STA 347F2003 Formula Sheet 1

Geometric Series: If 0 < a < 1 then $\sum_{k=j}^{\infty} a^k = \frac{a^j}{1-a}$.

Expected Value: If the discrete random variable Z takes values 0, 1, ..., then $E[Z] = \sum_{k=1}^{\infty} \Pr\{Z \ge k\}.$

Vocabulary A state j is said to be **accessible** from i if $P_{ij}^{(n)} > 0$ for some n. Two states that are accessible to one another are said to **communicate**, and we write $i \leftrightarrow j$. All the states that communicate with one another are grouped together in an **equivalence class**. When the state space has only one equivalence class, it is said to be **irreducible**. The **period** of a state j, written d(j), is the greatest common divisor of all the integers $n \ge 1$ such that $P_{ii}^{(n)} > 0$. If $P_{ii} > 0$, then d(i) = 1. All states in an equivalence class have the same period.

For any state $i, f_{ii}^{(n)} = Pr\{X_n = i | X_0 = i, X_1 \neq i, X_2 \neq i, \dots, X_{n-1} \neq i\}$

is the probability that, starting in state *i*, the first return to *i* is at the *n*th transition. We define $f_{ii}^{(0)} = 0$. $f_{ii} = \sum_{n=1}^{\infty} f_{ii}^{(n)}$ is the probability of *ever* returning to state *i*. If $f_{ii} = 1$, the state *i* is said to be **recurrent**. If $f_{ii} < 1$, then *i* is said to be **transient**. Let *i* be a recurrent state; the *return time* is $R_i = \min\{n \ge 1 : X_n = i\}$, with $Pr\{R_i = n | X_0 = i\} = f_{ii}^{(n)}$. If $E[R_i | X_0 = i] = \sum_{n=1}^{\infty} n f_{ii}^{(n)} < \infty$, the state *i* is called **positive recurrent**. Otherwise, *i* is called **null recurrent**.

Theorem 3.0 $P_{ii}^{(n)} = \sum_{k=0}^{n} f_{ii}^{(k)} P_{ii}^{(n-k)}$. This is Eq. (3.2) in our text. **Theorem 3.1** State *i* is transient if and only if $\sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty$.

Corollary 3.1 If $i \leftrightarrow j$, then states i and j are either both transient or both recurrent.

Theorem 4.1 For an irreducible, recurrent, aperiodic, stationary Markov chain, $\lim_{n\to\infty} P_{ij}^{(n)} = \lim_{n\to\infty} P_{ij}^{(n)} = \frac{1}{m_i}$, where $m_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)} = E[R_i|X_0 =$ i].

Theorem 4.2 For an irreducible, positive recurrent, aperiodic, stationary Markov chain, $\pi_j = \lim_{n\to\infty} P_{ij}^{(n)}$ is uniquely determined by $\pi = \pi \mathbf{P}$ and $\sum_{j=0}^{\infty} \pi_j = 1.$