- We begin with the following useful theorem:
- Theorem: Suppose T is a continuous nonnegative random variable with cumulative hazard function Λ . Then the random variable $Y = \Lambda(T)$ follows an exponential distribution with rate $\lambda = 1$.
- Thus, one way of checking the validity of a model is by comparing the model's estimates $\{\hat{\Lambda}(t_i)\}$ against the standard exponential distribution

Cumulative Hazand Transformation $T \sim f(t) P(T > 0) = 1$ $H(t) = \int_{0}^{t} h(x) dx, but uso$ 5(A)= C - 108 5(A)= H(A) Let i=H(T) P(i>0)=1 $F_{Y}(y) = P(Y \leq y) = P(H(T) \leq y)$ $= P(-\log S(T) \leq y) = P(\log S(T) \geq -y)$ $= P(S(T) \ge e^{-5}) = P(1 - F(T) \ge e^{-5})$ $= P(F_{+}(T) \leq 1 - e^{-\delta}) = P(F_{+}'(F_{+}(T)) \leq F_{+}'(i - e^{\delta}))$ $= P(T \leq F_{r}'(1 - e^{-\delta}) = F_{r}(F_{r}'(1 - e^{-\delta}))$ $= 1 - C^{-5} CDF \sigma_{7}^{2} E_{YBO nontial}$ = $F_{4}(5)$ with $\pi = 1$ for 4>0