STA 413F2011 Assignment 3

Do this assignment in preparation for Quiz Three in tutorial on Friday Sept 30th. The problems are practice for the quiz, and are not to be handed in. See Formula Sheet 3; a copy will be supplied with the quiz.

- 1. Let X be a discrete random variable with $P(X = \theta) = 1$, where θ is a real number.
 - (a) Find the moment-generating function of X; show your work.
 - (b) Use the moment-generating function to find E(X); show your work.
- 2. Let T_1, T_2, \ldots be a sequence of real-valued random variables. Show that if $\lim_{n\to\infty} E(T_n) = \theta$ and $\lim_{n\to\infty} Var(T_n) = 0$, then $T_n \xrightarrow{P} \theta$. Hint: Use Markov's inequality.
- 3. Let $P(T_n = 0) = \frac{n-1}{n}$ and $P(T_n = n^2) = \frac{1}{n}$.
 - (a) Show $T_n \xrightarrow{P} 0$ using the definition of convergence in probability.
 - (b) Does $E(T_n) \to 0$? Answer Yes or No and prove your answer.
 - (c) Does $Var(T_n) \to 0$? Answer Yes or No and prove your answer.

This shows you that the Variance Rule is a sufficient but not a necessary condition for convergence in probability.

- 4. Do Problem 4.2.2. For Part (a), use the variance rule. For (b) and (c), you are allowed to use theorems from the text.
- 5. Do Problem 4.2.3. Something you've already proved is more helpful than Chebyshev's inequality.
- 6. Do Problem 4.2.4.
- 7. Do Problem 4.2.5.
- 8. Let X_1, \ldots, X_n be a random sample from a distribution with expected value μ and variance σ^2 . The Law of Large Numbers says $\overline{X}_n \xrightarrow{P} \mu$. Show that $\overline{X}_n + a \xrightarrow{P} \mu + a$, where a is a constant. Use the definition of convergence in probability.
- 9. As before, let X_1, \ldots, X_n be a random sample from a distribution with expected value μ and variance σ^2 . Prove that $3\overline{X}_n \xrightarrow{P} 3\mu$. Use the definition of convergence in probability.
- 10. Let X_1, \ldots, X_n be a random sample from a distribution with expected value μ and variance σ_x^2 . Independently of X_1, \ldots, X_n , let Y_1, \ldots, Y_n be a random sample from a distribution with the same expected value μ and variance σ_y^2 . Let $T_n = \alpha \overline{X}_n + (1-\alpha) \overline{Y}_n$, where α is a constant between zero and one.

- (a) How do you know \overline{X}_n and \overline{Y}_n are independent?
- (b) Is T_n an unbiased estimator of μ ? Answer Yes or No and show your work.
- (c) Is T_n a consistent estimator of μ ? Answer Yes or No and show your work.
- (d) What value of α would make the estimator T_n most accurate in terms of having the smallest possible variance? Show your work.
- 11. Let X_1, \ldots, X_n be independent random variables with a continuous uniform distribution on $[0, \theta]$, and let $Y_n = \max(X_1, \ldots, X_n)$.
 - (a) Using the definition of convergence in probability, show that Y_n is a consistent estimator of θ .
 - (b) Show that $2\overline{X}_n$ is also consistent for θ .
- 12. Let X be a random variable with expected value μ and variance σ^2 . Show that $\frac{X}{n} \xrightarrow{P} 0$.
- 13. Let X_1, \ldots, X_n be a random sample from an exponential distribution with parameter θ , and let $T_n = nY_1$, where $Y_1 = \min(X_1, \ldots, X_n)$.
 - (a) Find the probability density function of T_n . Don't forget the support.
 - (b) Is T_n unbiased? Answer Yes or No. You can use the formula sheet.
 - (c) Is T_n consistent? Answer Yes or No and justify your answer by giving an explicit formula for $P(|T_n \theta| < \epsilon)$.
- 14. A model for simple regression through the origin is

$$Y_i = \beta x_i + \epsilon_i$$

for i = 1, ..., n, where $\epsilon_1, ..., \epsilon_n$ are a random sample from a distribution with expected value zero and variance σ^2 , and β and σ^2 are unknown constants.

- (a) What is $E(Y_i)$?
- (b) What is $Var(Y_i)$?
- (c) Find the Least Squares estimate of β by minimizing $Q = \sum_{i=1}^{n} (Y_i \beta x_i)^2$ over all values of β . Let $\hat{\beta}_n$ denote the point at which Q is minimal.
- (d) Is $\hat{\beta}_n$ unbiased? Answer Yes or No and show your work.
- (e) Give a sufficient condition for $\hat{\beta}_n$ to be consistent. Show your work. Remember, in this model the x_i are fixed constants, not random variables.
- (f) Let $\hat{\beta}_{2,n} = \frac{\overline{Y}_n}{\overline{x}_n}$. Is $\hat{\beta}_{2,n}$ unbiased? Consistent? Answer Yes or No to each question and show your work.
- (g) Prove that $\hat{\beta}_n$ is a more accurate estimator than $\hat{\beta}_{2,n}$ in the sense that it has smaller variance. Hint: The sample variance of the independent variable values cannot be negative.