STA 347F2003 Assignment 7

Do this assignment in preparation for the quiz on Friday, Oct. 31st. It is not to be handed in.

- 1. Do exercises 1.1, 1.3, 1.4, 1.5, 1.10 starting on page 208.
- 2. Let X_0, X_1, \ldots be a *regular* stationary Markov chain with state space $\{0, \ldots, N\}$, so that the limiting probabilities described on page 199 exist. Show that the row vector $\boldsymbol{\pi}$ satisfies $\boldsymbol{\pi} = \boldsymbol{\pi} \mathbf{P}$.
- 3. Let X_0, X_1, \ldots be a *regular* stationary Markov chain with state space $\{0, \ldots, N\}$, and let the row vector \mathbf{x} satisfy both $\mathbf{x} = \mathbf{x}\mathbf{P}$ and $\sum_{k=0}^{N} x_k = 1$. Show $\mathbf{x} = \boldsymbol{\pi}$.
- 4. Let X_0, X_1, \ldots be a *regular* stationary Markov chain with state space $\{0, \ldots, N\}$. Prove or disprove: $\lim_{n\to\infty} \mathbf{p}^{(n)} = \boldsymbol{\pi}$.
- 5. Let X_0, X_1, \ldots be a stationary Markov chain with transition matrix

		0	1	2	
	0	γ_{00}	γ_{01}	γ_{02}	, where $0 < \gamma_{ij} < 1$.
-	1	γ_{10}	γ_{11}	γ_{12}	
	2	0	0	1	

- (a) Is this Markov chain regular? Answer Yes or No, and prove it.
- (b) Using common sense, what is $\lim_{n\to\infty} \mathbf{P}^n$?
- (c) Find π the usual way.
- (d) What fact does this problem illustrate?
- 6. Let X_0, X_1, \ldots be a regular stationary Markov chain with state space $\{0, \ldots, N\}$ and a transition matrix that is *doubly stochastic* — that is, $\sum_{i=0}^{N} P_{ij} = 1$ (the columns sum to one as well as the rows). Show that the limiting probability π_j equals $\frac{1}{N+1}$ for $j = 0, \ldots, N$.
- 7. Let X_0, X_1, \ldots be a stationary Markov chain with transition matrix

	0	1	2	3	
0	a_1	a_2	a_3	a_4	
1	a_1	a_2	a_3	a_4	
2	a_1	a_2	a_3	a_4	
3	a_1	a_2	a_3	a_4	

where $0 < a_k < 1$ for k = 1, 2, 3, 4. What is π ?

8. Do Problems

- 1.1: Very easy if you see it.
- 1.2: Routine; answer is 1/32
- 1.3: It's interesting how the answer comes out in terms of $\sum_{k=1}^{6} k \alpha_k$, a kind of expected value
- 1.4: They want $\lim_{n\to\infty} Pr\{X_{n+1} = m, X_n = k\}$.
- 1.6:
 - (a) It's obvious, but try getting the answer formally by conditioning on X_n (using the Law of Total Probability).
 - (b) So the answer to Problem 1.4 does not depend on where you start.
 - (c) I don't see how you can avoid saying $P_{ik}^{(n-1)} \to \pi_k$, either "obviously," or by using the definition of a limit. This is perfectly okay; it's just that there does not seem to be any nice trick like the one suggested for part (a).
- 1.10: Easy if you see it.
- 1.13: You can get a backwards transition probability. Then, Theorem 1.0 from lecture will help. The answer is 0.171428.