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Background Reading

Appendix A from Structural Equation Models: An open textbook



Overview

@ No Formula for the MLE
© Multiple Parameters
@ Numerical MLEs

@ Hypothesis Tests



T'wo more issues

e Maximum likelihood estimates are often not available in closed
form.

o Multiple parameters.

Most real-world problems have both these features.
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No Formula for the MLE

No formula for the MLE

All we need is one example to see the problem.

Let X1,...,X, be independent observations from a distribution with density

L_e=2p0-1 for x>0
)= T®C T =
f(x]6) { 0 forz <0

Where the parameter 6 > 0. This is a gamma with o = 6 and A = 1.
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No Formula for the MLE

Numerical MLE

By computer

o The log likelihood defines a surface sitting over the parameter
space.

@ It could have hills and valleys and mountains.

@ The value of the log likelihood is easy to compute for any given set
of parameter values.

o This tells you the height of the surface at that point.

e Take a step uphill (blindfolded).

e Are you at the top? Compute the slopes of some secant lines.

o Take another step uphill.

e How big a step? Good question.

@ Most numerical routines minimize a function of several variables.

@ So minimize the minus log likelihood.
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Multiple Parameters

Multiple parameters

Most real-world problems have a vector of parameters.

o Let Xy,..., X, be arandom sample from a normal distribution
with expected value p and variance o2.

The parameters p and o2 are unknown.
e Fori=1,...,n,let y; = Bo+ frxi1 + -+ Bp—1%ip—1 + €, where

Bos - - -, Bp—1 are unknown constants.

x;,; are known constants.

€1,-..,€n are independent N(0,02) random variables.
0?2 is an unknown constant.

Y1,- .., Yn are observable random variables.

The parameters S, ..., Bp—1, o? are unknown.
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Multiple Parameters

Multi-parameter MLE

You know most of this.

@ Suppose there are k parameters.

o The plane tangent to the log likelihood should be horizontal at the
MLE.

o Partially differentiate the log likelihood (or minus log likelihood)
with respect to each of the parameters.

@ Set the partial derivatives to zero, obtaining k equations in k
unknowns.

@ Solve for the parameters, if you can.
o Is it really a maximum?

@ There is a multivariate second derivative test.
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Multiple Parameters

The Hessian matrix

u= 200

o If there are k parameters, the Hessian is a k x k matrix whose
(1,7) element is 872(—6(9))
»J 96,00, :
o If the second derivatives are continuous, H is symmetric.
o If the gradient is zero at a point and |H| # 0, then

o If all eigenvalues are positive at the point, local minimum.

o If all eigenvalues are negative at the point, local maximum.

o If there are both positive and negative eigenvalues at the point,
saddle point.
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Large-sample Theory

Earlier results generalize to the multivariate case

The vector of MLEs is asymptotically normal. That is, multivariate
normal.
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Multiple Parameters

The Multivariate Normal

The multivariate normal distribution has many nice features. For us,
the important ones are:

o It is characterized by a k x 1 vector of expected values and a k x k
variance-covariance matrix.

o Write y ~ Ni(u, X).

e X = [0; ] is a symmetric matrix with variances on the main
diagonal and covariances on the off-diagonals.

o All the marginals are normal. y; ~ N(u;,05;).
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Multiple Parameters

The vector of MLEs is asymptotically multivariate
normal. (Thank you, Mr. Wald)

6, ~ N, (0 iz(e)l)

e Compare 0, ~ N(@, n[(e))

Z(0) is the Fisher information matrix.

Specifically, the Fisher information in one observation.
A k x k matrix

2

(6) = { E <aeaaa log f(Y; 9))}

o The Fisher Information in the whole sample is nZ(0).



Multiple Parameters

0., is asymptotically N, (6,-Z(0)™")

Asymptotic covariance matrix of 8,, is 17(6)7, and of course we
don’t know 6.

For tests and confidence intervals, we need a good approzrimate
asymptotic covariance matrix,

Based on a good estimate of the Fisher information matrix.

o Z(6,,) would do.

But it’s inconvenient: Need to compute partial derivatives and
expected values in

2

Z(6) = | El- 00,00,

log f(Y;0)]

and then substitute én for 6.
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Multiple Parameters

The observed Fisher information

Approximate

0) ' = {nE[—ae?&oj log f(Y; 9)]] 7

. 92 -
%= -zt v), ,

As in the univariate case, substitute the MLE for the parameter
instead of taking the expected value.

1
n
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Numerical MLEs

Compare the Hessian and (Estimated) Asymptotic
Covariance Matrix

~

Vi = ([ 89 ae (0, Y)L:@n)_l

Hessian at MLE is H = [ 89 80 00, Y)} _

—Un

So to estimate the asymptotic covariance matrix of 8, just invert
the Hessian.

The Hessian is usually available as a by-product of a numerical
search for the MLE.

@ Because it’s needed for the second derivative test.



Numerical MLEs

Connection to Numerical Optimization

@ Suppose we are minimizing the minus log likelihood by a direct
search.

@ We have reached a point where the gradient is close to zero. Is this
point a minimum?
o The Hessian is a matrix of mixed partial derivatives. If all its

eigenvalues are positive at a point, the function is concave up
there.

e Partial derivatives are usually approximated by the slopes of
secant lines — no need to calculate them symbolically.

e It’s the multivariable second derivative test.

16 / 3:
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Numerical MLEs

So to find the estimated asymptotic covariance matrix

e Minimize the minus log likelihood numerically.

@ The Hessian at the place where the search stops is usually
available.

o Invert it to get \A/'n

o This is so handy that sometimes we do it even when a closed-form
expression for the MLE is available.
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Numerical MLEs

Estimated Asymptotic Covariance Matrix \Afn is Useful

o Asymptotic standard error of 5] is the square root of the jth
diagonal element.

@ Denote the asymptotic standard error of é\] by S5 .
J

o Thus
0; —0;
ng

Z; =

is approximately standard normal.



Hypothesis Tests

Confidence Intervals and Z-tests

Have Z; = 90

approximately standard normal, yielding
i
e Confidence intervals: (/9\] + 55 2a/2
J

o Test Hy : 0; = 0 using

0, — 0

53,

VA
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Hypothesis Tests

Functions of the parameter vector

Sometimes we want tests and confidence intervals for functions of
0 € R”.

o Like {3 (variance of a gamma)

Or %(91 + 602+ 03) — %(94 + 05 + 6g).

Fortunately, smooth functions of an asymptotically multivariate
normal random vector are asymptotically normal.
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Hypothesis Tests

Theorem based on the delta method of Cramér

The delta method is more general than this.

Let 8 € R*. Under the conditions for which 6, is asymptotically
N (8,V,) with V,, = 1Z(8)7!, let the function g : R¥ — R be such

~n
that the elements of g(@) = (8‘9—9‘(’1, e %) are continuous in a

neighbourhood of the true parameter vector 8. Then

9(6) ~ N (9(0). 4OV, &(0)T)

Note that the asymptotic variance g(8)V,, g(@)" is a matrix product:

(1 x k) times (k x k) times (k x 1).

~ A~ A~ ~

The standard error of g(0) is 1/g(0)V,g(0)T.

V)
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Hypothesis Tests

Specializing the delta method to the case of a single

parameter
Yielding the univariate delta method

Let 8 € R. Under the conditions for which §n is asymptotically
N (0, v,) with v, = L I(6), let the function g(x) have a continuous
derivative in a neighbourhood of the true parameter #. Then

g(0) ~ N (g(6),9'()*v,) -

-~

The standard error of g(8) is \/¢'()2 By, or
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Hypothesis Tests

Two hypothesis tests for multi-parameter problems

They also apply to single-parameter models

o Wald tests and likelihood ratio tests.
They both apply to linear null hypotheses of the form Hy : LO = h

@ Where L is an 7 by k matrix with linearly independent rows.

This kind of null hypothesis is familiar from linear regression
(STA302).



Hypothesis Tests

Example

Linear regression with 4 explanatory variables

e 0= (BOaﬁla/ﬁQ?Bi’nB%O_z)
© Hy: /1 =p2=pP3=0

e Hy:LO=0
Bo
01000 0 gl 0
001000 52:0
00010 0 3 0
Ba
2

V]
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Hypothesis Tests

Another example of Hy : LO = h

A collection of linear constraints on the parameter 6

Example with k = 7 parameters: Hy has three parts
@ #; =605 and
° (96 = 67 and
2 (014 04 03) = 1 (04 + 05 + 05)

Notice the number of rows in L is the number of = signs in Hy.

N
w
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Hypothesis Tests

Wald Test for Hy : LO = h

Based on (x — M)Tzfl(x — @) ~ X2(P)

W, = (L&, —h)" (L\A/'nLT> L6, —h)

Chi-squared under Hy.

Reject for large values of W,.

df = number of rows in L.

o Number of linear constraints specified by Hy.

Looks like the formula for the general linear F-test in regression.
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Hypothesis Tests

The Wtest Function
Use it freely

Wtest = function(L,Tn,Vn,h=0) # HO: L theta = h
# For Wald tests based on numerical MLEs, Tn = theta-hat,
# and Vn is the inverse of the Hessian.
{
Wtest = numeric(3)
names (Wtest) = c("W","df","p-value")
r = dim(L) [1]
W = t(L%*%Tn-h) %% solve(L%*%Vnlx%t (L)) %*%
(L%*%Tn-h)
W = as.numeric(W)
pval = 1-pchisq(W,r)
Wtest[1] = W; Wtest[2] = r; Wtest[3] = pval
Wtest
}
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Hypothesis Tests

Likelihood ratio tests

o X1,... . X, "X F 00

e Hy:0€0gvs. H :0€0O0NO;

L(0)
2_ _9] MmaXgco, X\Y)
G 8 maxgece L(@)

e Under Hy, G? has an approximate chi-squared distribution for
large n.

@ Degrees of freedom = number of (non-redundant, linear) equalities
specified by Hy.

o Reject when G? is large.
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Hypothesis Tests

Example: Multinomial with 3 categories

o Parameter space is 2-dimensional.
o Unrestricted MLE is (p1,p2): Sample proportions.
1 H(] : 91 = 202

]



Hypothesis Tests

Parameter space for Hy : 61 = 26
Red dot is unrestricted MLE, Black square is restricted MLE

6,
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Hypothesis Tests

Comparing Likelihood Ratio and Wald tests

Asymptotically equivalent under Hp, meaning (W,, — G2) 2 0
e Under Hi,

o Both have the same approximate distribution (non-central
chi-square).

e Both go to infinity as n — oo.

e But values are not necessarily close.

o Likelihood ratio test tends to get closer to the right Type I error
probability for small samples.

e Wald can be more convenient when testing lots of hypotheses,
because you only need to fit the model once.

e Wald can be more convenient if it’s a lot of work to write the
restricted likelihood.

%]



Hypothesis Tests

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The IATEX source code is
available from the course website:

http://www.utstat.toronto.edu/ " brunner/oldclass/312s19
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