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Overview

2 / 1



Power of a Statistical test

The power of a test is the probability of rejecting H0 when H0

is false.

More power is good, because we want to make correct
decisions.

Power is not just one number. It is a function of the
parameters.

Usually,

For any n, the more incorrect H0 is, the greater the power.
For any parameter value satisfying the alternative
hypothesis, the larger n is, the greater the power.
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Statistical power analysis
To select sample size

Pick an effect you’d like to be able to detect – a set of
parameter values such that H0 is false. It should be just
over the boundary of interesting and meaningful.

Pick a desired power, a probability with which you’d like to
be able to detect the effect by rejecting the null hypothesis.

Start with a fairly small n and calculate the power.
Increase the sample size until the desired power is reached.

There may be shortcuts, but this is the idea.
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Power for the Multinomial Model
More review

The main test statistics are

G2 = 2

c∑
j=1

nj log

(
nj
µ̂j

)
= 2n

c∑
j=1

pj log

(
pj
π̂j

)

X2 =

c∑
j=1

(nj − µ̂j)2

µ̂j
= n

c∑
j=1

(pj − π̂j)2

π̂j

When H0 is true, their distributions are approximately
(central) chi-squared.

When H0 is false, their distributions are approximately
non-central chi-squared, with non-centrality parameter
λ > 0.

5 / 1



Large-sample target of the restricted MLE as n→∞

π̂n → π(M)

The notation M means model — the “model” given by H0.

The non-centrality parameter λ depends on
π(M) = {π1(M), . . . , πc(M)}.

X2 = n

c∑
j=1

(pj − π̂j)2

π̂j
λ = n

c∑
j=1

[πj − πj(M)]2

πj(M)

G2 = 2n

c∑
j=1

pj log

(
pj
π̂j

)
λ = 2n

c∑
j=1

πj log

(
πj

πj(M)

)
,

These formulas for λ are in Agresti’s Categorical data analysis, p. 241.
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Take a closer look

X2 = n

c∑
j=1

(pj − π̂j)2

π̂j
λ = n

c∑
j=1

[πj − πj(M)]
2

πj(M)

G2 = 2n

c∑
j=1

pj log

(
pj
π̂j

)
λ = 2n

c∑
j=1

πj log

(
πj

πj(M)

)
,

By the Law of Large Numbers, pj → πj , always.

When H0 is correct, π̂j → πj for j = 1, . . . , c.

When H0 is wrong, may have π̂j → πj for some j, but not
all.

So λ is n times a quantity saying how wrong H0 is.

Let’s call this quantity “effect size.”

7 / 1



Why we need π1(M), . . . , πc(M)

For any sample size n, power is an increasing function of λ.
To calculate λ, we need not only the true parameter π, but
also where the restricted MLE goes as n→∞.

X2 = n
c∑

j=1

(
pj − π̂j

)2
π̂j

λ = n
c∑

j=1

[
πj − πj(M)

]2
πj(M)

G2 = 2n
c∑

j=1

pj log

(
pj

π̂j

)
λ = 2n

c∑
j=1

πj log

(
πj

πj(M)

)
,

We will see that (given a null hypothesis model), π(M) is a
specific function of the true parameter π.
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The Law of Large Numbers

Let Y1, . . . ,Yn be independent with common expected value µ.
Then

Yn → E(Yi) = µ

For the multinomial, the data values Yi are vectors of zeros
and ones, with exactly one 1.

Marginally they are Bernoulli, so E(Yi) = µ = π.

The vector of sample proportions is Yn = p.

Technical details aside, pn → π as n→∞ like an ordinary
limit, and the usual rules apply.

In particular, if g(·) is a continuous function, g(pn)→ g(π).
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Calculating the large-sample target
π(M) = {π1(M), . . . , πc(M)}

Write the restricted MLE as π̂n = g(pn).

Let n→∞, and

π̂n = g(pn)→ g(π) = π(M).
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A one-dimensional example from earlier
Recall the Jobs example, with H0 : π1 = 2π2

π̂ =

(
2(n1 + n2)

3n
,
n1 + n2

3n
,
n3
n

)

=

(
2

3

(n1
n

+
n2
n

)
,
1

3

(n1
n

+
n2
n

)
,
n3
n

)

=

(
2

3
(p1 + p2) ,

1

3
(p1 + p2) , p3

)

→
(

2

3
(π1 + π2) ,

1

3
(π1 + π2) , π3

)
= π(M)
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Again, we need π(M) to calculate λ

X2 = n

c∑
j=1

(pj − π̂j)2

π̂j
λ = n

c∑
j=1

[πj − πj(M)]2

πj(M)

G2 = 2n

c∑
j=1

pj log

(
pj
π̂j

)
λ = 2n

c∑
j=1

πj log

(
πj

πj(M)

)
,

Divide the test statistic by n and then let n→∞ to get
the effect size.

Then multiply by a chosen value of n to get λ.

Increase n until the power is as high as you wish.

Of course you can (should) do this before seeing any data.

12 / 1



Chi-squared test of independence H0 : πij = πi+π+j

Passed the Course
Course Did not pass Passed Total
Catch-up π11 π12 π1+
Mainstream π21 π22 π2+
Elite π31 π32 π3+
Total π+1 π+2 1

MLEs of marginal probabilities are π̂i+ = pi+ and π̂+j = p+j , so

π̂ij = pi+p+j → πi+π+j = πij(M)
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Non-centrality parameters for testing independence

X2 = n

I∑
i=1

J∑
j=1

(pij − pi+p+j)2

pi+p+j
λ = n

I∑
i=1

J∑
j=1

(πij − πi+π+j)2

πi+π+j

G2 = 2n

I∑
i=1

J∑
j=1

pij log

(
pij

pi+p+j

)
λ = 2n

I∑
i=1

J∑
j=1

πij log

(
πij

πi+π+j

)
,

With degrees of freedom df = (I − 1)(J − 1)
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A cheap way to calculate the non-centrality parameter
for any alternative hypothesis
Just for testing independence, so far

X2 = n
I∑

i=1

J∑
j=1

(pij − pi+p+j)
2

pi+p+j

λ = n
I∑

i=1

J∑
j=1

(πij − πi+π+j)
2

πi+π+j

G2 = 2n
I∑

i=1

J∑
j=1

pij log

(
pij

pi+p+j

)
λ = 2n

I∑
i=1

J∑
j=1

πij log

(
πij

πi+π+j

)
,

Make up some data that represent the alternative hypothesis of
interest.

Sample size does not matter; n = 100 would make the cell frequencies
percentages.

Calculate the test statistic on your made-up data.

Divide by the n you used.

Now you have an effect size.

Multiply your effect size by any n, to get a λ.

Or you can follow the formulas on the right-hand side, but it’s the
same thing.

15 / 1



Example

As part of their rehabilitation, equal numbers of convicted
criminals are randomly assigned to one of two treatment
programmes just prior to their release on parole. How
many will be re-arrested within 12 months?

Suppose the programs differ somewhat in their
effectiveness, but not much.

Say 60% in Programme A will be re-arrested, compared to
70% in Programme B.

What total sample size is required so that this difference
will be detected by a Pearson chi-squared test of
independence, with power at least 0.80?

(Note this test is identical to one implied by the more
appropriate product-multinomial model.)
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Sample size required for Power of 0.80
Conditional probability of re-arrest 0.60 for Programme A, and 0.70 for B

> # R calculation for the recidivism example

> crit = qchisq(0.95,df=1); crit

[1] 3.841459

> dummy = rbind(c(40,60),

+ c(30,70))

> X2 = loglin(dummy,margin=list(1,2))$pearson

2 iterations: deviation 0

> effectsize = X2/200; effectsize

[1] 0.01098901

> wantpow = 0.80; power = 0 ; n = 50; crit = qchisq(0.95,1)

> while(power<wantpow)

+ {

+ n = n+2 # Keeping equal sample sizes

+ lambda = n*effectsize

+ power = 1-pchisq(crit,1,lambda)

+ } # End while power < wantpow

> n; power

[1] 716

[1] 0.8009609
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What if probability is 0.50 for Programme A?
Compared to 0.70 for B

> # What if Programme A reduced re-arrests to 50%?

> dummy = rbind(c(50,50),

+ c(30,70))

> X2 = loglin(dummy,margin=list(1,2))$pearson

2 iterations: deviation 0

> effectsize = X2/200; effectsize

[1] 0.04166667

> wantpow = 0.80; power = 0 ; n = 50; crit = qchisq(0.95,1)

> while(power<wantpow)

+ {

+ n = n+2 # Keeping equal sample sizes

+ lambda = n*effectsize

+ power = 1-pchisq(crit,1,lambda)

+ } # End while power < wantpow

> n; power

[1] 190

[1] 0.8033634
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Can there be too much power?
What if the sample size is HUGE?

> # Power of a trivial effect for n = 100,000

> dummy = rbind(c(50,50),

+ c(49,51))

> X2 = loglin(dummy,margin=list(1,2))$pearson

2 iterations: deviation 0

> effectsize = X2/200; effectsize

[1] 0.00010001

> lambda = 100000 * effectsize

> power = 1-pchisq(crit,1,lambda); power

[1] 0.8854098
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General log-linear models are tougher
Until you think about it

Explicit formulas for the MLEs under the model are not
available in general.

So can’t just re-write them in terms of pij... and let n→∞
to get πij...(M).

However,
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We know how the iterative proportional fitting
algorithm produces π̂

It’s based on certain observed marginal totals.

These are based on nij... = n pij...,

So π̂n is a function of pn: π̂n = g(pn)

What kind of function?

It’s a sequence of multiplications, all continuous.

A continuous function of a continuous function is
continuous,

So the entire composite function, though complicated, is
continuous, and π̂n = g(pn)→ g(π) = π(M)
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π̂n = g(pn)→ g(π) = π(M)

The large-sample target of π̂n is g(π).

And we know what the function g(·) is, or anyway we know
how to compute it.

It’s the iterative proportional fitting algorithm, applied to
sets of marginal probabilities instead of totals.

Or you could apply it to quantities like nπi+k, and then
divide by n at the end.

22 / 1



Note π̂j = gj(p) and πj(M) = gj(π)
It’s the same function: Iterative proportional fitting

X2 = n
c∑
j=1

(pj − π̂j)
2

π̂j
λ = n

c∑
j=1

[πj − πj(M)]2

πj(M)

G2 = 2n
c∑
j=1

pj log

(
pj
π̂j

)
λ = 2n

c∑
j=1

πj log

(
πj

πj(M)

)

So we can do what we did before with tests of independence.

Make up a data table that represents the alternative hypothesis of
interest.

Cell frequencies are nπj , for some convenient n.

Calculate the test statistic on your made-up data.

Divide by the n you used; now you have an effect size.

Multiply your effect size by any n, to get a λ.

Use that λ to calculate a power value.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/312f12
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