Chapter 4

Unbiasedness, Consistency,
and Limiting Distributions

In the previous chapters, we were concerned with probability models and distri-
butions. In the next chapter, we begin discussing statistical inference which will
remain our focus for the remainder of this book. In this chapter, we present some
tools drawn from asymptotic theory. These are useful in statistics as well as in
probability theory.

In our discussion, we use some examples from statistics so the concept of a
random sample will prove helpful for this chapter. More details on sampling are
given in Chapter 5. Suppose we have a random variable X which has pdf, (or
pmf), f(z;8), (p(z;8)), where 8 is either a real number or a vector of real numbers.
Assume that § € Q which is a subset of R?, for p > 1. For example, 8 could be the
vector (u,0?) when X has a N(u,o?) distribution or # could be the probability of
success p when X has a binomial distribution. In the previous chapters, say to work
a probability problem, we would know 8. In statistics, though, 8 is unknown. Our
information about € comes from a sample X;, X3,...,X,,. We often assume that
this is a random sample which means that the random variables X, Xo,..., X,
are independent and have the same distribution as X; that is, X;, Xo,..., X, are
iid. A statistic T is a function of the sample; i.e, T'= T(X, X2, ..., X,). We may
use 7' to estimate 6. In which case, we would say that T is a point estimator
of 8. For example, suppose X1, X2,..., X, is a random sample from a distribution
with mean p and variance o2. Then the statistics X and S? are referred to as the
sample mean and the sample variance of this random sample. They are point
estimators of u and o2, respectively.

As another illustration, consider the case where X is Bernoulli with probability
of success p; that is, X assumes the values 1 or 0 with probabilities p or 1 — p,
respectively. Suppose we perform n Bernoulli trials. Recall that Bernoulli trials
are performed independently of one another and under identical conditions. Let
X; be the outcome on the ith trial, i = 1,2,...,n. Then X;,X2,..., X, form a
random sample from the distribution X. A statistic of interest here is X, which is
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the proportion of successes in the sample. It is a point estimator of p.

4.1 Expectations of Functions

Let X = (Xy,...,X,)" denote a random vector from some experiment. Often we
are interested in a function of X, say, T' = T(X). For example, if X is a sample, T
may be a statistic of interest. We begin by considering linear functions of X; i.e.,

functions of the form N
T = a’X = ZaiXi,
=1

for a specified vector a = (ay,...,a,). We will obtain the mean and variance of
such random variables.

The mean of T follows immediately from the linearity of the expectation oper-
ator, £, but for easy reference we state this as a theorem:

Theorem 4.1.1. Let T'= 3" a;X;. Provided E[|X,|] < oo, fori=1,...,n

For the variance of T', we first state a very general result involving covariances.
Let Y = (Yi1,...,Y,,) denote another random vector and let W = b’Y for a
specified vector b = (by,...,by) .

Theorem 4.1.2. Let T =37 a; X, and let W =Y b,Y;. IfE‘[ 2.< 00, and
E[Y?| <oo fori=1,...,nandj=1,...,m, then

k3 T

cov(T, W) ZZab cov(X;, Y5).

=1 j=1

Proof: Using the definition of the covariance and Theorem 4.1.1 we have the first
equality below, while the second equality follows from the linearity of F

cov(T\W) = E[Z i(aiXi — a; B(X:))(b;Y; — b;E(Y}))]
i=1 j=1
= N abEl(Xi - E(X)(Y; - E(Y))),
i=1 j=1

which is the desired result. m

To obtain the variance of T', simply replace W by 7" in Theorem 4.1.2. We state
the result as a theorem:

Corollary 4.1.1. Let T =" | a,X;. Provided E[X}?] < oo, fori=1,...,n

Var(T) = cou(T,T) = Z a; Var(X;) + 22 a;0; cov( X, X;). (4.1.1)

i<j
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Note that if Xy,...,X,, are independent random variables then the covariance
cov(X,, X;) = 0; see Example 2.5.4. This leads to a simplification of (4.1.1) which
we record in the following corollary.

Corollary 4.1.2. If Xy, ..., X, are independent random variables with finite vari-
ances, then
k23
Var(T) = " af Var(X;). (4.1.2)
i=1

Note that we need only X; and X; to be uncorrelated for all ¢ # § to obtain this
result; for example, Cov(X;, X;) = 0, ¢ # j, which is true when Xq,..., X, are
independent.

Let us now return to the discussion of sampling and statistics found at the
beginning of this chapter. Consider the situation where we have a random variable
X of interest whose density is given by f(x;8), for 8 € . The parameter 8 is
unknown and we seek a statistic based on a sample to estimate it. Qur first property
of an estimator concerns its expectation.

Definition 4.1.1. Let X be a random variable with pdf f(z;0) or pmf p(z;0),
0 € 8. Let Xy,..., Xy be a random sample from the distribution of X and let T
denote a statistic. We say T is an unbiased estimator of 0 if

E(T)y=0, forall8eq. (4.1.3)

If T is not unbiased (that is, E(T) # 8), we say that T is a biased estimator of 6.

Example 4.1.1 (Sample Mean). Let Xy,..., X, be a random sample from the
distribution of a random variable X which has mean p and variance o2. Recall
that the sample mean is given by X = n~} >.%  X;. This is a linear combination
of the sample observations with a; = n~'; hence, by Theorem 4.1.1 and Corollary
4.1.2 we have,

2

E(X)=pand Var(X) = <. (4.1.4)

k3

Hence, X is an unbiased estimator of y. Furthermore, the variance of X becomes
small as n gets large. That is, it seems in the limit that the mass of the distribution
of the sample mean X is converging to u as n gets large. This is presented in the
next section. m

Example 4.1.2 (Sample Variance). As in the last example, let Xy,..., X, be
a random sample from the distribution of a random variable X which has mean g
and variance o2. Define the sample variance by

n

S=n-1)") (X-XP=mn-1)" (Z X2 - nYZ) : (4.1.5)
) i=1

i=1

where the second equality follows after some algebra; see Exercise 4.1.3. Using the
above theorems, the results of the last example, and the fact that E(X?) = o + u?,
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we have the following

E(5%)

(n—1)" (ZE (X3 —nBE(X ))
= (n-1)7"{no®+np® —n[(c?/n) + /12]}
= o (4.1.6)

Hence, the sample variance is an unbiased estimate of 0. If V =n"1 5" | (X;—X)?
then E(V) = ((n —1)/n)o?. That is V is a biased estimator of ¢2. This is one
reason for dividing by n — 1 instead of n in the definition of the sample variance. m

Example 4.1.3 (Maximum of a Sample from a Uniform Distribution).
Let Xj,..., X be a random sample from a uniform(0,6) distribution. Suppose
# is unknown. An intuitive estimate of 8 is the maximum of the sample. Let
Y, = max {Xy,..., X,}. Exercise 4.1.2 shows that the cdf of Y, is

1 t>0
Fr.t)=¢ ()" 0<t<e@ (4.1.7)
0 t < 0. ’

Hence, the pdf of Y;, is

A=l <t <
—_ gn =
fy,(8) = { 0 elsewhere. (4.1.8)

Based on its pdf, it is easy to show that E(Y,,) = (n/(n+1))8. Thus, Y, is a biased
estimator of #. Note, however, that ((n 4+ 1)/n)Y,, is an unbiased estimator of 6. m

Example 4.1.4 (Sample Median). Let X, X5, ..., X,, be a random sample from
the distribution of X, which has pdf f(z). Suppose p = E(X) exists and, further,
that the pdf f(z) is symmetric about p. In Example 4.1.1, we showed that the
sample mean was an unbiased estimator of u. What about the sample median,
T=T(X,Xs,...,X,) = med{Xy, X2,...,Xn}? The sample median satisfies two
properties: (1), if we increase (or decrease) the sample items by & then the sample
median increases (or decreases) by b, and (2), if we multiply each sample item by
—1, then the median gets multiplied by —1. We can abbreviate these properties as:

T(X1+0,Xo+0b,...,Xp+b) = T(X1,Xo,...,Xn)+b (4.1.9)
T(—X1,—Xa,...,—Xn) = ~T(X1,Xa2,...,X,). (4.1.10)

As Exercise 4.1.1 shows, if X, is symmetrically distributed about g, the distribution
of the random vector (X; — p,...,X,, — ) is the same as the distribution of the
random vector (—(X1 —pu), ..., — (X, —u)). In particular, expectations taken under

these random vectors are the same. By this fact and (4.1.9) and (4.1.10), we have
the following:
EIT|~u = B[I(X1,...,Xn) = p= BT(Xs — iy, X — )]
[T(— (X ),...,—(Xn—p,))]
— B[T(Xi— ey Xn— )]
= —E[T(X, )] +u=—E[T]+p. (4.1.11)

|
&
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That is, 2E(T) = 2u, so we have E[T] = u. However, the sample median satisfies
(4.1.9) and (4.1.10}; thus, under these conditions the sample median is an unbiased
estimator of 8. Which estimator, the sample mean or the sample median, is better?
We will consider this question later. m

Note that the median is transparent to the argument in the last example. That
is, if T' is an estimator of p which satisfies the conditions (4.1.9) and (4.1.10) and
the pdf of X is symmetric about g, then T is an unbiased estimator of .

EXERCISES

4.1.1. Suppose X has a pdf which is symmetric about b; i.e., f(b+z) = f(b— ),
for all —oo < z < co. We say that X is symmetrically distributed about b.

(a) Show that ¥ = X — b is symmetrically distributed about 0.
(b) Show that Z = —(X — b) has the same distribution as Y in Part (a).

(c) Show that (X7 — g, ..., Xn — ) and (—(Xy — ), ..., = (X5 — u)) as defined
in Example 4.1.4 have the same distribution.

4.1.2. Derive the cdf given in expression (4.1.7).
4.1.3. Derive the second equality in expression (4.1.5).

4.1.4. Let Xy, X2, X3, X4 be four iid random variables having the same pdf f(z) =
2z, 0 < x < 1, zero elsewhere. Find the mean and variance of the sum Y of these
four random variables.

4.1.5. Let X; and X, be two independent random variables so that the variances
of X1 and X, are Uf = k and U% = 2, respectively. Given that the variance of
Y = 3X2 - X1 is 25, find k.

4.1.6. If the independent variables X; and X» have means pj, p2 and variances
o?, o2, respectively, show that the mean and variance of the product ¥ = X; X
are pi1pg and oto? + po? + uo?, respectively.

4.1.7. Find the mean and variance of the sum Y of the observations of a random
sample of size 5 from the distribution having pdf f(z) = 6z(1 —z), 0 <z < 1, zero
elsewhere.

4.1.8. Determine the mean and variance of the mean X of a random sample of size
9 from a distribution having pdf f(z) = 4z, 0 < z < 1, zero elsewhere.

4.1.9. Let X and Y be random variables with g = 1, s = 4, 0? = 4, 02 =
6, p = 7. Find the mean and variance of Z = 3X — 2V

4.1.10. Let X and Y be independent random variables with means pq, p2 and
variances o2, o%. Determine the correlation coefficient of X and Z = X — Y in
terms of u1, pa, 07,02
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4.1.11. Let i and 02 denote the mean and variance of the random variable X. Let
Y = ¢+ bX, where b and ¢ are real constants. Show that the mean and the variance
of Y are, respectively, ¢ + bu and b%0?.

4.1.12. Find the mean and the variance of Y = X| — 2X5 + 3X3, where X1, Xo, X3
are observations of a random sample from a chi-square distribution with 6 degrees
of freedom.

4.1.13. Determine the correlation coefficient of the random variables X and Y if
var(X) = 4, var(Y) = 2, and var(X + 2Y) = 15.

4.1.14. Let X and Y be random variables with means p;, po; variances a%, o2; and
correlation coefficient p. Show that the correlation coefficient of W = a X +b, a > 0,
and Z =cY +d, ¢>0,is p.

4.1.15. A person rolls a die, tosses a coin, and draws a card from an ordinary deck.
He receives $3 for each point up on the die, $10 for a head and $0 for a tail, and $1
for each spot on the card (jack = 11, queen = 12, king = 13). If we assume that
the three random variables involved are independent and uniformly distributed,
compute the mean and variance of the amount to be received.

4.1.16. Let X; and X; be independent random variables with nonzero variances.
Find the correlation coefficient of Y = X1 X, and X in terms of the means and
variances of X, and Xs.

4.1.17. Let X; and X, have a joint distribution with parameters p1, u2, o7, o2,

and p. Find the correlation coefficient of the linear functions of Y = 41X + a2 X5
and Z = b X7 + b2X5 in terms of the real constants a;, as, b, bg, and the
parameters of the distribution.

4.1.18. Let X, X5, and X3 be random variables with equal variances but with
correlation coefficients p12 = 0.3, p13 = 0.5, and p23 = 0.2. Find the correlation
coefficient of the linear functions ¥ = X, + X3 and Z = X5 + Xj.

4.1.19. Find the variance of the sum of 10 random variables if each has variance 5
and if each pair has correlation coefficient 0.5.

4.1.20. Let X and Y have the parameters py, uo, af, or%, and p. Show that the
correlation coefficient of X and [Y - p(o2/01)X] is zero.

4.1.21. Let X; and X, have a bivariate normal distribution with parameters
w1, pa, o2, o3, and p. Compute the means, the variances, and the correlation
coefficient of ¥7 = exp(X) and Yz = exp(Xa2).
Hint: Various moments of Y| and Y3 can be found by assigning appropriate values
to 1 and to in E[exp(thl + fZXQ)]
4.1.22. Let X be N(u,0?) and consider the transformation X = log(Y’) or, equiv-
alently, Y = eX.

(a) Find the mean and the variance of Y by first determining E(e*X) and E[(e*)?],
by using the mgf of X.
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(b) Find the pdf of Y. This is the pdf of the lognormal distribution.
4.1.23. Let X; and X3 have a trinomial distribution with parameters n, p;, pa.
(a) What is the distribution of ¥ = X + X7

(b) From the equality 0%, = 02 +02+42p0;109, once again determine the correlation
coefficient p of X; and X5.

4.1.24. Let Y7 = X7 + Xy and Yy = X5 4+ X3, where X, Xo, and X3 are three
independent random variables. Find the joint mgf and the correlation coefficient of
Y: and Y, provided that:

(a) X, has a Poisson distribution with mean p;, i =1,2,3.
(b) Xiis N(u;,02), i=1,2,3.

4.1.25. Let S% be the sample variance of a random sample from a distribution with
variance o2 > 0. Since E(5%) = 02, why isn’t E(S) = o?
Hint: Use Jensen’s inequality to show that E(S) < o.

4.1.26. For the last exercise, suppose that the sample is drawn from a N(u,o?)
distribution. Recall that (n — 1)5%/0? has a x*(n — 1) distribution. Use Theorem
3.3.1 to determine an unbiased estimator of ¢.

4.1.27. Let S? be the sample variance of a random sample drawn from a N(u,o?)
distribution. Show that the constant ¢ = (n— 1)/(n + 1) minimizes E[(cS? — 0?)?].
Hence, the estimator (n 4+ 1)7! 3" (X, — X)? of o minimizes the mean square
error among estimators of the form ¢S2.

4.2 Convergence in Probability

In this section, we formalize a way of saying that a sequence of random variables
is getting “close” to another random variable. We will use this concept throughout
the book.

Definition 4.2.1. Let {X,} be o sequence of random wvariables and let X be a
random variable defined on a sample space. We say that X,, converges in prob-
ability to X if for alle >0

lim P[|X, - X|>¢ =0,
—00

or equivalently,
lim PlIX,— X|<¢ =1

n—0C
If so, we write
P
X, = X.
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If X, L8 X, we often say that the mass of the difference X, — X is converging
to 0. In statistics, often the limiting random variable X is a constant; i.e., X is a
degenerate random variable with all its mass at some constant a. In this case, we
write X, L a. Also, as Exercise 4.2.1 shows, convergence of real sequence a,, — a
is equivalent to a, L

One way of showing convergence in probability is to use Chebyshev’s Theorem
(1.10.3). An illustration of this is given in the following proof. To emphasize the fact
that we are working with sequences of random variables, we may place a subscript
n on random variables, like X to read X,,.

Theorem 4.2.1 (Weak Law of Large Numbers). Let {X,.} be a sequence of
#id random wvariables having common mean p and variance 0% < oco. Let X, =
nt 3" Xi. Then

X, 5

Proof: Recall from Example 4.1.1 that mean and variance of X, is p and o?/n,
respectively. Hence, by Chebyshev’s Theorem we have for any ¢ > 0,

PR, 4 2 d = PIXo— ] > (Vo)) Vi) < 2y 0. m

This theorem says that all the mass of the distribution of X, is converging to
1, as n converges to oo. In a sense, for n large, X, is close to p. But how close?
For instance, if we were to estimate u by X,,, what can we say about the error of
estimation? We will answer this in Section 4.3.

Actually in a more advanced course a Strong Law of Large Numbers is proven;
see page 124 of Chung (1968). One result of this theorem is that we can weaken the
hypothesis of Theorem 4.2.1 to the assumption that the random variables X, are
independent and each has finite mean u. Thus the Strong Law of Large Numbers
is a first moment theorem, while the Weak Law requires the existence of the second
moment.

There are several theorems concerning convergence in probability which will
be useful in the sequel. Together the next two theorems say that convergence in
probability is closed under linearity.

Theorem 4.2.2. Suppose X > X and Y, 5 Y . Then Xn + Yy 5 X +Y .
Proof: Let ¢ > 0 be given. Using the triangle inequality we can write
X~ X+ Yo = Y| 2 [(Xn + Yn) — (X +Y)|[ > e
Since P is monotone relative to set containment, we have
Pll(Xn+Yo) —(X+Y)[ 2 ¢ < PIX—X[+|Y0 Y] 2¢
< Pl|Xn,-X|2€/2]+ P||Y, - Y| >¢€/2].

By the hypothesis of the theorem, the last two terms converge to 0 which gives us
the desired result. m
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Theorem 4.2.3. Suppose X, £ X and a is a constant. Then aX, L ax.

Proof: 1f a = 0, the result is immediate. Suppose a # 0. Let ¢ > 0. The result
follows from these equalities:

PllaX, — aX| = €] = Pllal|lXn — X| 2 ] = P[|X;, — X| 2 ¢/la]],

and by hypotheses the last term goes to 0. m

Theorem 4.2.4. Suppose X, £ a and the real function g is continuous at a. Then
P

9(Xa) — gla). ]

Proof: Let € > 0. Then since g is continuous at a, there exists a é > 0 such that if
|z — a| < 4, then |g(z) — g(a)|] < e. Thus

l9(x) — g(a)] 2 e= |z —a| 2 6.
Substituting X,, for z in the above implication, we obtain
Pllg(Xn) = g(a)| Z € < Pl|Xn —al = d].

By the hypothesis, the last term goes to 0 as n — oo, which gives us the result. m

This theorem gives us many useful results. For instance, if X, Ll a, then

P
X 5 a2

1/X, 2 1/a, provided a #0,
VX, £ a, provided a > 0.

Actually, in a more advanced class, it is shown that if X, £ X and gis a

continuous function then g(X,) A g(X); see page 104 of Tucker (1967). We make
use of this in the next theorem.

Theorem 4.2.5. Suppose Xn 2> X and Y, 5 Y. Then XnY, 5 XY .

Proof: Using the above results, we have

1 1 1
XY, = EX’% + Ey,f - 5(Xn = Y,)?

1o, 1., 1 )
- SYy?o (X —Y)?=XY.
SX Y - (X Y)Y = XY m

Let us return to our discussion of sampling and statistics. Consider the situation
where we have a random variable X whose distribution has an unknown parameter
g € Q. We seek a statistic based on a sample to estimate . In the last section,
we introduced the property of unbiasedness for an estimator. We now introduce
consistency:
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Definition 4.2.2. Let X be o random wvariable with cdf F(xz,0), § € Q. Let
X1...., X, be a sample from the distribution of X and let T,, denote a statistic.
We say T, is a consistent estimator of 8 if

7. %o

If X1,...,X, is a random sample from a distribution with finite mean p and
variance o2, then by the Weak Law of Large Numbers, the sample mean, X, is a
consistent estimator of .

Example 4.2.1 (Sample Variance). Let X;,..., X,, denote a random sample
from a distribution with mean g and variance 02. Theorem 4.2.1 showed that

Xn A . To show that the sample variance converges in probability to o2, assume
further that E[X{] < oo, so that Var(5?) < co. Using the preceding results, we can
show the following:

1 i — . n 1 <& —2
2 o 2 _ 1 2
So = — ZEZI(XZ Xn) = 1 (n E X; Xn>

L1 [B(XE) - ] =0

Hence, the sample variance is a consistent estimator of ¢2. m

Unlike the last example, sometimes we can obtain the convergence by using the
distribution function. We illustrate this with the following example:

Example 4.2.2 (Maximum of a Sample from a Uniform Distribution). Re-
consider Example 4.1.3, where X, ..., X,, is a random sample from a uniform(0, #)
distribution. Let ¥,, = max {X,,..., X,}. The cdf of Y}, is given by expression
(4.1.7), from which it is easily seen that Y, L 6 and the sample maximum is a
consistent estimate of . Note that the unbiased estimator, ((n + 1)/n)Y,,, is a.lso/
consistent. m N

To expand on Example 4.2.2, by the Weak Law of Large Numbers, Theorem
4.2.1, it follows that X, is a consistent estimator of 6/2 so 2X, is a consistent
estimator of #. Note the difference in how we showed that Y, and 2X , converge to
¢ in probability. For Y,, we used the cdf of Y, but for 2X,, we appealed to the Weak
Law of Large Numbers. In fact, the cdf of 2X, is quite complicated for the uniform
model. In many situations, the cdf of the statistic cannot be obtained but we can
appeal to asymptotic theory to establish the result. There are other estimators of
#. Which is the “best” estimator? In future chapters we will be concerned with
such questions.

Consistency is a very important property for an estimator to have. It is a poor
estimator that does not approach its target as the sample size gets large. Note that
the same cannot be said for the property of unbiasedness. For example, instead of
using the sample variance to estimate o2, suppose we use V.=n"1 5" (X; — X)2
Then V is consistent for o2, but it is biased, because E(V) = (n — 1)o?/n. Thus
the bias of V is ¢2/n, which vanishes as n — oo.
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EXERCISES

4.2.1. Let {a,} be a sequence of real numbers. Hence, we can also say that {a,}
is a sequence of constant (degenerate) random variables. Let a be a real number.

Show that a,, — a is equivalent to a, £ a
4.2.2. Let the random variable Y, have a distribution that is b(n, p).

(a) Prove that Y,,/n converges in probability p. This result is one form of the
weak law of large numbers.

(b) Prove that 1 — Y}, /n converges in probability to 1 — p.
(c) Prove that (Y,/n)(1 —Y,/n) converges in probability to p(1 — p).

4.2.3. Let W, denote a random variable with mean p and variance b/n”, where
p > 0, u, and b are constants (not functions of n). Prove that W,, converges in
probability to p.

Hint: Use Chebyshev’s inequality.

4.2.4. Let X4,..., X, be iid random variables with common pdf

6_(z_9) >0 —00 < < oo
fla) = { 0 elsewhere. (4.2.1)

This pdf is called the shifted exponential. Let Y,, = min{X,,...,X,}. Prove
that Y, — @ in probability, by obtaining the cdf and the pdf of Y,,.

4.2.5. For Exercise 4.2.4, obtain the mean of Y,,. Is ¥,, an unbiased estimator of
f? Obtain an unbiased estimator of 8 based on Y,,.

4.3 Convergence in Distribution

In the last section, we introduced the concept of convergence in probability. With
this concept, we can formally say, for instance, that a statistic converges to a pa-
rameter and, furthermore, in many situations we can show this without having to
obtain the distribution function of the statistic. But how close is the statistic to the
estimator? For instance, can we obtain the error of estimation with some credence?
The method of convergence discussed in this section, in conjunction with earlier
results, gives us affirmative answers to these questions.

Definition 4.3.1 (Convergence in Distribution). Let {X,} be a sequence of
random variables and let X be a random variable. Let Fx, and Fx be, respec-
tively, the cdfs of X,, and X. Let C(Fx) denote the set of all points where F'x is
continuous. We say that X,, converges in distribution to X if

lim Fx, () = Fx(z), forallz € C(Fx).

We denote this convergence by
X, 5 x.
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Remark 4.3.1. This material on convergence in probability and in distribution
comes under what statisticians and probabilists refer to as asymptotic theory. Of-
ten, we say that the ditsribution of X is the asymptotic distribution or the
limiting distribution of the sequence {X,,}. We might even refer informally to
the asymptotics of certain situations. Moreover, for illustration, instead of saying

X, LA X, where X has a standard normal random, we may write f
X, 5 N(0,1),

as an abbreviated way of saying the same thing. Clearly the right-hand member
of this last expression is a distribution and not a random variable as it should be,
but we will make use of this convention. In addition, we may say that X, has
a limiting standard normal distribution to mean that X, LA X, where X has a
standard normal random, or equivalently X, 5 N(0,1). m

Motivation for only considering points of continuity of F'x is given by the follow-
ing simple example. Let X,, be a random variable with all its mass at TiL and let X
be a random variable with all its mass at 0. Then as Figure 4.3.1 shows all the mass
of X,, is converging to 0, i.e., the distribution of X. At the point of discontinuity of
Fx,lim Fx_(0) = 0 # 1 = Fx(0); while at continuity points z of F'x, (i.e., , z # 0),

lim Fx, (z) = Fx(x). Hence, according to the definition, X, 2 x.

F, (X

(0,0) n!
Figure 4.3.1: Cdf of X,, which has all its mass at n~*

Convergence in probability is a way of saying that a sequence of random variables
X, is getting close to another random variable X. On the other hand, convergence
in distribution is only concerned with the cdfs Fx, and Fx. A simple example
illustrates this. Let X be a continuous random variable with a pdf fx (z) which is
symmetric about 0; i.e., fx{(—x) = fx(z). Then is easy to show that the density of
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the random variable —X is also fx(z). Thus X and — X have the same distributions.
Define the sequence of random variables X,, as

X, = { X if n is odd (4.3.1)

—X ifniseven.

Clearly Fx, (z) = Fx(z) for all z in the support of X, so that X, 5 X. On the
other hand, the sequence X,, does not get close to X. In particular, X, 4 X in
probability.

Example 4.3.1. Let X, have the cdf

—nw?/2 dw

I L
P@= NV

If the change of variable v = /nw is made, we have

F(f)—/ﬁE L —v/24,
" B —oo V2w '

It is clear that

0 <0
lim F(z)=¢ 3 =0
e 1 >0

Now the function
_ 0 <0
b@) = { 1 720,

is a cdf and lim, o Fr(T) = F(T) at every point of continuity of F(Z). To be
sure, limy, o0 F,(0) # F(0), but F(Z) is not continuous at T = 0. Accordingly, the
sequence X1, X2, Xs,... converges in distribution to a random variable that has a
degenerate distribution at 7 =0. m

Example 4.3.2. Even if a sequence X1, X9, X3,... converges in distribution to a
random variable X, we cannot in general determine the distribution of X by taking
the limit of the pmf of X,,. This is illustrated by letting X, have the pmf

(z) = 1 z=2+n""!
PriT) =193 0 elsewhere.

Clearly, lim,— o0 pn(z) = 0 for all values of z. This may suggest that X,, for
n=1,2,3,..., does not converge in distribution. However, the cdf of X,, is

0 z<24n"t
Fn(m)_{l 11224‘7171,

and

. 0 <2
nlLIEoFT‘(x)‘{ 1 z>2
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0 z<2
Fz) = { 1 z>2,
is a cdf, and since lim, .~ Fn(z) = F(z) at all points of continuity of F(z), the

sequence Xi, Xa, X3,... converges in distribution to a random variable with cdf
Flz). m

The last example showed in general that we cannot determine limiting distribu-
tions by considering pmfs or pdfs. But under certain conditions we can determine
convergence in distribution by considering the sequence of pdfs as the following
example shows.

Example 4.3.3. Let T,, have a t-distribution with n degrees of freedom, n =
1,2,3,.... Thus its cdf is

oo VTR T(n/2) (1 + y2/n)nt1)/2

where the integrand is the pdf f,,(y) of T,,. Accordingly,

Fn(t) = dy,

t
lim F,(t) = hm / faly)dy -/ Jim f(y) dy.

7t — 00
By a result in analysis, (Lebesgue Dominated Convergence Theorem), that allows us
to interchange the order of the limit and integration provided |f,(y)| is dominated

by a function which is integrable. This is true because

[fn(y)] < 10f1(y)

and

o 10
10f1(y) dy = — arctant < oo,
oo ™

for all real t. Hence, we can find the limiting distribution by finding the limit of the
pdf of T,,. It is

o TR S (G R 072 1N P SR S
nl_m;fn(y) - nlﬂoo{ /nj2 Fn/Q)}nl—r»rolo{(l-}—yz/n)l/?}

(000

Using the fact from elementary calculus that

AL .
lim (1+2_) =e¥,
n—0o0 n
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the limit associated with the third factor is clearly the pdf of the standard normal
distribution. The second limit obviously equals 1. By Remark 4.3.2, the first limit
also equals 1. Thus we have

lim F,(t) :/

—oo V2T

t
eV dy,

and hence T;, has a limiting standard normal distribution. m

Remark 4.3.2 (Stirling’s Formula). In advanced calculus the following approx-
imation is derived,
D(k+1) = V2rkk+t1/2e=k (4.3.2)

This is known as Stirling’s formula and it is an excellent approximation when k is
large. Because I'(k+ 1) = k!, for k an integer, this formula gives one an idea of how
fast k! grows. As Exercise 4.3.20 shows, this approximation can be used to show
that the first limit in Example 4.3.3is 1. m

Example 4.3.4 (Maximum of a Sample from a Uniform Distribution,
Continued). Recall Example 4.1.3, where X1,..., X,, is a random sample from a
uniform(0, §) distribution. Again let Y;, = max {Xy,..., Xy}, but now counsider the
random variable Z,, = n(@ —Y,,). Let ¢t € (0,n8). Then, using the cdf of ¥, (4.1.7),
the cdf of Z,, is

P[Z, <t

i

PY, > 6 — (t/n)]
_ 91’(75/72) "
= 1 (T)

oy

— 1—e P

Note that the last quantity is the cdf of an exponential random variable with mean
6, (3.3.2). So we would say that Z, 5 Z, where Z is distributed exp(6). m

Remark 4.3.3. To simplify several of the proofs of this section, we make use of
the lim and lim of a sequence. For readers who are unfamilar with these concepts,
we discuss them in Appendix A. In this brief remark, we highlight the properties
needed for understanding the proofs. Let {a,} be a sequence of real numbers and
define the two subsequences,

by, = sup{an,ans1,...}, n=1,2,3..., (4.3.3)
¢n = inf{an,an41,...}, n=1,2,3.... (4.3.4)

While {¢,} is a nondecreasing sequence, {b,} is a nonincreasing sequence. Hence,
their limits always exist, (may be £00). Denote them respectively by lim,, ,  a,
and 11'17,,.,00 a,. Further, ¢, < a,, < b,, for all n. Hence, by the Sandwich Theorem
(see Theorem A.2.1 of Appendix A), if lim,, ., a, = lim, .o an, then lim, .o a,

exists and is given by lim, ..o Gn, = liM, ., G-
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As discussed in the appendix, several other properties of these concepts are
useful. For example, suppose {p,, } is a sequence of probabilities and limp 00 P = 0.
Then by the Sandwich Theorem, since 0 < p,, < sup{pn,Pn+1,---}, for all n, we
have lim, .., pn = 0. Also, for any two sequences {a,} and {b,}, it easily follows
that mn—»oo(an -+ bn) < m-n~—’oo apn + m-n,—»oo by. W

As the following theorem shows, convergence in distribution is weaker than
convergence in probability. Thus convergence in distribution is often called weak
convergernce.

Theorem 4.3.1. If X, conuverges to X in probability, then X, converges to X in
distribution.

Proof: Let x be a point of continuity of Fx(z). Let € > 0. We have,
FXn (.27) = P[Xn S ZE}
= PH{X, <z}n{|Xn - X| <e}]+ P{X, <2} n{|{Xn - X|>€}]
< PX<z+€e+PlXn—X|>¢.

Based on this inequality and the fact that X, Lt X, we see that

Iim Fx, (z) < Fx(z+¢). (4.3.5)

N~ 0C
To get a lower bound, we proceed similarly with the complement to show that
PIX,>z] <P[X >z —¢+ P X, - X| > €]
Hence,

li_r[l_v FX,,(T) _>_ Fx<IC b E). (436)

TL— DO

Using a relationship between lim and lim, it follows from (4.3.5) and (4.3.6) that

Fx(z—¢) < lim Fx, (z) < lim Fy (z) < Fx(z +¢).

Letting € | 0 gives us the desired result. m
Reconsider the sequence of random variables { X,,} defined by expression (4.3.1).

P
Here, X, L x but X, # X. So in general the converse of the above theorem is
not true. However, it is true if X is degenerate as shown by the following theorem.

Theorem 4.3.2. If X, converges to the constant b in distribution, then X, con-
verges to b in probability.

Proof: Let € > 0 be given. Then,

lim Pl|X, —b/ <¢ = lim Fx (b+e)— lim Fx (b—e—0)=1-0=1,
=00 — 00

n—2o0

which is the desired result. m

A result that will prove quite useful is the following:
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Theorem 4.3.3. Suppose X,, converges to X in distribution and Y, converges in
probability to 0. Then X,, +Y,, converges to X in distribution.

The proof is similar to that of Theorem 4.3.2 and is left to Exercise 4.3.12. We
often use this last result as follows. Suppose it is difficult to show that X,, converges
to X in distribution; but it is easy to show that Y, converges in distribution to X
and that X, — Y, converges to 0 in probability. Hence, by this last theorem,
X, =Y, + (X, —Y,) 2 X, as desired.

The next two theorems state general results. A proof of the first result can be
found in a more advanced text while the second, Slutsky’s Theorem, follows similar
to that of Theorem 4.3.1.

Theorem 4.3.4. Suppose X,, converges to X in distribution and g is o continuous
function on the support of X. Then g(X,) converges to g(X) in distribution.
Theorem 4.3.5 (Slutsky’s Theorem). Let X, X, A,, B, be random variables
and let a and b be constants. If X, LA X, A, Lif a, and B, Lif b, then

A, + B, Xn 2 a+bX.

4.3.1 Bounded in Probability

Another useful concept, related to convergence in distribution, is boundedness in
probability of a sequence of random variables.

First consider any random variable X with cdf Fx(z). Then given € > 0, we
can bound X in the following way. Because the lower limit of F'x is 0 and its upper
limit is 1 we can find m and 72 such that

Fx(z) <e/2forx <m and Fx(z) > 1—(e/2) for x > 5.
Let n = max{|n|, |n2|} then
PUX| <l = Fx(n) - Fx(cn—0)>1—(¢/2) — (¢/2) =1—c.  (437)

Thus random variables which are not bounded (e.g., X is N(0, 1)) are still bounded
in the above way. This is a useful concept for sequences of random variables which
we define next.

Definition 4.3.2 (Bounded in Probability). We say that the sequence of ran-
dom variables {X,,} is bounded in probability, if for all € > 0 there exists a constant
B. > 0 and an integer N, such that

n>N.= Pl|X,|<BJ]>1-¢

Next, consider a sequence of random variables { X, } which converge in distribu-
tion to a random variable X which has cdf F. Let € > 0 be given and choose 7 so
that (4.3.7) holds for X. We can always choose 7 so that n and —n are continuity
points of F'. We then have,

lim P[|X,|<n]> lim Fx, (9)— lim Fx, (-n-0)=Fx(n) - Fx(-n)=1-e
n—000 n—o0

n~— 00
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To be precise, we can then choose N so large that P[|X,| <n]>1—¢, for n > N.
‘We have thus proved the following theorem

Theorem 4.3.6. Let { X} be a sequence of random variables and let X b; a random
variable. If X,, — X in distribution, then {X,} is bounded in probability.

As the following example shows, the converse of this theorem is not true.

Example 4.3.5. Take {X,} to be the following sequence of degenerate random
variables. For n = 2m even, Xo,, = 2+ (1/(2m)) with probability one. For
n=2m — 1 odd, Xomn—1 = 1+ (1/(2m)) with probability one. Then the sequence
{X2, X4, Xs, ...} converges in distribution to the degenerate random variable ¥ = 2,
while the sequence {X;,X3,Xs,...} converges in distribution to the degenerate
random variable W = 1. Since the distributions of ¥ and W are not the same, the
sequence {X,} does not converge in distribution. Because all of the mass of the
sequence {X,} is in the interval [1,5/2], however, the sequence {X,} is bounded in
probability. m

One way of thinking of a sequence which is bounded in probability (or one which
is converging to a random variable in distribution) is that the probability mass of
| X,| is not escaping to co. At times we can use boundedness in probability instead
of convergence in distribution. A property we will need later is given in the following
theorem

Theorem 4.3.7. Let {X,} be a sequence of random variables bounded in probability
and let {Y,,} be a sequence of random variables which converge to 0 in probability.
Then

XY, 5o

Proof: Let € > 0 be given. Choose B, > 0 and an integer N, such that
n>N,. = P X,|<BJ]>1-¢
Then,
lim P[|X,Y,|>¢ < lim P[X,Y.| > ¢ |Xal < B
n—0C n—00
+ lim P[|X,Y.| > € |Xa| > B
n—00
< lim P[|Y,]| > ¢/B]+ec=¢ (4.3.8)
n—o0

From which the desired result follows. =

4.3.2 A-Method

Recall a common problem discussed in the last three chapters is the situation where
we know the distribution of a random variable, but we want to determine the distri-
bution of a function of it. This is also true in asymptotic theory and Theorems 4.3.4
and 4.3.5 are illustrations of this. Another such result is called the A-method. To
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establish this result we need a convenient form of the mean value theorem with re-
mainder, sometimes called Young’s Theorem; see Hardy (1992) or Lehmann (1999).
Suppose g(z) is differentiable at 2. Then we can write,

9(y) = g(z) + ¢'(x)(y — ) + o(ly — xI), (4.3.9)
where the notation o means
a=o(b) if and only if § — 0, as b — 0.

The little o notation is used in terms of convergence in probability, also. We
often write o,(X5,), which means

Y, = 0,(X,) if and only if % £0,as 1 — oo. (4.3.10)
There is a corresponding big O notation which is given by
Y, = 0,(X,) if and only if )\:—’; is bounded in probability as n — co.  (4.3.11)

The following theorem illustrates the little-o notation, but it is also serves as a
lemma for Theorem 4.3.9.

Theorem 4.3.8. Suppose {Y,,} is a sequence of random variables which is bounded
in probability. Suppose X, = 0,(Yy). Then X, Lt 0, as n — 0.

Proof: Let € > 0 be given. Because the sequence {¥;,} is bounded in probability,
there exists positive constants N, and B, such that

n>N, = Pl|Ya| < B >1-e (4.3.12)

Also, because X, = 0,(Y5), we have

Xn P
— 4.3.1
Y, 0, (4.3.13)
as n — 0o0. We then have,
PlIXnl > ¢ = P[Xal 2 |Ya] < B+ PllXa| 2 €,|Ya| > B
X €
> — PlY, B.].
< plgEz 5|+ P> B

By (4.3.13) and (4.3.12), respectively, the first and second terms on the right-side
can be made arbitrarily small by choosing n sufficiently large. Hence, the result is
true. m

Theorem 4.3.9. Let {X,} be a sequence of random variables such that
Vi(Xn —60) B N(0,0?). (4.3.14)
Suppose the function g(x) is differentiable at 8 and g'(0) # 0. Then

Va(g(Xa) — 9(6)) 2 N(0,02(¢'(8))?). (4.3.15)
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Proof: Using expression ( 4.3.9), we have,
9(Xn) = g(0) + g'(0)(Xn — ) + 0p(1 X0 — 6]),
where o, is interpretated as in ( 4.3.10). Rearranging, we have
VA(9(Xn) = 9(6)) = ¢'(O)VA( X — 0) + 0y(x/7| X, — ).

Because (4.3.14) holds, Theorem 4.3.6 implies that /7| X, — 8| is bounded in prob-
ability. Therefore by Theorem 4.3.8 0,(y/n|X, — 6]) — 0, in probability. Hence by
(4.3.14) and Theorem 4.3.1 the result follows. m

[lustrations of the A- method can be found in Example 4.3.8 and the exercises.

4.3.3 Moment Generating Function Technique

To find the limiting distribution function of a random variable X, by using the
definition obviously requires that we know Fx_(z) for each positive integer n. But
it is often difficult to obtain Fx,(z) in closed form. Fortunately, if it exists, the
mef that corresponds to the cdf Fx, () often provides a convenient method of
determining the limiting cdf.

The following theorem, which is essentially Curtiss’ modification of a theorem
of Lévy and Cramér, explains how the mgf may be used in problems of limiting
distributions. A proof of the theorem is beyond of the scope of this book. It can
readily be found in more advanced books; see, for instance, page 171 of Breiman
(1968).

Theorem 4.3.10. Let {X,,} be a sequence of random variables with mgf Mx, (¢)
that exists for —h < t < h for alln. Let X be a random variable with mgf M(t),
which exzists for [t] < hy < h. If im, oo Mx, (t) = M(t) for |t|] < hi, then
X, 2 x.

In this and the subsequent sections are several illustrations of the use of Theorem
4.3.10. In some of these examples it is convenient to use a certain limit that is
established in some courses in advanced calculus. We refer to a limit of the form

lim [1 oy L(”)} ,
n—o0 n n
where b and ¢ do not depend upon n and where lim,, . ¥(n) = 0. Then
lim (1 -+ b + z//(n)] = lim (l + é) = eb°, (4.3.16)
700 n n n—00 n

For example,

t2 3 —n/2 t2 2 —n/2
lim (1——+t—> = lim (1———!—#) .

—r00 n

Here b = —t*,¢ = —1, and ¢(n) = t*/\/n. Accordingly, for every fixed value of ¢,

the limit is et*/2.
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Example 4.3.6. Let Y,, have a distribution that is b(n,p). Suppose that the mean
i = np is the same for every n; that is, p = u/n, where p is a constant. We shall
find the limiting distribution of the binomial distribution, when p = p/n, by finding
the limit of M (¢;n). Now

M(t;n) = E(e™™) = [(1 — p) + pe'T" = {1 + &77_—1):!

for all real values of t. Hence we have

lim M(t;n) = el =1)

n—0co
for all real values of ¢. Since there exists a distribution, namely the Poisson distribu-
tion with mean g, that has mgf e“(el_l), then, in accordance with the theorem and
under the conditions stated, it is seen that Y, has a limiting Poisson distribution
with mean p.

Whenever a random variable has a limiting distribution, we may, if we wish, use
the limiting distribution as an approximation to the exact distribution function. The
result of this example enables us to use the Poisson distribution as an approximation
to the binomial distribution when 7 is large and p is small. To illustrate the use
of the approximation, let ¥ have a binomial distribution with n = 50 and p = %
Then

Pr(Y <1) = (22)%° +50(3) (%)% = 0.400,

approximately. Since u = np = 2, the Poisson approximation to this probability is
e 24272 =10.406. m

Example 4.3.7. Let Z, be x?(n). Then the mgf of Z,, is (1 —2¢t)™"/2, t < 1. The
mean and the variance of Z,, are, respectively, n and 2n. The limiting distribution
of the random variable Y,, = (Z, — n)/v/2n will be investigated. Now the mgf of

Y, is
e - olenf (52l
_ e~f,n/\/ﬁE(eLZﬂ/\/ﬁ)

— exp [— (t@) (g)} (1—2\/_%>_n/2’ ‘< @

This may be written in the form

5 —-n/2
M(t;n) = (e‘ 2/n _ t\/jet 2/”) , t< \/E
n 2

In accordance with Taylor’s formula, there exists a number £(n), between 0 and
t\/2/n, such that

2 1 ARG 7\’
et 2/”:1+t\/:+— t\/j + & /=1 .
n 2 n 6 n
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If this sum is substituted for e'V2/™ in the last expression for M(t;n), it is seen
that n/o Vad
2 w<n))‘”/

Mtn) = (1- =
(im) = (1= 5+ 2L

where
V2tdefm /213 2ptef™)

Since £(n) — 0 asn — oo, then lim(n) = 0 for every fixed value of t. In accordance
with the limit proposition cited earlier in this section, we have

lim M(t;n) = et*/?

n—00
for all real values of t. That is, the random variable Y,, = (Z, — n)/v/2n has a
limiting standard normal distribution. ®

Example 4.3.8 (Example 4.3.7 Continued). In the notation of the last exam-

ple, we showed that
1

1
n|—2=Z, — —
Al 7
For this situation, though, there are times when we are interested in the square-
root of Z,. Let g(t) = v/t and let W,, = g(Z,,/(V/2n)) = (Z,,/(~/2n))"/2. Note that
g(1/y/2) = 1/24/4 and ¢/(1/v/2) = 27%/4. Therefore, by the A-method, Theorem
4.3.9, and (4.3.17), we have

] 2 N(0,1). (4.3.17)

N [Wn - 1/21/4] D N(,27%2). m (4.3.18)

EXERCISES

4.3.1. Let X, denote the mean of a random sampie of size n from a distribution
that is N(p,c?). Find the limiting distribution of X,,.

4.3.2. Let Y7 denote the first order statistic of a random sample of size n from
a distribution that has pdf f(z) = e~==0) 6 < x < 00, zero elsewhere. Let
Z, =n(Y; — 0). Investigate the limiting distribution of Z,.

4.3.3. Let Y, denote the nth order statistic of a random sample from a distribution
of the continuous type that has c¢df F(z) and pdf f(z) = F'(z). Find the limiting
distribution of Z, = n[l — F(Y,,)].

4.3.4. Let Y, denote the second order statistic of a random sample of size n from a
distribution of the continuous type that has cdf F(z) and pdf f(z) = F'(z). Find
the limiting distribution of W,, = nF(¥2). ~

4.3.5. Let the pmf of Y, be p,(y) = 1, y = n, zero elsewhere. Show that Y,, does
not have a limiting distribution. (In this case, the probability has “escaped” to
infinity.)
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4.3.6. Let X1, Xo,..., X}, be a random sample of size n from a distribution that is
N(p,0?), where 62 > 0. Show that the sum Z, = Y.} X, does not have a limiting
distribution.

4.3.7. Let X, have a gamma distribution with parameter o = n and 3, where 3 is
not a function of n. Let Y,, = X,,/n. Find the limiting distribution of ¥;,.

4.3.8. Let Z, be x?(n) and let W,, = Z,,/n?. Find the limiting distribution of W,,.
4.3.9. Let X be x*(50). Approximate P(40 < X < 60).

4.3.10. Let p = 0.95 be the probability that a man, in a certain age group, lives at
least 5 years.

(a) If we are to observe 60 such men and if we assume independence, find the
probability that at least 56 of them live 5 or more years.

{b) Find an approximation to the result of part (a) by using the Poisson distri-
bution.
Hint: Redefine p to be 0.05 and 1 — p = 0.95.

4.3.11. Let the random variable Z,, have a Poisson distribution with parameter
@ = n. Show that the limiting distribution of the random variable Y,, = (Z,—n)/v/n
is normal with mean zero and variance 1.

4.3.12. Prove Theorem 4.3.3

4.3.13. Let X, and Y, have a bivariate normal distribution with parameters
w1, pha, 03,03 (free of n) but p = 1 — 1/n. Consider the conditional distribution
of Y,,, given X,, = x. Investigate the limit of this conditional distribution as n— oc.
What is the limiting distribution if p = —1 4 1/n? Reference to these facts is made
in the Remark in Section 2.4.

4.3.14. Let X, denote the mean of a random sample of size n from a Poisson
distribution with parameter p = 1.
(a) Show that the mgf of Y, = /n(X, — u)/o = /n(X,, — 1) is given by
exp[—ty/n + n(e/V™ —1)].

(b) Investigate the limiting distribution of Y;, as n— 0.
Hint: Replace, by its MacLaurin’s series, the expression et/ V7 which is in the
exponent, of the mgf of Y;,.

4.3.15. Using Exercise 4.3.14, find the limiting distribution of vn(v/ X, — 1).

4.3.16. Let X,, denote the mean of a random sample of size n from a distribution
that has pdf f(z) = ¢ *, 0 < z < 00, zero clsewhere.

() Show that the mgf M(t;n) of Yy, = /n(X, — 1) is

M(t;n) = [/V? — (t//n)e/ VP ™, t < /n.
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(b) Find the limiting distribution of Y, as n— oo.

~

Exercises 4.3.14 and 4.3.16 are special instances of an important theorem that will
be proved in the next section.

4.3.17. Using Exercise 4.3.16, find the limiting distribution of v/n(+/X, —1).

4.3.18. Let Y7 < Y5 < -+ <Y, be the order statistics of a random sample from
a distribution with pdf f(z) = ¢7*,0 < = < oo, zero elsewhere. Determine the
limiting distribution of Z,, = (Y,, — log n).

4.3.19. Let Y1 < Yy < --- < Y, be the order statistics of a random sample from
a distribution with pdf f(x) = 52,0 < z < 1,zero elsewhere. Find p so that
Z, = nPY] converges in distribution.

4.3.20. Use Stirling’s formula, (4.3.2), to show that the first limit in Example 4.3.3
is 1.

4.4 Central Limit Theorem

It was seen (Section 3.4) that, if X1, Xs,..., X,, is a random sample from a normal
distribution with mean p and variance o2, the random variable

S X~ _ /A~ )

avn B o
is, for every positive integer n, normally distributed with zero mean and unit vari-
ance. In probability theory there is a very elegant theorem called the central limit
theorem. A special case of this theorem asserts the remarkable and important fact
that if X1, X5,..., X,, denote the observations of a random sample of size n from
any distribution having finite variance 02 > 0 (and hence finite mean u), then the
random variable \/n(X,, —p)/c converges in distribution to a random variable hav-
ing a standard normal distribution. Thus, whenever the conditions of the theorem
are satisfied, for large n the random variable \/n(X, —u)/o has an approximate nor-
mal distribution with mean zero and variance 1. It will then be possible to use this
approximate normal distribution to compute approximate probabilities concerning
X. In the statistical problem where u is unknown, we will use this approximate
distribution of X, to establish approximate confidence intervals for j; see Section
5.4.

We will often use the notation Y,, has a limiting standard normal distribution
to mean that ¥, converges in distribution to a standard normal random variable;
see Remark 4.3.1.

The more general form of the theorem is stated, but it is proved only in the
modified case. However, this is exactly the proof of the theorem that would be
given if we could use the characteristic function in place of the mgf.

Theorem 4.4.1. Let X1, Xo,..., X, denote the observations of a random sample
from a distribution that has mean p and positive variance o2. Then the random
variable Y, = (37 X; — nu)/v/no = /n(X, — p)/o converges in distribution to a

random variable which has a normal distribution with mean zero and variance 1.
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Proof: For this proof, additionaly assume that the mgf M(t) = F(e'X) exists for
—h < t < h. If one replaces the mgf by the characteristic function ¢(t) = E(e*X),
which always exists, then our proof is essentially the same as the proof in a more
advanced course which uses characteristic functions.
The function N
m(t) = E[e‘(xﬂ‘)] =e M M(t)

also exists for —h < t < h. Since m(t) is the mgf for X — p, it must follow that
m(0) = 1, m'(0) = E(X — u) = 0, and m"(0) = E[(X — p)?] = 0% By Taylor’s
formula there exists a number £ between 0 and ¢ such that

" t2
m@t) = m(0)+m/(0)t+ = 25)
B m"(§)t2
= 1+ 5 .
If 02t?/2 is added and subtracted, then
242 " 22142
m(t) =1+ U; L (§)2 okt (4.4.1)

Mitin) = E[exp f&_f_—y)]
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In Equation 4.4.1 replace ¢ by t/o+/n to obtain
t 2, [m"(€) - )t
— )=l
m <a\/ﬁ> n

where now ¢ is between 0 and t/o+/n with —hoy/n <t < hoy/n. Accordingly,

2 " o2y n
M(t;"):{H;‘n“ngzTr?i}-

Since m(t) is continuous at t = 0 and since { —0 as n— o0, we have

lim [m"(€) — 0*] = 0.

n—00
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The limit proposition (4.3.16) cited in Section 4.3 shows that
lim M(t;n) = et2/2,

for all real values of t. This proves that the random variable Y,, = vn(X,, — u)/o
has a limiting standard normal distribution. m

As cited in Remark 4.3.1, we say that Y, has a limiting standard normal distri-
bution. We interpret this theorem as saying that, when n is a large, fixed positive
integer, the random variable X has an approximate normal distribution with mean
p and variance o?/n; and in applications we use the approximate normal pdf as
though it were the exact pdf of X.

Some illustrative examples, here and below, will help show the importance of
this version of the central limit theorem.

Example 4.4.1. Let X denote the mean of a random sample of size 75 from the
distribution that has the pdf

f(x)z{l O<z <l

0 elsewhere.

For this situation, it can be shown that g(Z) has a graph when 0 < T < 1 that is
composed of arcs of 75 different polynomials of degree 74. The computation of such
a probability as P(0.45 < X < 0.55) would be extremely laborious. The conditions
of the theorem are satisfied, since M(t) exists for all real values of t. Moreover,

p =3 and 0? = &5, so that we have approximately
— 0.45 — p X — 0.55 —
P(045 < X <055 — p|Y W VX )Vl #)
o o o
= P[-15<30(X —0.5) < 1.5]
0.866,
from Table III in Appendix B. m
Example 4.4.2. Let X, X»,..., X, denote a random sample from a distribution

that is b(1,p). Here p = p, 0% = p(1 — p), and M (t) exists for all real values of t. If
Y, =Xi+ -+ X,, it is known that Y}, is b(n,p). Calculation of probabilities for
Y., when we do not use the Poisson approximation, are simplified by making use of
the fact that (Y, —np)/+/np(1 —p) = Va(Xn—p)/v/p(1 —p) = VA(X, —p)/0 has
a limiting distribution that is normal with mean zero and variance 1. Frequently,
statisticians say that ¥, or more simply Y, has an approximate normal distribution
with mean np and variance np(l—p). Even with n as small as 10, with p = % so that
the binomial distribution is symmetric about np = 5, we note in Figure 4.4.1 how
well the normal distribution, NV (5, %), fits the binomial distribution, 5(10, %), where
the heights of the rectangles represent the-probabilities of the respective integers
0,1,2,...,10. Note that the area of the rectangle whose base is (k — 0.5,k + 0.5)
and the area under the normal pdf between k& — 0.5 and k + 0.5 are approzimately
equal for each k£ = 0,1,2,...,10, even with n = 10. This example should help the
reader understand Example 4.4.3. m
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0.25 — N,

0.20 —

0.15 —
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Figure 4.4.1: The b (10, %) pmf overlaid by the N (5, %) pdf

Example 4.4.3. With the background of Example 4.4.2, let n = 100 and p = %,
and suppose that we wish to compute P(Y = 48,49, 50,51, 52). Since Y is a random
variable of the discrete type, {Y = 48,49,50,51,52} and {47.5 < Y < 52.5} are
equivalent events. That is, P(Y = 48,49,50,51,52) = P(47.5 < Y < 52.5). Since
np = 50 and np(1 — p) = 25, the latter probability may be written

47.5 — 50 < Y - 50 52.5—50>

5 5 -~ 5
Y5
P<—0.5< 50<o.5>.

Since (Y — 50)/5 has an approximate normal distribution with mean zero and vari-
ance 1, Table I show this probability to be approximately 0.382.

The convention of selecting the event 47.5 < Y < 52.5, instead of another event,
say, 47.8 < Y < 52.3, as the event equivalent to the event ¥ = 48,49,50,51, 52
seems to have originated as: The probability, P(Y = 48,49,50,51,52), can be
interpreted as the sum of five rectangular areas where the rectangles have widths
one but the heights are, respectively, P(Y = 48),..., P(Y = 52). If these rectangles
are so located that the midpoints of their bases are, respectively, at the points
48,49, ...,52 on a horizontal axis, then in approximating the sum of these areas
by an area bounded by the horizontal axis, the graph of a normal pdf, and two

P(475 <Y <525) = P (

i
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ordinates, it secems reasonable to take the two ordinates at the points 47.5 and 52.5.
This is called the continuity correction. m

We know that X and >-1 X, have approximate normal distributions, provided
that n is large enough. Later, we find that other statistics also have approximate
normal distributions, and this is the reason that the normal distribution is so impor-
tant to statisticians. That is, while not many underlying distributions are normal,
the distributions of statistics calculated from random samples arising from these
distributions are often very close to being normal.

Frequently, we are interested in functions of statistics that have approximate
normal distributions. To illustrate, consider the sequence of random variable Y, of
Example 4.4.2. As discussed there, Y, has an approximate N[np,np(l — p)]. So
np(l — p) is an important function of p as it is the variance of Y,,. Thus, if p is
unknown, we might want to estimate the variance of ¥,,. Since E(Y,,/n) = p, we
might use n(Y,/n)(1 — Y, /n) as such an estimator and would want to know some-
thing about the latter’s distribution. In particular, does it also have an approximate
normal distribution? If so, what are its mean and variance? To answer questions
like these, we can apply the A-method, Theorem 4.3.9.

As an illustration of the A-method, we consider a function of the sample mean.
We know that X,, converges in probability to u and X, is approximately N(u, a2 /n).
Suppose that we are interested in a function of X, say u(X,), where u is differen-
tiable at u and u’(x) # 0. By Theorem 4.3.9, u(X,,) is approximately distributed
as N{u(u), [u'(u)]?c?/n}. More formally, we could say that

u(Xn) — u(p)
[v'(w)]?a?/n

has a limiting standard normal distribution.

Example 4.4.4. Let Y,, (or Y for simplicity) be b(n, p). Thus Y/n is approximately
Nip,p(1 — p)/n]. Statisticians often look for functions of statistics whose variances
do not depend upon the parameter. Here the variance of Y/n depends upon p. Can
we find a function, say u(Y/n), whose variance is essentially free of p? Since Y/n
converges in probability to p, we can approximate u(Y/n) by the first two terms of
its Taylor’s expansion about p, namely by

u (%) = (%) = u(p) + (% —p) v(p).

Of course, v(Y/n) is a linear function of Y/n and thus also has an approximate
normal distribution; clearly, it has mean u(p) and variance

[u/(p)]Q p(l B p) )

n

But it is the latter that we want to be cssentially free of p; thus we set it equal to
a constant, obtaining the differential equation

C

wip) = p(1—p)
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A solution of this is
u(p) = (2¢) arcsin \/p.

If we take ¢ = 3, we have, since u(Y/n) is approximately equal to v(Y/n), that

<YX .Y
u —) = arcsin{/ —
n n

has an approximate normal distribution with mean arcsin ,/p and variance 1/4n,
which is free of p. m

EXERCISES

4.4.1. Let X denote the mean of a random sample of size 100 from a distribution
that is y?(50). Compute an approximate value of P(49 < X < 51).

4.4.2. Let X denote the mean of a random sample of size 128 from a gamma
distribution with a = 2 and 3 = 4. Approximate P(7 < X < 9).

4.4.3. Let Y be (72, 3). Approximate P(22 <Y < 28).

4.4.4. Compute an approximate probability that the mean of a random sample of
size 15 from a distribution having pdf f(z) = 322, 0 < z < 1, zero elsewhere, is
between £ and %.

4.4.5. Let Y denote the sum of the observations of a random sample of size 12 from
a distribution having pmf p(z) = é, r=1,2,3,4,5,6, zero elsewhere. Compute an
approximate value of P(36 <Y < 48).

Hint: Since the event of interest is Y = 36,37,...,48, rewrite the probability as
P(35.5 <Y < 48.5).

4.4.6. Let Y be b(400, £). Compute an approximate value of P(0.25 < Y/n).
4.4.7. If Y is b(100, ), approximate the value of P(Y = 50).

4.4.8. Let Y be b(n,0.55). Find the smallest value of n which is such that (approx-
imately) P(Y/n > 1) > 0.95.

4.4.9. Let f(z) = 1/z%, 1 < z < oo, zero elsewhere, be the pdf of a random
variable X. Consider a random sample of size 72 from the distribution having this
pdf. Compute approximately the probability that more than 50 of the observations
of the random sample are less than 3.

4.4.10. Forty-eight measurements are recorded to several decimal places. Each of
these 48 numbers is rounded off to the nearest integer. The sum of the original 48
numbers is approximated by the sum of these integers. If we assume that the errors
made by rounding off are iid and have a uniform distribution over the interval
(—=%,3), compute approximately the probability that the sum of the integers is
within two units of the true sum.
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4.4.11. We know that X is approximately N(u,c?/n) for large n. Find the ap-
proximate distribution of u(X) = X".

4.4.12. Let X1, X5,..., X, be a random sample from a Poisson distribution with
mean p. Thus Y = > | X; has a Poisson distribution with mean nu. Moreover,
X = Y/n is approximately N(u,p/n) for large n. Show that u(Y/n) = /Y/nis a
function of Y/n whose variance is essentially free of p.

4.5 *Asymptotics for Multivariate Distributions

In this section, we briefly discuss asymptotic concepts for sequences of random
vectors. The concepts introduced for univariate random variables generalize in a
straightforward manner to the multivariate case. Our development is brief and
the interested reader can consult more advanced texts for more depth; see Serfling
(1980).

We need some notation. For a vector v € RP, recall that Euclidean norm of v
is defined to be

(4.5.1)

This norm satisfies the usual three properties given by

(a). For all ve RP, ||v|| > 0, and ||v]| = 0 if and only if v = 0.
(b). For all v.€ R? and a € R, |lav| = |a|||v]|- (4.5.2)
(c). For all viu € BP, |Ju+v| <] +]v]|.

Denote the standard basis of RP by the vectors ey, ..., e,, where all the components
of e; are 0 except for the ith component which is 1. Then we can always write any

vector v/ = (vy,...,vp) as
P
VvV = E v;€e;.
i=1

The following lemma will be useful:

Lemma 4.5.1. Let v' = (v1,...,v,) be any vector in RP. Then,
ol < IIVIL< Y Jvel, foralli=1,...,p. (4.5.3)
i=1

Proof: Note that for all j,
4
2 2 2
v <Y 0 = v%
i=1

hence, taking the square root of this equality leads to the first part of the desired
inequality. The second part is

p P P
i =1 viell <3 luillledl = > lv|. =
i=1 i=1 i=1
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Let {X,,} denote a sequence of p dimensional vectors. Because the absolute
value is the Euclidean norm in R!, the definition of convergence in probability for
random vectors is an immediate generalization:

Definition 4.5.1. Let {X,,} be a sequence of p dimensional vectors and let X be a
random vector, all defined on the same sample space. We say that {X,} converges
in probability to X of

nli_.rgO Pl X, ~X|| > ¢] =0, (4.5.4)

‘ L ‘ P
for all € > 0. As in the univariate case, we write X,, — X.

As the next theorem shows, convergence in probability of vectors is equivalent
to componentwise convergence in probability.

Theorem 4.5.1. Let {X,} be a sequence of p dimensional vectors and let X be a
random vector, all defined on the same sample space. Then

X, 5 X if and only if Xp; 5 X; forallj=1,...,p.

Proof: This follows immediately from Lemma 4.5.1. Suppose X, £ X. For any j,
from the first part of the inequality (4.5.3), we have, for € > 0,

€ < [ Xny — X;| < 1% = X
Hence, - L
limp,— 0o P[| Xn; — Xj| 2 € < limp oo Pl|| X, — X|| > €] =0,

which is the desired res%lt.
Conversely, if X,,; — X; for all 7 = 1,...,p, then by the second part of the
inequality ( 4.5.3),

D
€ < Xn = X[ <D 1 Xnj — X5,
=1

for any ¢ > 0. Hence,

P
limn_n)oP[Z |an - Xj| 2 6]
=1

P
> Timp oo P
=1

mn—»oopmxn - X > G]

IN

IN

Xn.j — XJ| 2 e/p] =0. m

Based on this result many of the theorems involving convergence in probability
can easily be extended to the multivariate setting. Some of these results are given
in the exercises. This is true of statistical results, too. For example, in Section
4.2, we showed that if Xi,...,X,, is a random sample from the distribution of a
random variable X with mean, u, and variance, o2, then X,, and S2 are consistent
estimates of  and 0. By the last theorem, we have that (X,,S2) is a consistent
estimate of (u,02).



228 Unbiasedness, Consistency, and Limiting Distributions

As another simple application, consider the multivariate analog of the sample
mean and sample variance. Let {X,} be a sequence of iid random vectors with
common mean vector g and variance-covariance matrix 3. Denote the vector of
means by

X, =

3=

zn:xi. (4.5.5)

Of course, X, is just the vector of sample means, (X,,..., X,)". By the Weak Law
of Large Numbers, Theorem 4.2.1, Y]- — u;, in probability, for each j. Hence, by
Theorem 4.5.1, X,, — p, in probability.

How about the analog of the sample variances? Let X; = (X;y,..., X;p)". Define
the sample variances and covariances by,

. 1 _
Sty o= 2 Xy - Xy (1.5.6)
i=1
R - -
Snjk = m—1 Z(Xij — X ;) (Xik — X&), (4.5.7)
i=1
for j,k =1,...,p. Assuming finite fourth moments, the Weak Law of Large Num-

bers shows that all these componentwise sample variances and sample covariances
converge in probability to distribution variances and covariances, respectively. If
we define the p X p matrix S to be the matrix with the jth diagonal entry wa- and
(4, k)th entry S, ;x then S — X, in probability.

The definition of convergence in distribution remains the same. We state it here
in terms of vector notation.

Definition 4.5.2. Let {X,,} be a sequence of random vectors with X,, having dis-
tribution function F,,(x) and X be a random vecior with distribution function F(x).
Then {X,} converges in distribution to X if

'lirn F.(x) = F(x), (4.5.8)

for all points x at which F(x) is continuous. We write X, 5 x.

In the multivariate case, there are analogs to many of the theorems in Section
4.3. We state two important theorems without proof.

Theorem 4.5.2. Let {X,} be a sequence of random vectors which converge in
distribution to a random vector X and let g(x) be a function which is continuous
on the support of X. Then g(X,,) converges in distribution to g(X).

We can apply this theorem to show that convergence in distribution implies
marginal convergence. Simply take g(x) = x; where X = (1,...,x,). Since g is
continuous, the desired result follows.

It is often difficult to determine convergence in distribution by using the defini-
tion. As in the univariate case, convergence in distribution is equivalent to conver-
gence of moment generating functions, which we state in the following theorem.
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Theorem 4.5.3. Let {X,,} be a sequence of random vectors with X,, having distri-
bution function F,(x) and moment generating function M, (t). Let X be a random
vector with distribution function F(x) and moment generating function M (t). Then
{X,} converges in distribution to X if and only if for some h > 0,

lim My (t) = M(t), (4.5.9)

for all t such that |[t]] < h.

The proof of this theorem can be found in more advanced books; see, for in-
stance, Tucker (1967). Also, the usual proof is for characteristic functions instead
of moment generating functions. As we mentioned previously, characteristic func-
tions always exist, so convergence in distribution is completely characterized by
convergence of corresponding characteristic functions.

The moment generating function of X,, is Elexp{t’X,}]. Note that t'X,, is a
random variable. We can frequently use this and univariate theory to derive results
in the multivariate case. A perfect example of this is the multivariate central limit

theorem.

Theorem 4.5.4 (Multivariate Central Limit Theorem). Let {X,} be a se-
quence of iid random vectors with common mean vector pu and variance-covariance
matriz X which is positive definite. Assume the common moment generating func-
tion M (t) exists in an open neighborhood of 0. Let

Then Y, converges in distribution to a N,(0,X) distribution.

Proof Let t € RP be a vector in the stipulated neighbohood of 0. The moment
generating function of Y, is,

Mn(t) = E[eXp{t’%g(Xi—u)H
1 - !
eXP{%;t(Xi_ﬂ)}

E {exp{%il%}} , (4.5.10)

where W; = t/(X; — u). Note that Wy,..., W,, are iid with mean 0 and variance
Var(W;) = t’3t. Hence, by the simple Central Limit Theorem

E

1 < D
_ZWf = N(0,t'St). (4.5.11)
\/ﬁ i=1
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Expression (4.5.10), though, is the mgfof (1/y/n) .., W, evaluated at 1. Therefore
by (4.5.11), we must have

. N 1 1°t'St/2 _ _t'St/2
A/[,n(t)vE[exp{l-\/;;;WL}} —e =e .

Because the last quantity is the moment generating function of a N,(0, %) distri-
bution, we have the desired result. m

Suppose X, Xs,...,X,, is a random sampl;c from a distribution with mean
vector g and variance-covariance matrix 3. Let X,, be the vector of sample means.
Then, from the Central Limit Theorem, we say that

X,, has an approximate NV, (,u, %Z) distribution. (4.5.12)

A result that we use frequently concerns linear transformations. Its proof is
obtained by using moment generating functions and is left as an exercise.

Theorem 4.5.5. Let {X,,} be a sequence of p-dimensional random vectors. Suppose
X A N(p,X). Let A be an m X p matriz of constants and let b be an m-
dimensional vector of constants. Then AX, + b LA N(Ap+b,ATA).

A result that will prove to be quite useful is the extension of the A-method; see
Theorem 4.3.9. A proof can be found in Chapter 3 of Serfling (1980).

Theorem 4.5.6. Let {X,,} be a sequence of p-dimensional random vectors. Suppose

\/E(Xn - /J'O) g ‘VP(Ox Z)

Let g be a transformation g(x) = (g1(x), ..., gx(X))" such that 1 < k < p and the
k x p matriz of partial derivatives,

9gi : .
B:|:"q:|, Z:l)l\/,]::l,,p’
Op;

are continuous and do not vanish in a neighborhood of puy. Let Bo = B at . Then

Va(g(Xa) — g(ko)) = Ni(0, BySBY). (4.5.13)

EXERCISES

4.5.1. Let {X, } be a sequence of p dimensional random vectors. Show that
D . e D / ’
X, = N,(u.X) if and only if a’X,, = N;(a’py, a'3a),

for all vectors a € RP.
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4.5.2. Let X4q,..., X, be a random sample from a uniform(a,b) distribution. Let
VY1 = min X; and let Y5 = max X;. Show that (Y1,Y3) converges in probability to
the vector (a,b)’.

4.5.3. Let X,, and Y,, be p dimensional random vectors. Show that if
X, -Y,50and X, 2 X,

. . . D
where X is a p dimensional random vector, then Y,, = X.

4.5.4. Let X, and Y, be p dimensional random vectors such that X,, and Y,, are
independent for each n and their mgfs exist. Show that if

X, 2XandY,2Y,

where X and Y are p dimensional random vectors, then (X,,,Y,) LA (X,Y).

4.5.5. Suppose X,, has a N,(u,,, ¥,) distribution. Show that

X, 5 Np(p, Z) iff p, = pand B, — .
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