## STA 347F2003 Quiz 1

- 1. One jar contains blue balls numbered 1 and 2. Another jar contains red balls numbered 1, 2, and 3. A jar is chosen at random, and then a ball is chosen at random from that jar.
  - (a) (15 pts) What is  $Pr\{2|\text{Red}\}$ ?
  - (b) (15 pts) What is  $Pr\{B|ue|3\}$ ?
  - (c) (25 pts) What is  $Pr\{2\}$ ?
  - (d) (25 pts) What is  $Pr\{Blue|2\}$ ?
- 2. (20 pts) Is it true that  $Pr(A|B) + Pr(A^c|B) = 1$ ? If it is true, then prove it. If it is not true, give a simple counter-example. Begin your answer with the words "The statement is true," or "The statement is false." Hint: You might want to start with  $Pr\{B\} =$  $Pr\{B|A\}Pr\{A\} + Pr\{B|A^c\}Pr\{A^c\}$  (Law of Total Probability), which you need not prove.

## STA 347F2003 Quiz 1

- 1. One jar contains blue balls numbered 1 and 2. Another jar contains red balls numbered 1, 2, and 3. A jar is chosen at random, and then a ball is chosen at random from that jar.
  - (a) (15 pts) What is  $Pr\{2|\text{Red}\}$ ?
  - (b) (15 pts) What is  $Pr\{Blue|3\}$ ?
  - (c) (25 pts) What is  $Pr\{2\}$ ?
  - (d) (25 pts) What is  $Pr\{Blue|2\}$ ?
- 2. (20 pts) Is it true that  $Pr(A|B) + Pr(A^c|B) = 1$ ? If it is true, then prove it. If it is not true, give a simple counter-example. Begin your answer with the words "The statement is true," or "The statement is false." Hint: You might want to start with  $Pr\{B\} =$  $Pr\{B|A\}Pr\{A\} + Pr\{B|A^c\}Pr\{A^c\}$  (Law of Total Probability), which you need not prove.

91 Ausu Jerry's Answers to Quiz One (i) It is OHAT to make a tree B (1) (2) - 12 ± 3:4 a) R { 2 1 R } = 1 b) Pn {B13} = 0) c)  $P_n \{2\} = \frac{1}{4} + \frac{1}{6} = \frac{3}{12} + \frac{2}{12} = \left(\frac{5}{12}\right)$ On, Pr Fas = Pr FaiBSPASBS+ Pr EaiRSPASRS さ・さ + す・さ = キャイ= 5  $d) l_n \{B|2\} = l_n \{B|2\}$  $\frac{1}{P_{n}\xi_{2}} = \frac{1}{5/12} = \frac{3}{5}$ 

On using Burges' theorem explicitly is find

QI Answ 2)



 $\implies 1 = \frac{\Gamma_n \mathcal{E} A \cap B_3}{P_n \mathcal{E} B_3} + \frac{P_n \mathcal{E} A \cap B_3}{P_n \mathcal{E} B_3} = P_n \mathcal{E} A |B_3 + P_n \mathcal{E} A (|B_3]$ 

. V

dons