STA 347F2003 Quiz 10

- 1. (20 Points) Calls come in to an information hotline according to a Poisson process with rate $\lambda = 2$ per minute. What is the probability that more than 3 minutes elapse between the 7th and 8th calls? This one is fast if you know what to do.
- 2. Let $\{X(t) : t \ge 0\}$ be a Poisson process with rate λ , and let W_1 be the waiting time until the first event. Find the density of W_1 given that n events occurred in the interval (0, t], by following these steps. Assume n > 1.
 - (a) (15 Points) Find $Pr\{W_1 > w | X(t) = n\}$, where 0 < w < t.
 - (b) (5 Points) Give the cumulative distribution function $F_{W_1|X(t)=n}(w|X(t)=n)$.
 - (c) (10 Points) Find the density $f_{W_1|X(t)=n}(w|X(t)=n)$.
 - (d) (10 Points) For what values of w is the density function non-zero?
- 3. Let $\{X(t) : t \ge 0\}$ be a Poisson process with rate λ , and let W_2 be the waiting time until the *second* event. Find the density of W_2 , by following these steps.
 - (a) (20 Points) Find $Pr\{W_2 < w\}$, where w > 0.
 - (b) (15 Points) Find the density $f_{W_2}(w)$. Remember the product rule u'v + v'u.
 - (c) (5 Points) For what values of w is the density function non-zero?

STA 347F2003 Formula Sheet 2

If 0 < a < 1 then $\sum_{k=j}^{\infty} a^k = \frac{a^j}{1-a}$. $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.

Binomial: $X \sim B(n, p)$ means $Pr\{X = k\} = \binom{n}{k} p^k (1-p)^{n-k}$ for k = 0, ..., n. Note: E[X] = np, V[X] = np(1-p).

Poisson: $X \sim P(\mu)$ means $Pr\{X = k\} = \frac{e^{-\mu}\mu^k}{k!}$ for $k = 0, 1, \dots$ Note: $E[X] = V[X] = \mu$

Exponential: $X \sim \exp(\lambda)$ means $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Note $E[X] = 1/\lambda$, and $F_X(x) = (1 - e^{-\lambda x}) \mathbf{1}\{x \ge 0\}$.

Gamma: $X \sim G(n, \lambda)$ means $f_X(x) = \frac{\lambda^n}{(n-1)!} e^{-\lambda x} x^{n-1} \mathbf{1}\{x \ge 0\}$. Note $E[X] = \frac{\lambda}{n}$. The sum of *n* independent exponential random variables is Gamma.

QIJANSUT

QIOANSW 2

a) $P_n \notin W_2 \leq w_3 = P_n \notin X(w) \geq 23$ $= 1 - P_R \{ X(w) < 2 \} = 1 - P_R \{ X(w) = 0 \} - P_R \{ X(w) = 1 \}$ $= 1 - e^{-\lambda w} - e^{-\lambda w} = (1 - e^{-\lambda w} (1 + \lambda w))$ b) $f_{u_2}(w) = \frac{d}{dw} \left(1 - \frac{c}{(1 + \lambda w)} \right)$ $= (-1)^{\prime} \frac{d}{dw} \left[C^{-\chi w} (1+\chi w) \right]$ $=(-1)\left[-\chi e^{-\chi w}(1)\chi w\right) + e^{-\chi w}\chi$ $=(-1)\left[-\frac{1}{2}e^{-\lambda w}-\frac{1}{2}e^{-\lambda w}+\frac{1}{2}e^{-\lambda w}\right]$ $= \left(\overline{\lambda^2} w e^{-\lambda w}\right) = \frac{\lambda^2}{[2-1]!} e^{-\lambda w} w^{2-1} 1 \tilde{s} w \ge 0 \tilde{s}$

c) w >0