Proportional Hazards Regression: Part Two¹ STA312 Fall 2023

¹See last slide for copyright information.

Proportional Hazards Regression Model

Based on the hazard function

$$h(t) = h_0(t) e^{\beta_0 + \mathbf{x}^{\top} \boldsymbol{\beta}}$$

Swallow e^{β_0} into the baseline hazard function and get

$$h(t) = h_0(t) e^{\mathbf{x}^{\mathsf{T}} \boldsymbol{\beta}}$$

- The regression model has no intercept.
- It's common practice to center the explanatory variables (but not the dummy variables) by subtracting off the overall sample mean of the variable.
- Then, the baseline hazard function is the hazard function of an individual in the reference category, who is "average" on all the quantitive explanatory variables.
- It's quite meaningful.

Hazard Ratio

$$\frac{h_1(t)}{h_2(t)} = \frac{h_0(t) e^{\mathbf{x}_1^{\top} \boldsymbol{\beta}}}{h_0(t) e^{\mathbf{x}_2^{\top} \boldsymbol{\beta}}}$$
$$= \frac{e^{\mathbf{x}_1^{\top} \boldsymbol{\beta}}}{e^{\mathbf{x}_2^{\top} \boldsymbol{\beta}}}$$

- Proportional hazards.
- If x_k is increased by one unit, the hazard function is multiplied by e^{β_k} .
- This is true for every time t (according to the model).
- So you can just say the "hazard" or "risk" or even "chances" of the event are twice as much.
- It's a good way to talk and think about the results.

Need to estimate the hazard and survival functions

- What we have so far is good for significance testing.
- Need to estimate the hazard and survival functions.

Estimating the baseline hazard

$$h_0(t)$$
 in $h(t) = h_0(t) e^{\mathbf{x}^{\top} \boldsymbol{\beta}}$

Remember how partial likelihood started.

$$h_0(t)e^{\mathbf{x}_{(i)}^{\top}\boldsymbol{\beta}} \approx \frac{h_0(t)e^{\mathbf{x}_{(i)}^{\top}\boldsymbol{\beta}}}{\displaystyle\sum_{j\in R_{(i)}}h_0(t)e^{\mathbf{x}_j^{\top}\boldsymbol{\beta}}}$$

$$= \frac{e^{\mathbf{x}_{(i)}^{\top}\boldsymbol{\beta}}}{\displaystyle\sum_{j\in R_{(i)}}e^{\mathbf{x}_j^{\top}\boldsymbol{\beta}}}$$

$$= \frac{1}{\displaystyle\sum_{j\in R_{(i)}}e^{\mathbf{x}_j^{\top}\boldsymbol{\beta}}} \times e^{\mathbf{x}_{(i)}^{\top}\boldsymbol{\beta}}$$

A leap of intuition

Humm,

$$h_0(t_{(i)}) \times e^{\mathbf{x}_{(i)}^{\top}\boldsymbol{\beta}} \approx \frac{1}{\sum_{j \in R_{(i)}} e^{\mathbf{x}_j^{\top}\boldsymbol{\beta}}} \times e^{\mathbf{x}_{(i)}^{\top}\boldsymbol{\beta}}$$

So how about

$$\widehat{h}_0(t_{(i)}) = \frac{1}{\sum_{j \in R_{(i)}} e^{\mathbf{x}_j^{\top} \widehat{\boldsymbol{\beta}}}}$$

Well, there could be ties in practice, so based on the Kaplan-Meier estimated hazard $\widehat{q}_{(i)} = \frac{d_{(i)}}{n_{(i)}}$,

$$\widehat{h}_0(t_{(i)}) = \frac{d_{(i)}}{\sum_{j \in R_{(i)}} e^{\mathbf{x}_j^{\top} \widehat{\boldsymbol{\beta}}}}$$

Almost always, $d_{(i)} = 1$ anyway.

Estimated Hazard Function(s)

Based on $h(t) = h_0(t) e^{\mathbf{x}^{\top} \boldsymbol{\beta}}$

$$\widehat{h}(t_{(i)}) = \widehat{h}_0(t_{(i)}) \, e^{\mathbf{x}^{\mathsf{T}} \widehat{\boldsymbol{\beta}}}$$

- Nice for display. Can plot D points.
- Notice it depends on **x**.

Estimating the Survival Function: Background

Using $H(t) = \int_0^t h(y) dy$ and $S(t) = e^{-H(t)}$

- $H_0(t) = \int_0^t h_0(y) dy$ is the baseline cumulative hazard function.
- $S_0(t) = e^{-H_0(t)} = e^{-\int_0^t h_0(y) dy}$ is the baseline survival function.
- With a little work we can show $S(t) = S_0(t)^{\exp\{\mathbf{x}_i^{\top}\boldsymbol{\beta}\}}$.
- This could be written $S(t|\mathbf{x}_i)$.

Estimating the Survival Curve (Cox and Oakes, 1982)

Using $S_0(t) = e^{-H_0(t)}$ and $S(t) = S_0(t)^{\exp\{\mathbf{x}^{\top}\boldsymbol{\beta}\}}$

Want an estimate of $H_0(t) = \int_0^t h_0(y) dy$, but

$$\widehat{h}_0(t_{(i)}) = \frac{d_{(i)}}{\sum_{j \in R_{(i)}} e^{\mathbf{x}_j^{\top} \widehat{\boldsymbol{\beta}}}}$$

is only defined for $t_{(1)}, \ldots, t_{(D)}$, the times where uncensored observations occurred.

Approximate the integral with a finite sum:

$$\widehat{H}_0(t) = \sum_{t_{(i)} \le t} \frac{d_{(i)}}{\sum_{j \in R_{(i)}} e^{\mathbf{x}_j^{\mathsf{T}} \widehat{\boldsymbol{\beta}}}}$$

Cox and Oakes argument continued

Using
$$S_0(t) = e^{-H_0(t)}$$
 and $S(t|\mathbf{x}) = S_0(t)^{\exp\{\mathbf{x}^{\top}\boldsymbol{\beta}\}}$

Have

$$\widehat{H}_0(t) = \sum_{t_{(i)} \le t} \frac{d_{(i)}}{\sum_{j \in R_{(i)}} e^{\mathbf{x}_j^{\top} \widehat{\boldsymbol{\beta}}}}$$

Then

$$\widehat{S}_0(t) = e^{-\widehat{H}_0(t)}$$

$$\widehat{S}(t|\mathbf{x}) = \widehat{S}_0(t)^{\exp\{\mathbf{x}^{\top}\widehat{\boldsymbol{\beta}}\}}$$

It works

- As usual, later work clarified matters and eliminated most of the guesswork.
- Cox's estimate of S(t) is shown to arise from Breslow's method of approximating the partial likelihood when there are ties.
- There are several other estimates, all yielding results that are pretty close.
- To me, the biggest payoff is that $\widehat{S}(t|\mathbf{x})$ allows estimation of the median for any particular set of explanatory variable values.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/brunner/oldclass/312f23