for Table of ethnic by grade

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 10 18.2676 0.0506

Likelihood Ratio Chi-Square 10 19.6338 0.0329

Mantel-Haenszel Chi-Square 1 5.6222 0.0177

Phi Coefficient 0.5428

Contingency Coefficient 0.4771

Cramer’s V 0.3838

WARNING: 78% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Illustrate Elementary Tests

Chi-squared Test of Independence: Version 2

10:10 Sunday, September 5, 2007

The FREQ Procedure
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Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Expected |

Col Pct |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 25.79 | 9.4355 | 3.7742 |

| 65.85 | 46.67 | 83.33 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 15.21 | 5.5645 | 2.2258 |

| 34.15 | 53.33 | 16.67 |

---------+--------+--------+--------+

Total 41 15 6 62

Statistics for Table of sex by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Illustrate Elementary Tests

Chi-squared Test of Independence: Version 2

10:10 Sunday, September 5, 2007

The FREQ Procedure
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Table of grade by sex

grade sex

Frequency |

Expected |

Col Pct |Male |Female | Total

-----------+--------+--------+

A | 1 | 2 | 3

| 1.8871 | 1.1129 |

| 2.56 | 8.70 |

-----------+--------+--------+

B | 3 | 3 | 6

| 3.7742 | 2.2258 |

| 7.69 | 13.04 |

-----------+--------+--------+

C | 13 | 5 | 18

| 11.323 | 6.6774 |

| 33.33 | 21.74 |

-----------+--------+--------+

D | 14 | 7 | 21

| 13.21 | 7.7903 |

| 35.90 | 30.43 |

-----------+--------+--------+

F | 5 | 5 | 10

| 6.2903 | 3.7097 |

| 12.82 | 21.74 |

-----------+--------+--------+

Incomplete | 3 | 1 | 4

| 2.5161 | 1.4839 |

| 7.69 | 4.35 |

-----------+--------+--------+

Total 39 23 62

Statistics for Table of grade by sex

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 5 3.3139 0.6517

Likelihood Ratio Chi-Square 5 3.2717 0.6582

Mantel-Haenszel Chi-Square 1 0.2342 0.6284

Phi Coefficient 0.2312

Contingency Coefficient 0.2253

Cramer’s V 0.2312

WARNING: 58% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Chi-squared Test of Independence: Version 2
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10:10 Sunday, September 5, 2007

The FREQ Procedure

Table of grade by ethnic

grade ethnic(Apparent ethnic background (ancestry))

Frequency |

Expected |

Col Pct |Chinese |European|Other | Total

-----------+--------+--------+--------+

A | 0 | 2 | 1 | 3

| 1.9839 | 0.7258 | 0.2903 |

| 0.00 | 13.33 | 16.67 |

-----------+--------+--------+--------+

B | 2 | 4 | 0 | 6

| 3.9677 | 1.4516 | 0.5806 |

| 4.88 | 26.67 | 0.00 |

-----------+--------+--------+--------+

C | 11 | 5 | 2 | 18

| 11.903 | 4.3548 | 1.7419 |

| 26.83 | 33.33 | 33.33 |

-----------+--------+--------+--------+

D | 17 | 3 | 1 | 21

| 13.887 | 5.0806 | 2.0323 |

| 41.46 | 20.00 | 16.67 |

-----------+--------+--------+--------+

F | 7 | 1 | 2 | 10

| 6.6129 | 2.4194 | 0.9677 |

| 17.07 | 6.67 | 33.33 |

-----------+--------+--------+--------+

Incomplete | 4 | 0 | 0 | 4

| 2.6452 | 0.9677 | 0.3871 |

| 9.76 | 0.00 | 0.00 |

-----------+--------+--------+--------+

Total 41 15 6 62

Statistics for Table of grade by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 10 18.2676 0.0506

Likelihood Ratio Chi-Square 10 19.6338 0.0329

Mantel-Haenszel Chi-Square 1 5.6222 0.0177

Phi Coefficient 0.5428

Contingency Coefficient 0.4771

Cramer’s V 0.3838

WARNING: 78% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

_______________________________________________________________________________
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Illustrate Elementary Tests

Correlation Matrix

10:10 Sunday, September 5, 2007

The CORR Procedure

4 Variables: final midterm quizave compave

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

final 58 50.31034 17.24967 2918 15.00000 89.00000

midterm 62 70.19355 13.62356 4352 44.00000 103.00000

quizave 62 7.67512 1.12669 475.85714 4.57143 9.71429

compave 62 8.83468 1.12050 547.75000 5.00000 10.00000

Simple Statistics

Variable Label

final

midterm

quizave Quiz Average (drop lowest)

compave Computer Average (drop lowest)

Pearson Correlation Coefficients

Prob > |r| under H0: Rho=0

Number of Observations

final midterm quizave compave

final 1.00000 0.47963 0.41871 0.06060

0.0001 0.0011 0.6513

58 58 58 58

midterm 0.47963 1.00000 0.59294 0.41277

0.0001 <.0001 0.0009

58 62 62 62

quizave 0.41871 0.59294 1.00000 0.52649

Quiz Average (drop lowest) 0.0011 <.0001 <.0001

58 62 62 62

compave 0.06060 0.41277 0.52649 1.00000

Computer Average (drop lowest) 0.6513 0.0009 <.0001

58 62 62 62
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Scatterplot 10:10 Sunday, September 5, 2007
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Plot of final*midterm. Legend: A = 1 obs, B = 2 obs, etc.

final |

|

90 + A

| A

|

|

|

80 + A A A

|

|

|

| A

70 + A A A

| A

| A A

| A A A

|

60 + A

| A AA

| A A

| A A B A A

| A A A A

50 + AA

| A

| A

| AA

| A C

40 + A A A A

| A A A

|

|

|

30 + A A A

| A

| A

| AA

| A

20 + A

|

| A

|

|

10 +

|

-+---------+---------+---------+---------+---------+---------+---------+-

40 50 60 70 80 90 100 110

midterm

NOTE: 4 obs had missing values.
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Simple regression

10:10 Sunday, September 5, 2007

The REG Procedure

Model: MODEL1

Dependent Variable: final

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 3901.64751 3901.64751 16.73 0.0001

Error 56 13059 233.19226

Corrected Total 57 16960

Root MSE 15.27063 R-Square 0.2300

Dependent Mean 50.31034 Adj R-Sq 0.2163

Coeff Var 30.35287

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 6.88931 10.80304 0.64 0.5263

midterm 1 0.61605 0.15061 4.09 0.0001
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Illustrate Elementary Tests

Multiple Regression

10:10 Sunday, September 5, 2007

The REG Procedure

Descriptive Statistics

Uncorrected Standard

Variable Sum Mean SS Variance Deviation

Intercept 58.00000 1.00000 58.00000 0 0

midterm 4088.00000 70.48276 298414 180.35935 13.42979

quizave 451.57143 7.78571 3576.51020 1.06498 1.03198

compave 515.50000 8.88793 4641.50000 1.04862 1.02402

final 2918.00000 50.31034 163766 297.55112 17.24967

Descriptive Statistics

Variable Label

Intercept Intercept

midterm

quizave Quiz Average (drop lowest)
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compave Computer Average (drop lowest)

final
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Multiple Regression

10:10 Sunday, September 5, 2007

The REG Procedure

Model: MODEL1

Dependent Variable: final

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 4995.04770 1665.01590 7.51 0.0003

Error 54 11965 221.58085

Corrected Total 57 16960

Root MSE 14.88559 R-Square 0.2945

Dependent Mean 50.31034 Adj R-Sq 0.2553

Coeff Var 29.58754

Parameter Estimates

Parameter Standard

Variable Label DF Estimate Error

Intercept Intercept 1 9.01839 19.02591

midterm 1 0.50057 0.18178

quizave Quiz Average (drop lowest) 1 4.80199 2.46469

compave Computer Average (drop lowest) 1 -3.53028 2.17562

Parameter Estimates

Variable Label DF t Value Pr > |t| Type I SS

Intercept Intercept 1 0.47 0.6374 146806

midterm 1 2.75 0.0080 3901.64751

quizave Quiz Average (drop lowest) 1 1.95 0.0566 509.97483

compave Computer Average (drop lowest) 1 -1.62 0.1105 583.42537
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Multiple Regression

10:10 Sunday, September 5, 2007

The REG Procedure

Model: MODEL1
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Test smalstuf Results for Dependent Variable final

Mean

Source DF Square F Value Pr > F

Numerator 2 546.70010 2.47 0.0943

Denominator 54 221.58085

Data in fixed columns When the data values have at least one space
between them, the variables are recorded in the same order for each case,
and missing values are indicated by periods, the default version of the input

statement (list input) does the job perfectly. It is a bonus that the variables
need not always be separated by the same number of spaces for each case.
Also, there can be more than one line of data for each case, and in fact there
need not even be the same number of data lines for all the cases, just as long
as there are the same number of variables.

Another common situation is for the data to be lined up in fixed columns,
with blanks for missing values. Sometimes, especially when there are many
variables, the data are packed together, without spaces between values. For
example, the Minnesota Multiphasic Personality Inventory (MMPI) consists
of over 300 questions, all to be answered True or False. It would be quite
natural to code 1=True and 0=False, and pack the data together. There
would still be quite a few data lines for each case.

Here is the beginning of the file statclass2.dat. It is the same as
statclass1.dat, except that the data are packed together. Most of the
blanks occur because two columns are reserved for the marks on quizzes and
computer assignments, because 10 out of 10 is possible. Three columns are
reserved for the midterm and final scores, because 100% is possible. For
all variables, missing values are represented by blanks. That is, if the field
occupied by a variable is completely blank, it’s a missing value.

appsrv01.srv> less statclass2.dat

12 9 1 7 8 4 3 5 2 6101010 5 0 0 0 0 55 43

021010 5 910 8 6 81010 8 9 9 9 91010 66 79

121010 5101010 9 8101010101010 91010 94 67

121010 8 910 710 9101010 91010 91010 81 65

0110 1 0 0 8 6 5 210 9 0 010 6 0 5 0 54

1110 6 7 9 8 8 5 710 910 9 5 6 4 810 57 52

01 0 0 9 910 5 2 2 8 7 71010 6 3 710 49
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0110 9 5 8 9 8 5 6 8 7 5 610 6 5 9 9 77 64

0110 8 6 8 9 5 3 6 9 9 6 910 6 5 710 65 42

1110 5 6 710 4 6 010 910 910 6 7 810 73

01 9 0 4 610 5 3 310 810 51010 9 910 71 37

...

Now we will take a look at statread.sas. It contains just the proc

format and the data step; There are no statistical procedures. This file will
be read by programs that invoke statistical procedures, as you will see.

/* statread.sas

Read the statclass data in fixed format, define and label variables. Use

with %include ’statread.sas’; */

options linesize=79 noovp formdlim=’_’;

title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;

value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’Other’ ;

data grades;

infile ’statclass2.dat’ missover;

input (sex ethnic) (1.)

(quiz1-quiz8 comp1-comp9) (2.)

(midterm final) (3.);

/* Drop lowest score for quiz & computer */

quizave = ( sum(of quiz1-quiz8) - min(of quiz1-quiz8) ) / 7;

compave = ( sum(of comp1-comp9) - min(of comp1-comp9) ) / 8;

label ethnic = ’Apparent ethnic background (ancestry)’

quizave = ’Quiz Average (drop lowest)’

compave = ’Computer Average (drop lowest)’;

mark = .3*quizave*10 + .1*compave*10 + .3*midterm + .3*final;

label mark = ’Final Mark’;

diff = quiz8-quiz1; /* To illustrate matched t-test */
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label diff = ’Quiz 8 minus Quiz 1’;

mark2 = round(mark);

/* Bump up at grade boundaries */

if mark2=89 then mark2=90;

if mark2=79 then mark2=80;

if mark2=69 then mark2=70;

if mark2=59 then mark2=60;

/* Assign letter grade */

if mark2=. then grade=’Incomplete’;

else if mark2 ge 90 then grade = ’A’;

else if 80 le mark2 le 89 then grade=’B’;

else if 70 le mark2 le 79 then grade=’C’;

else if 60 le mark2 le 69 then grade=’D’;

else grade=’F’;

format sex sexfmt.; /* Associates sex & ethnic */

format ethnic ethfmt.; /* with formats defined above */

/*************************************************************/

The data step in statread.sas differs from the one in statmarks1.sas

in only two respects. First, the missover option on the infile statement
causes blanks to be read as missing values even if they occur at the end of a
line and the line just ends rather than being filled in with space characters.
That is, such lines are shorter than the others in the file, and when SAS
over-reads the end of the line, it sets all the variables it would have read
to missing. This is what we want, so you should always use the missover

option when missing values are represented by blanks.
The other difference between this data step and the one in statmarks1.sas

is in the input statement. Here, we are using formatted input. sex and
ethnic each occupy 1 column. quiz1-quiz8 and comp1-comp9 each occupy
2 columns. midterm and final each occupy 3 columns. You can supply a
list of formats for each list of variables in parentheses, but if the number of
formats is less than the number of variables, they are re-used. That’s what’s
happening in the present case.

The program statread.sas reads and defines the data, but it requests
no statistical output; statdescribe.sas pulls in statread.sas using a
%include statement, and produces basic descriptive statistics. Significance
tests would be produced by other short programs.
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Keeping the data definition in a separate file and using %include (the
only part of the powerful SAS macro language presented here) is often a good
strategy, because most data analysis projects involve a substantial number of
statistical procedures. It is common to have maybe twenty program files that
carry out various analyses. You could have the data step at the beginning of
each program, but in many cases the data step is long. And, what happens
when (inevitably) you want to make a change in the data step and re-run
your analyses? You find yourself making the same change in twenty files.
Probably you will forget to change some of them, and the result is a big
mess. If you keep your data definition in just one place, you only have to
edit it once, and a lot of problems are avoided.

/* statdescribe.sas */

%include ’statread.sas’;

title2 ’Basic Descriptive Statistics’;

proc freq;

title3 ’Frequency distributions of the categorical variables’;

tables sex ethnic grade;

proc means n mean std;

title3 ’Means and SDs of quantitative variables’;

var quiz1 -- mark2; /* single dash only works with numbered

lists, like quiz1-quiz8 */

proc univariate normal; /* the normal option gives a test for normality */

title3 ’Detailed look at mark and bumped mark (mark2)’;

var mark mark2;

2.2.7 SAS Reference Materials

This course is trying to teach you SAS by example, without full explanation,
and certainly without discussion of all the options. If you need more detail,
there are several approaches you can take. The most obvious is to consult
the SAS manuals. The full set of manuals runs to over a dozen volumes,
and most of them look like telephone directories. For a beginner, it is hard
to know where to start. And even if you know where to look, the SAS
manuals can be hard to read, because they assume you already understand
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the statistical procedures fairly thoroughly, and on a mathematical level.
They are really written for professional statisticians. The SAS Institute
also publishes a variety of manual-like books that are intended to be more
instructional, most of them geared to specific topics (like The SAS system
for multiple regression and The SAS system for linear models). These are a
bit more readable, though it helps to have a real textbook on the topic to fill
in the gaps.

A better place to start is a wonderful book by Cody and Smith [2] entitled
Applied statistics and the SAS programming language. They do a really good
job of presenting and documenting the language of the data step, and and
they also cover a set of statistical procedures ranging from elementary to
moderately advanced. If you had to own just one SAS book, this would be
it.

If you consult any SAS book or manual (Cody and Smith’s book in-
cluded), you’ll need to translate and filter out some details. Here is the main
case. Many of the examples you see in Cody and Smith’s book and elsewhere
will not have separate files for the raw data and the program. They include
the raw data in the program file in the data step, after a datalines or cards
statement. Here is an example from page 3 of [2].

data test;

input subject 1-2 gender $ 4 exam1 6-8 exam2 10-12 hwgrade $ 14;

datalines;

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

;

proc means data=test;

run;

Having the raw data and the SAS code together in one display is so
attractive for small datasets that most textbook writers cannot resist it. But
think how unpleasant it would be if you had 10,000 lines of data. The way we
would do this example is to have the data file (named, say, example1.dat)
in a separate file. The data file would look like this.
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10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

and the program file would look like this.

data test;

infile ’example1.dat’; /* Read data from example1.dat */

input subject 1-2 gender $ 4 Exam1 6-8 exam2 10-12 hwgrade $ 14;

proc means data=test;

Using this as an example, you should be able to translate any textbook
example into the program-file data-file format used in this course.
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Chapter 3

More Than One Independent
Variable at a time

The standard elementary tests typically involve one independent variable and
one dependent variable. Now we will see why this can make them very mis-
leading. The lesson you should take away from this discussion is that when
important variables are ignored in a statistical analysis — particularly in an
observational study — the result can be that we draw incorrect conclusions
from the data. Potential confounding variables really need to be included in
the analysis.

3.1 The chi-squared test of independence

In order to make sure the central example in this chapter is clear, it may
be helpful to give a bit more background on the common Pearson chi-square
test of independence. As stated earlier, the chi-square test of independence
is for judging whether two categorical variables are related or not. It is based
upon a cross-tabulation, or joint frequency distribution of the two variables.
For example, suppose that in the statclass data, we are interested in the rela-
tionship between sex and apparent ethnic background. If the ratio of females
to males depended upon ethnic background, this could reflect an interest-
ing cultural difference in sex roles with respect to men and women going
to university (or at least, taking Statistics classes). In statmarks1.sas, we
did this test and obtained a chisquare statistic of 2.92 (df=2, p = 0.2321),
which is not statistically significant. Now we’ll do it just a bit differently to
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illustrate the details. First, here is the program ethsex.sas.

/* ethsex.sas */

%include ’statread.sas’;

title2 ’Sex by Ethnic’;

proc freq;

tables sex*ethnic / chisq norow nocol nopercent expected;

And here is the output.
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_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 1

Sex by Ethnic 19:55 Tuesday, August 30, 2005

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Expected |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 25.79 | 9.4355 | 3.7742 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 15.21 | 5.5645 | 2.2258 |

---------+--------+--------+--------+

Total 41 15 6 62

Statistics for Table of sex by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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In each cell of the table, we have an observed frequency and an expected
frequency. The expected frequency is the frequency one would expect by
chance if the two variables were completely unrelated.1 If the observed fre-
quencies are different enough from the expected frequencies, one would tend
to disbelieve the null hypothesis that the two variables are unrelated. But
how should one measure the difference, and what is the meaning of different
“enough?”

The Pearson chi-square statistic (named after Karl Pearson, a famous
racist, uh, I mean statistician) is defined by

χ2 =
∑
cells

(fo − fe)
2

fe

, (3.1)

where fo refers to the observed frequence, fe refers to expected frequency,
and as indicated, the sum is over all the cells in the table.

If the two variables are really independent, then as the total sample size
increases, the probability distribution of this statistic approaches a chisquare
with degrees of freedom equal to (Number of rows - 1)×(Number of columns
- 1). Again, this is an approximate, large-sample result, one that obtains
exactly only in the limit as the sample size approaches infinity. A traditional
“rule of thumb” is that the approximation is okay if no expected frequency
is less than five. This is why SAS gave us a warning.

More recent research suggests that to avoid inflated Type I error (false
significance at a rate greater than 0.05), all you need is for no expected fre-
quency to be less than one. You can see from formula (3.1) why an expected
frequency less than one would be a problem. Division by a number close to
zero can yield a very large quantity even when the observer and expected
frequencies are fairly close, and the so-called chisquare value will be seriously
inflated.

Anyway, The p-value for the chisquare test is the upper tail area, the area
under the chi-square curve beyond the observed value of the test statistic.
In the example from the statclass data, the test was not significant and we
conclude nothing.

1The formula for the expected frequency in a given cell is (row total) × (column to-
tal)/(sample size). This follows from the definition of independent events given in intro-
ductory probability: the events A and B are independent if P (A ∩B) = P (A)P (B). But
this is too much detail, and we’re not going there.
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3.2 The Berkeley Graduate Admissions data

Now we’re going to look at another example, one that should surprise you.
In the 1970’s the University of California at Berkeley was accused of discrim-
inating against women in graduate admissions. Data from a large number of
applicants are available. The three variables we will consider are sex of the
person applying for graduate study, department to which the person applied,
and whether or not the person was admitted. First, we will look at the table
of sex by admission.

Table of sex by admit

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 1493 | 1198 | 2691

| 55.48 | 44.52 |

---------+--------+--------+

Female | 1278 | 557 | 1835

| 69.65 | 30.35 |

---------+--------+--------+

Total 2771 1755 4526

The FREQ Procedure

Statistics for Table of sex by admit

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 92.2053 <.0001

It certainly looks suspicious. Roughly forty-five percent of the male ap-
plicants were admitted, compared to thirty percent of the female applicants.
This difference in percentages (equivalent to the relationship between vari-
ables here) is highly significant; with n = 4526, the p-value is very close to
zero.
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3.3 Controlling for a variable by subdivision

However, things look different when we take into account the department to
which the person applied. Think of a three-dimensional table in which the
rows are sex, the columns are admission, and the third dimension (call it
layers) is department. Such tables are easy to generate with SAS and other
statistical packages.

The three-dimensional table is displayed by printing each layer on a sep-
arate page, along with test statistics (if requested) for each sub-table. This
is equivalent to dividing the cases into sub-samples, and doing the chisquare
test separately for each sub-sample. A useful way to talk about this is to
say that that we are controlling for the third variable; that is, we are looking
at the relationship between the other two variables with the third variable
held constant. We will have more to say about controlling for collections of
independent variables when we get to regression.

Here are the six sub-tables of sex by admit, one for each department, with
a brief comment after each table. The SAS output is edited a bit to save
paper.

Table 1 of sex by admit

Controlling for dept=A

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 313 | 512 | 825

| 37.94 | 62.06 |

---------+--------+--------+

Female | 19 | 89 | 108

| 17.59 | 82.41 |

---------+--------+--------+

Total 332 601 933

Statistics for Table 1 of sex by admit

Controlling for dept=A

79



Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 17.2480 <.0001

For department A, 62% of the male applicants were admitted, while 82% of
the female applicants were admitted. That is, women were more likely to
get in than men. This is a reversal of the relationship that is observed when
the data for all departments are pooled!

Table 2 of sex by admit

Controlling for dept=B

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 207 | 353 | 560

| 36.96 | 63.04 |

---------+--------+--------+

Female | 8 | 17 | 25

| 32.00 | 68.00 |

---------+--------+--------+

Total 215 370 585

Statistics for Table 2 of sex by admit

Controlling for dept=B

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.2537 0.6145

For department B, women were somewhat more likely to be admitted (an-
other reversal), but it’s not statistically significant.
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Table 3 of sex by admit

Controlling for dept=C

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 205 | 120 | 325

| 63.08 | 36.92 |

---------+--------+--------+

Female | 391 | 202 | 593

| 65.94 | 34.06 |

---------+--------+--------+

Total 596 322 918

Statistics for Table 3 of sex by admit

Controlling for dept=C

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.7535 0.3854

For department C, men were slightly more likely to be admitted, but the
3% difference is much smaller than for the pooled data. Again, it’s not
statistically significant.
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Table 4 of sex by admit

Controlling for dept=D

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 279 | 138 | 417

| 66.91 | 33.09 |

---------+--------+--------+

Female | 244 | 131 | 375

| 65.07 | 34.93 |

---------+--------+--------+

Total 523 269 792

Statistics for Table 4 of sex by admit

Controlling for dept=D

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.2980 0.5852

For department D, women were a bit more likely to be admitted (a re-
versal), but it’s far from statistically significant. Now department E:
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Table 5 of sex by admit

Controlling for dept=E

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 138 | 53 | 191

| 72.25 | 27.75 |

---------+--------+--------+

Female | 299 | 94 | 393

| 76.08 | 23.92 |

---------+--------+--------+

Total 437 147 584

Statistics for Table 5 of sex by admit

Controlling for dept=E

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 1.0011 0.3171

This time it’s a non-significant tendency for men to get in more. Finally,
department F :
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Table 6 of sex by admit

Controlling for dept=F

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 351 | 22 | 373

| 94.10 | 5.90 |

---------+--------+--------+

Female | 317 | 24 | 341

| 92.96 | 7.04 |

---------+--------+--------+

Total 668 46 714

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.3841 0.5354

For department F , women were slightly more likely to get in, but once again
it’s not significant.

So in summary, the pooled data show that men were more likely to be
admitted to graduate study. But when take into account the department to
which the student is applying, there is a significant relationship between sex
and admission for only one department, and in that department, women are
more likely to be accepted.

How could this happen? I generated two-way tables of sex by department
and department by admit; both relationships were highly significant. Instead
of displaying the SAS output, I have assembled some numbers from these two
tables. The same thing could be accomplished with SAS proc tabulate, but
it’s too much trouble, so I did it by hand.

Now it is clear. The two departments with the lowest percentages of
female applicants (A and B) also had the highest overall percentage of appli-
cants accepted, while the department with the highest percentage of female
applicants (E) also had the second-lowest overall percentage of applicants
accepted. That is, the departments most popular with men were easiest to
get into, and those most popular with women were more difficult. Clearly,
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Table 3.1: Percentage of female applicants and overall percentage of appli-
cants accepted for six departments

Department Percent applicants female Percentage applicants accepted
A 11.58% 64.42%
B 4.27 63.25
C 64.60 35.08
D 47.35 33.96
E 67.29 25.17
F 47.76 6.44

this produced the overall tendency for men to be admitted more than women.
By the way, does this mean that the University of California at Berkeley

was not discriminating against women? By no means. Why does a depart-
ment admit very few applicants relative to the number who apply? Because
they do not have enough professors and other resources to offer more classes.
This implies that the departments popular with men were getting more re-
sources, relative to the level of interest measured by number of applicants.
Why? Maybe because men were running the show. The “show,” by the way
definitely includes the U. S. military, which funds a lot of engineering and
similar stuff at big American universities.

The Berkeley data, a classic example of Simpson’s paradox, illustrate the
following uncomfortable fact about observational studies. When you include
a new variable in an analysis, the results you have could get weaker, they
could get stronger, or they could reverse direction — all depending upon the
inter-relations of the independent variables. Basically, if an observational
study does not include every potential confounding variable you can think
of, there is going to be trouble.

Now, the distinguishing feature of the “elementary” tests is that they all
involve one independent variable and one dependent variable. Consequently,
they can be extremely misleading when applied to the data from observational
studies, and are best used as tools for preliminary exploration.

Pooling the chi-square tests When using sub-tables to control for a
categorical independent variable, it is helpful to have a single test that allows
you to answer a question like this: If you control for variable A, is B related
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to C? For the chi-square test of independence, it’s quite easy. Under the null
hypothesis that B is unrelated to C for each value of A, the test statistics for
the sub-tables are independent chisquare random variables. Therefore, there
sum is also chisquare, with degrees of freedom equal to the sum of degrees of
freedom for the sub-tables.

In the Berkeley example, we have a pooled chisquare value of

17.2480 + 0.2537 + 0.7535 + 0.2980 + 1.0011 + 0.3841 = 19.9384

with 6 degrees of freedom. Using any statistics text (except this one), we
can look up the critical value at the 0.05 significance level. It’s 12.59; since
19.9 > 12.59, the pooled test is significant at the 0.05 level. To get a p-value
for our pooled chisquare test, we can use SAS. See the program in the next
section.

In summary, we need to use statistical methods that incorporate more
than one independent variable at the same time; multiple regression is the
central example. But even with advanced statistical tools, the most impor-
tant thing in any study is to collect the right data in the first place. Looking
at it the right way is critical too, but no statistical analysis can compensate
for having the wrong data.

For more detail on the Berkeley data, see the article in Science by Bickel
Hammel and O’Connell [1]. For the principle of adding chisquare values and
adding degrees of freedom from sub-tables, a good reference is Feinberg’s The
analysis of cross-classified categorical data [4].

3.4 The SAS program

Here is the program berkeley.sas. It has several features that you have not
seen yet, so a discussion follows the listing of the program.
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/*************************** berkeley.sas *********************************/

options linesize=79 pagesize=35 noovp formdlim=’_’;

title ’Berkeley Graduate Admissions Data: ’;

proc format;

value sexfmt 1 = ’Female’ 0 = ’Male’;

value ynfmt 1 = ’Yes’ 0 = ’No’;

data berkley;

input line sex dept $ admit count; %$

format sex sexfmt.; format admit ynfmt.;

datalines;

1 0 A 1 512

2 0 B 1 353

3 0 C 1 120

4 0 D 1 138

5 0 E 1 53

6 0 F 1 22

7 1 A 1 89

8 1 B 1 17

9 1 C 1 202

10 1 D 1 131

11 1 E 1 94

12 1 F 1 24

13 0 A 0 313

14 0 B 0 207

15 0 C 0 205

16 0 D 0 279

17 0 E 0 138

18 0 F 0 351

19 1 A 0 19

20 1 B 0 8

21 1 C 0 391

22 1 D 0 244

23 1 E 0 299

24 1 F 0 317

;
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proc freq;

tables sex*admit / nopercent nocol chisq;

tables dept*sex / nopercent nocol chisq;

tables dept*admit / nopercent nocol chisq;

tables dept*sex*admit / nopercent nocol chisq;

weight count;

/* Get p-value */

proc iml;

x = 19.9384;

pval = 1-probchi(x,6);

print "Chisquare = " x "df=6, p = " pval;

The first unusual feature of berkeley.sas is in spite of my recommen-
dations to the contrary, the data are in the program itself rather than in a
separate file. The data are in the data step, following the datalines com-
mand and ending with a semicolon. You can always do this, but usually it’s
a bad idea. Here, it’s a good idea. This is why.

I did not have access to a raw data file, only a 2 by 6 by 2 table of sex
by department by admission. So I created a data set with just 24 lines, even
though there are 4526 cases. Each line of the data set has values for the three
variables, and also a variable called count, which is simply the observed cell
frequency for that combination of sex, department and admission. Then,
using the weight statement in proc freq, I “weighted” each of the 24 cases
in the data file by count, essentially multiplying the sample size by count
for each case.

The advantages are several. First, such a data set is easy to create from
published tables, and is much less trouble than a raw data file with thousands
of cases. Second, the data file is so short that it makes sense to put it in
the data set for portability and ease of reference. Finally, this is the way
you can get the data from published tables (which may not include any
significance tests at all) into SAS, where you can compute any statistics you
want, including sophisticated log-linear modelling analyses.

The last tables statement in the proc freq gives us the three-dimensional
table. For a two-dimensional table, the first variable you mention will cor-
respond to rows and the second will correspond to columns. For higher-
dimensional tables, the second-to-last variable mentioned is rows, the last is
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columns, and combinations of the variables listed first are the control vari-
ables for which sub-tables are produced.

Finally, the iml in proc iml stands for “Interactive Matrix Language,”
and you can use it to perform useful calculations in a syntax that is very
similar to standard matrix algebra notation; this can be very convenient when
formulas you want to compute are in that notation. Here, we’re just using it
to calculate the area under the curve of the chisquare density with 6 degrees
of freedom, beyond the observed test statistic of 19.9384. The probchi

function is the cumulative distribution function of the chisquare distribution;
the second argument (6 in this case) is the degrees of freedom. probchi(x,6)
gives the area under the curve between zero and x, and 1-probchi(x,6) gives
the tail area above x – that is, the p-value.

Summary The example of the Berkeley graduate admissions data teaches
us that if potential confounding variables are not cancelled out by random
assignment to experimental conditions, they need to be explicitly included in
a statistical analysis. Otherwise, the results can be very misleading. In the
Berkeley example, first we ignored department and there was a relationship
between sex and admission that was statistically significant in one direction.
Then, when we controlled for department — that is, when we took it into
account — the relationship was either significant in the opposite direction,
or it was not significant (depending on which department).

We also saw how to pool chi-square values and degrees of freedom by
adding over sub-tables, obtaining a useful test of whether two categorical
variables are related, while controlling for one or more other categorical vari-
ables. This is something SAS will not do for you, but it’s easy to do with
proc freq output and a calculator.
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