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The Kaplan-Meier Estimate
Reference: Chapter 3 in Applied Survival Analysis Using R

Objective: To estimate the survival function without making any
assumptions about the distribution of survival time.

If there were no censoring, it would be easy.

Use the empirical distribution function: the proportion of
observations less than or equal to t.

F̂n(t) =
1

n

n∑
i=1

I{ti ≤ t}

Then let Ŝn(t) = 1− F̂n(t)
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Discrete Time
Maybe time is always discrete in practice

Consider times t0 = 0, t1, t2, . . . , maybe minutes or days.
Let qj = the probability of failing at time tj , given survival to time
tj−1.
This is the idea behind the hazard function.
pj = 1− qj = the probability of surviving past time tj , given
survival past time tj−1.

pj = P (T > tj |T > tj−1)

=
P (T > tj , T > tj−1)

P (T > tj−1)

=
P (T > tj)

P (T > tj−1)

=
S(tj)

S(tj−1)
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pj =
S(tj)
S(tj−1)

Probability of surviving past time tj , given survival past time tj−1

With S(t0) = S(0) = 1,

p1 = S(t1)
S(t0)

= S(t1)
1 = S(t1)

p2 = S(t2)
S(t1)

p3 = S(t3)
S(t2)

Continuing . . .

pk = S(tk)
S(tk−1)

Then,

p1 p2 p3 · · · pk

= S(t1)
S(t2)

S(t1)

S(t3)

S(t2)
· · · S(tk)

S(tk−1)

= S(tk)
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S(tk) =
k∏
j=1

pj

Estimate S(tk) by estimating the pj .

Let dj be the number of deaths at time tj .
Let nj be the number of individuals at risk before time tj .
Anyone censored before time tj is no longer at risk.

Estimated probability of failure at time tj is q̂j =
dj
nj

.

p̂j = 1− q̂j =
nj − dj

nj

Ŝ(tk) =
k∏
j=1

p̂j

Ŝ(t) =
∏
tj≤t

p̂j
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Working toward a standard error for Ŝ(t) =
∏
tj≤t

p̂j

Large-sample Distribution Theory

p̂j = 1− dj
nj

=
nj−dj
nj

is a sample proportion – a sample mean.

It is the proportion of individuals eligible at risk for failure at time
t, who did not fail.

Mean of independent Bernoullis (conditionally on nj).

E(p̂j) = pj , V ar(p̂j) =
pj(1−pj)

nj

p̂j
.∼ N(pj ,

pj(1−pj)
nj

) by the Central Limit Theorem.

This is for large nj .

6 / 13



Recall
Theorem based on the delta method of Cramér

Let θ ∈ Rk. Under the conditions for which θ̂n is asymptotically
Nk (θ,Vn) with Vn = 1

nI(θ)−1, let the function g : Rk → R be such

that the elements of ġ(θ) =
(
∂g
∂θ1

, . . . , ∂g∂θk

)
are continuous in a

neighbourhood of the true parameter vector θ. Then

g(θ̂)
.∼ N

(
g(θ), ġ(θ)Vn ġ(θ)>

)
.

Note that the asymptotic variance ġ(θ)Vn ġ(θ)> is a matrix product:
(1× k) times (k × k) times (k × 1).

The standard error of g(θ̂) is

√
ġ(θ̂)V̂n ġ(θ̂)>.
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Specializing the delta method to the case of a single
parameter
Yielding the univariate delta method

Let θ ∈ R. Under the conditions for which θ̂n is asymptotically
N (θ, vn) with vn = 1

n I(θ), let the function g(x) have a continuous
derivative in a neighbourhood of the true parameter θ. Then

g(θ̂)
.∼ N

(
g(θ), g′(θ)2 vn

)
.

The standard error of g(θ̂) is

√
g′(θ̂)2 v̂n , or

∣∣∣g′(θ̂)∣∣∣√v̂n
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Large-sample Distribution Theory Continued
Ŝ(t) =

∏
tj≤t

p̂j with p̂j =
nj−dj

nj

.∼ N
(
pj ,

pj(1−pj)

nj

)

Sums are easier to work with than products.

log Ŝ(t) =
∑

tj≤t log p̂j

Using the one-variable delta method, log p̂j
.∼ N(log pj ,

1−pj
njpj

)

Sum of normals is normal (asymptotically, too).

E(
∑

tj≤t log p̂j) ≈
∑

tj≤t log pj = log
∏
tj≤t pj = logS(t)

V ar

∑
tj≤t

log p̂j

 ≈
∑
tj≤t

V ar(log p̂j)

=
∑
tj≤t

1− pj
njpj
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Asymptotic Distribution of log Ŝ(t) =
∑
tj≤t

log p̂j

log Ŝ(t)
.∼ N

logS(t),
∑
tj≤t

1− pj
njpj


This is a stepping stone to the distribution of Ŝ(t).
Use the univariate delta method again.
Univariate delta method says that if Tn

.∼ N(θ, vn) then
g(Tn)

.∼ N
(
g(θ), vn[g′(θ)]2

)
.

Here, Tn = log Ŝn(t), θ = logS(t) and g(x) = ex.
g′(θ) = eθ = elogS(t) = S(t). So,

Ŝ(t)
.∼ N

S(t), S(t)2
∑
tj≤t

1− pj
njpj


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Standard error of Ŝ(t)
Used in the denominator of Z-tests and Ŝ(t) ± 1.96 se

Ŝ(t)
.∼ N

S(t), S(t)2
∑
tj≤t

1− pj
njpj


Of course we don’t know S(t) or pj in the variance.
So use estimates.
Estimate S(t) with Ŝ(t), and estimate pj with p̂j =

nj−dj
nj

.

The resulting estimated asymptotic variance is

Ŝ(t)2
∑

tj≤t

(
dj

nj(nj−dj)

)
This is expression (3.1.2) on p. 27 of the text.

The standard error of Ŝ(t) is Ŝ(t)

√∑
tj≤t

(
dj

nj(nj−dj)

)
.

In R’s survival package, the default confidence interval for the
Kaplan-Meier estimate uses this standard error.
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Counting Processes
The theoretical state of the art

Distribution theory for the Kaplan Meier estimate (asymptotic
normality, standard error etc.) has been presented the way it was
originally developed.

The derivation is partly sound, but it has some holes.

More recently, viewing number of failures up to a point as a
counting process (stochastic processes, STA348 and beyond) has
cleaned the whole thing up.

Results are the same, but now the proofs are rigorous.

There was some guesswork in the development of these ideas, but
the main guesses were right.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/312f23
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