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The Weibull Distribution

f (t|α, λ) =
{
αλ(λt)α−1 exp{−(λt)α} for t ≥ 0

0 for t < 0
,

where α > 0 and λ > 0.
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Weibull with α = 1/2 and λ = 1
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Weibull Density with alpha = 0.5  and lambda = 1
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Weibull with α = 1 and λ = 1
Standard exponential
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Weibull Density with alpha = 1  and lambda = 1
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Weibull with α = 1.5 and λ = 1
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Weibull Density with alpha = 1.5  and lambda = 1
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Weibull with α = 5 and λ = 1
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Weibull Density with alpha = 5  and lambda = 1
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Weibull with α = 5 and λ = 1/2
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Weibull Density with alpha = 5  and lambda = 0.5
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The Weibull Distribution

f(t|α, λ) =

{
αλ(λt)α−1 exp{−(λt)α} for t ≥ 0
0 for t < 0

,

where α > 0 and λ > 0.

E(T k) =
Γ(1 + k

α)

λk

Median =
[log(2)]1/α

λ
S(t) = exp{−(λt)α}
h(t) = αλαtα−1

If α = 1, Weibull reduces to exponential and h(t) = λ.

If α > 1, the hazard function is increasing.

If α < 1, the hazard function is decreasing.
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The Gumbel Distribution
Also called the extreme value distribution

f (y|µ, σ) = 1

σ
exp

{(
y − µ
σ

)
− e(

y−µ
σ )

}
where σ > 0.

This is a location-scale family of distributions.

µ is the location and σ is the scale.

Write Y ∼ G(µ, σ).
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Log of standard exponential is Gumbel(0,1)
µ = 0 and σ = 1
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Standard Gumbel Density
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Properties of the G(0, 1) Distribution
f(y) = exp {y − ey} for all real y.
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Standard Gumbel Density Let Z ∼ G(0, 1).

MGF is Mz(t) = Γ(t+ 1).

E(Z) = Γ′(1) = −0.5772157 . . . = −γ,
where γ is Euler’s constant.

V ar(Z) = π2

6 .

Median is log(log(2)) = −0.3665129 . . .

Mode is zero.
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General Y ∼ G(µ, σ)
f(y|µ, σ) = 1

σ
exp

{(
y−µ
σ

)
− e(

y−µ
σ )
}

Let Z ∼ G(0, 1) and Y = σZ + µ. Then Y ∼ G(µ, σ).

E(Y ) = σE(Z) + µ = σµ− γ.

V ar(Y ) = σ2V ar(Z) = σ2 π
2

6 .

Median is σ log log(2) + µ.

Mode is µ.
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Log of Weibull is Gumbel

Let T ∼ Weibull(α, λ), and Y = log(T ).

In addition, re-parameterize, meaning express the parameters in a
different, equivalent way.

Let σ = 1
α and µ = − log λ.

Or equivalently, substitute 1
σ for α and e−µ for λ.

The result is Y ∼ G(µ, σ).

So if you believe the distribution of a set of failure time data could
be Weibull (a popular choice), you can log-transform the data and
apply a Gumbel model.

The Gumbel distribution may be preferable because the
parameters µ and σ are easy to interpret.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/312s19
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