Proportional Hazards Regression¹ STA312 Spring 2019

¹See last slide for copyright information.

Background Reading

Chapter 5 in Applied Survival Analysis Using R by Dirk Moore

Overview

Model

2 Estimation

Proportional Hazards

- Suppose two individuals have different x vectors of explanatory variable values.
- They have different hazard functions because their λ values are different.
- But the hazard ratio $\frac{h_1(t)}{h_2(t)}$ does not depend on time t.
- Exponential regression and Weibull regression fit this pattern.
- Proportional hazards regression is a generalization.

Proportional Hazards Regression

Also called Cox regression after Sir David Cox

Write the hazard function

$$h_i(t|\boldsymbol{\beta}) = h_0(t) \psi_i(\boldsymbol{\beta})$$

= $h_0(t) e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}}$

- $h_0(t)$ is called the baseline hazard function.
- Baseline because it's the hazard function when $\psi(\beta) = 1$.
- Maybe the patient is in the reference category, and the quantitative explanatory variables are centered.
- In theory $\psi(\beta)$ could be almost anything as long as the resulting hazard function is positive.
- But in practice it's almost always $e^{\mathbf{x}_i^{\top}\boldsymbol{\beta}}$, Cox's original suggestion.

Exponential and Weibull Regression

$$h_i(t|\boldsymbol{\beta}) = h_0(t) \, \psi_i(\boldsymbol{\beta}) = h_0(t) \, e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}$$

- Exponential regression: $h_i(t|\beta) = \lambda = e^{-\mathbf{x}_i^{\top}\beta}$
 - $h_0(t) = 1$
 - $\psi_i(\boldsymbol{\beta}) = e^{-\mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta}}$
- Weibull regression: $h_i(t|\boldsymbol{\beta}) = \frac{1}{\sigma} \exp\{-\frac{1}{\sigma}\mathbf{x}_i^{\top}\boldsymbol{\beta}\}t^{\frac{1}{\sigma}-1}$
 - $h_0(t) = \frac{1}{\sigma} t^{\frac{1}{\sigma}-1}$
 - $\psi_i(\boldsymbol{\beta}) = \exp\{-\frac{1}{\sigma}\mathbf{x}_i^{\top}\boldsymbol{\beta}\}$
- Are these really special cases of the proportional hazards model, with $\psi_i(\beta) = e^{\mathbf{x}_i^{\mathsf{T}} \beta}$?
- Yes, by a re-parameterization. β_j of proportional hazards = $-\beta_j$ of exponential regression.
- β_j of proportional hazards = $-\beta_j/\sigma$ of Weibull regression.
- The main implication is that in proportional hazards regression, the coefficients mean the opposite of what you are used to.
- Anything that makes $\mathbf{x}_i^{\top} \boldsymbol{\beta}$ bigger will increase the hazard, and make the chances of survival *smaller*.

The Hazard Ratio

Form a ratio of hazard functions. In the numerator, increase $x_{i,k}$ by one unit while holding all other $x_{i,j}$ values constant.

$$\frac{h_1(t)}{h_2(t)} = \frac{h_0(t) \exp\{\beta_0 + \beta_1 x_{i,1} + \dots + \beta_k (x_{i,k} + 1) + \dots + \beta_{p-1} x_{i,p-1}\}}{h_0(t) \exp\{\beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \dots + \beta_{p-1} x_{i,p-1}\}}$$

$$= e^{\beta_k}$$

- Holding the other $x_{i,j}$ values constant is the meaning of "controlling" for explanatory variables.
- If $\beta_k > 0$, increasing $x_{i,k}$ increases the hazard.
- If $\beta_k < 0$, increasing $x_{i,k}$ decreases the hazard.

Semi-parametric

$$h_i(t|\boldsymbol{\beta}) = h_0(t) e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}$$

- The unknown quantities in the model are the vector of regression parameters β , and the unknown baseline hazard function $h_0(t)$.
- We can avoid making any assumptions about $h_0(t)$.
- But because of β , it's at least partly parametric.

Estimation: Using Ideas From Kaplan-Meier

- As in the Kaplan-Meier estimate, we focus on the uncensored observations, for which the failure time is known.
- The censored observations will have their influence by disappearing from the set of individuals at risk.
- There are $D = \sum_{i=1}^{n} \delta_i$ uncensored observations.
- Denote the ordered times at which failures occur by $t_1, \ldots t_D$.
- This notation can be confusing, because the entire set of times, including censoring times, is usually denoted $t_1, \ldots t_D$.
- Some books (for example Chapter 3 in Applied Survival Analysis by Hosmer and Lemeshow, available from https://b-ok.org) use the notation $t_{(1)}, \ldots t_{(D)}$.
- The index set of individuals at risk at failure time t_j is R_j .
- One of them fails.

Hazard

- The hazard function $h(t_j) = \lim_{\Delta \to 0} \frac{P(t_j \le T \le t_j + \Delta | T \ge t_j)}{\Delta}$ is roughly proportional to the probability of failure at time t_j , conditionally on survival to that point.
- Make it an actual probability. Normalize it, dividing by the total hazards of all the individuals at risk:

$$q_i = 1 - p_i = \frac{h_0(t)e^{\mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta}}}{\sum_{j \in R_i} h_0(t)e^{\mathbf{x}_j^{\mathsf{T}}\boldsymbol{\beta}}} = \frac{e^{\mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta}}}{\sum_{j \in R_i} e^{\mathbf{x}_j^{\mathsf{T}}\boldsymbol{\beta}}}$$

- First, notice that the baseline hazard cancels.
- These really are like the p_i and q_i in Kaplan-Meier estimation.
- Except, instead of dividing by the *number* of individuals at risk, they are weighted by their hazards.
- And those hazards depend on the explanatory variable values through β .

Estimating β

Now we have failure probabilities
$$q_i = \frac{e^{\mathbf{x}_i^\top \boldsymbol{\beta}}}{\sum_{j \in R_i} e^{\mathbf{x}_j^\top \boldsymbol{\beta}}}$$
.

How can these be used to estimate β ? Cox suggested

- Multiply them together and treat them as a likelihood.
- Take the minus log, and minimize.
- He suggested that all the usual likelihood theory should hold.
- Fisher information, asymptotic normality, likelihood ratio tests: everything.
- He called it *partial* likelihood.
- Why?!

Partial Likelihood

Using
$$h(t) = \frac{f(t)}{S(t)}$$
,

$$L(\theta) = \prod_{i=1}^{n} f(t_i|\theta)^{\delta_i} S(t_i|\theta)^{1-\delta_i}$$

$$= \prod_{i=1}^{n} (h(t_i|\theta)S(t_i|\theta))^{\delta_i} S(t_i|\theta)^{1-\delta_i}$$

$$= \prod_{i=1}^{n} h(t_i|\theta)^{\delta_i} S(t_i|\theta)^{\delta_i+1-\delta_i}$$

$$= \prod_{i=1}^{n} h(t_i|\theta)^{\delta_i} S(t_i|\theta)$$

$$= \prod_{i=1}^{D} h(t_{(i)}|\theta) \prod_{i=1}^{n} S(t_i|\theta)$$

Continuing the likelihood calculation

$$L(\theta) = \prod_{i=1}^{D} h(t_{(i)}|\theta) \prod_{i=1}^{n} S(t_{i}|\theta)$$

$$= \prod_{i=1}^{D} h_{0}(t_{(i)}) e^{\mathbf{x}_{(i)}^{\top}\beta} \prod_{i=1}^{n} S(t_{i}|\beta, h_{0})$$

$$= \prod_{i=1}^{D} h_{0}(t_{(i)}) e^{\mathbf{x}_{(i)}^{\top}\beta}$$

$$= \prod_{i=1}^{D} \sum_{j \in R_{(i)}} h_{0}(t_{(i)}) e^{\mathbf{x}_{j}^{\top}\beta} \left(\prod_{i=1}^{D} \sum_{j \in R_{(i)}} h_{0}(t_{(i)}) e^{\mathbf{x}_{j}^{\top}\beta} \right) \prod_{i=1}^{n} S(t_{i}|\beta, h_{0})$$

$$= \prod_{i=1}^{D} \frac{h_{0}(t_{(i)}) e^{\mathbf{x}_{(i)}^{\top}\beta}}{\sum_{j \in R_{(i)}} h_{0}(t_{(i)}) e^{\mathbf{x}_{j}^{\top}\beta}} \left(\prod_{i=1}^{D} \sum_{j \in R_{(i)}} h_{0}(t_{(i)}) e^{\mathbf{x}_{j}^{\top}\beta} \right) \prod_{i=1}^{n} S(t_{i}|\beta, h_{0})$$

Partial Likelihood

$$L(\boldsymbol{\beta}, h_0) = \prod_{i=1}^{D} \left(\frac{e^{\mathbf{x}_{(i)}^{\mathsf{T}} \boldsymbol{\beta}}}{\sum_{j \in R_{(i)}} e^{\mathbf{x}_{j}^{\mathsf{T}} \boldsymbol{\beta}}} \right) \left(\prod_{i=1}^{D} \sum_{j \in R_{(i)}} h_0(t_{(i)}) e^{\mathbf{x}_{j}^{\mathsf{T}} \boldsymbol{\beta}} \right) \prod_{i=1}^{n} S(t_i | \boldsymbol{\beta}, h_0)$$

- The red product is Cox's partial likelihood.
- Properties similar to ordinary likelihood were proved years later.
- There are fairly convincing arguments that the black product is negligible for large samples.
- Lack of dependence on the baseline hazard is a good feature.
- This is the state of the art.

Hypothesis Tests

As Cox hypothesized, all the usual likelihood theory applies to partial likelihood.

- Consistency (i.e., large-sample accuracy)
- Asymptotic normality.
- Fisher information
- Z-tests
- Wald tests
- Score tests
- Likelihood ratio tests
- Call them *partial* likelihood ratio tests.

Estimating the Survival Function: Background

Using $H(t) = \int_0^t h(x) dx$ and $S(t) = e^{-H(t)}$

- Proportional hazards says $h(t|\beta) = h_0(t) e^{\beta_0 + \mathbf{x}_i^{\top} \beta}$
- This makes it clear that $h_0(t) e^{\beta_0}$ cancels in numerator and denominator of the partial likelihood.
- $h_0(t)$ is the hazard function when all explanatory variable values are zero and $\beta_0 = 0$.
- $H_0(t) = \int_0^t h_0(x) dx$ is the baseline cumulative hazard function.
- $S_0(t) = e^{-H_0(t)}$ is the baseline survival function.
- With a little work we can show $S(t) = S_0(t)^{\exp\{\beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta}\}}$.
- This could be written $S(t|\mathbf{x}_i)$.

Estimation (Cox and Oakes, 1982, p. 108)

Using $S_0(t) = e^{-H_0(t)}$ and $S(t|\mathbf{x}_i) = S_0(t)^{\exp\{\beta_0 + \mathbf{x}_i^{\top}\boldsymbol{\beta}\}}$

Cox suggested
$$H_0(t) \approx \sum_{t_{(i)} < t} \frac{d_{(i)}}{\sum_{j \in R_{(i)}} e^{\beta_0 + \mathbf{x}_j^\top \boldsymbol{\beta}}}$$
. Multiplying both sides by

 e^{β_0} , which is invisible in Cox's argument, arrive at

$$e^{\widehat{\beta}_0} \widehat{H}_0(t) = \sum_{t_{(i)} < t} \frac{d_{(i)}}{\sum_{j \in R_{(i)}} e^{\mathbf{x}_j^{\top} \widehat{\boldsymbol{\beta}}}}$$

Then, $e^{-\widehat{H}_0(t)e^{\widehat{\beta}_0}} = \widehat{S}_0(t)^{e^{\widehat{\beta}_0}}$. Raise that to the power $\mathbf{x}_i^{\mathsf{T}}\widehat{\boldsymbol{\beta}}$, and get

$$\widehat{S}_0(t)^{e^{\widehat{\beta}_0 + \mathbf{x}_i^{\top} \widehat{\beta}}} = \widehat{S}(t|\mathbf{x}_i)$$

It works

- As usual, later work clarified matters and eliminated most of the guesswork.
- Cox's estimate of S(t) is show to arise from Breslow's method of approximating the partial likelihood when there are ties.
- There are several other estimates, all yielding results that are pretty close.
- In every case, β_0 is there, but usually it's invisible.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/312s19