Numerical Maximum Likelihood?
STA 312: Fall 2012

!See last slide for copyright information.

Overview

e Direct Numerical MLEs

© Ilterative Proportional Model Fitting

Direct Numerical MLEs

Maximum Likelihood

General framework

Yi,....Y, "5 Fy peB

0(B) =1l f(yis B)
L(B) = log £(B) = Y i log f(vi; B)

@ The maximum likelihood estimate is the parameter value
that makes the likelihood as great as possible.

e That is, it maximizes the probability of observing the data
we did observe.

Direct Numerical MLEs

Close your eyes and differentiate?

o Often, can differentiate the log likelihood with respect to
the parameter, set the derivative to zero, and solve.

o But it does not always work.

o Consider a gamma distribution with parameter o > 0
unknown, and 8 = 1.

1
['(a)

e—yyoc—l

flyla) =

Direct Numerical MLEs

Gamma log likelihood

a—1

f(JlO‘) = F(Q)e_yy

1
logl(a) = logH—ae_yiyf‘_l

a—1

= log | T(a) "exp{- > ui} (H yz‘)
=1 =1
= —nlogl(a) — Zyl +(a—1) Zlogyi
i=1

=1

Differentiate the log likelihood?

Direct Numerical MLEs

Differentiate

n
«
a7 —nlog'(« Zyz a—l)Zlogyi

_ (@, \
= —nm +;10gy1

0
F a
© o Zlogyz

@ Good luck trying to solve this for a.
o But given some data, we can still find the MLE.

Direct Numerical MLEs

We can plot the log likelihood

Log likelihood of Gamma Distribution with parameter o

Log Likelihood
-250 -200 -150 -100
| | | |

-300
|

-350
|

t Num

al MLEs

Grid search

> # Max seems to be between 2 and 4. Where is it?
> a[LL==max(LL)]

[1] 3.4

> # That’s rough: Grid search

>
>
+
+
+
+
+
>
>

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
7.1
[8,]
[9,]

r4mn 1

alpha = seq(from=3.35,t0=3.45,by=0.01)
GLL = function(alpha,data) # Gamma Log Likelihood

{

n = length(data)

GLL = -n*lgamma(alpha) - sum(data) + (alpha-1)*sum(log(data))
GLL

} # End function GLL

loglike = GLL(alpha,data=y)
cbind(alpha,loglike)

alpha loglike
3.35 -96.47796
.36 -96.47072
.37 -96.46521
.38 -96.46143
.39 -96.45936
.40 -96.45901
.41 -96.46037
.42 -96.46343
.43 -96.46818

NN A ATACA

0 W W WWWwwWwww

t Num al MLEs

Numerical minimization

Most numerical optimization functions like to minimize things.

> # Numerical minimization (define a new function)

> mGLL = function(alpha,data) # Minus gamma Log Likelihood

+ {mGLL = -1*GLL(alpha,data); mGLL}

> start = mean(y); start # Could start at 3.4

[1] 3.4014

> gamsearch = nlm(mGLL,p=start,data=y) # p is parameter starting value
> gamsearch

$minimum

[1] 96.45894

$estimate
[1] 3.397055

$gradient
[1] 5.019944e-09

$code
[1] 1

$iterations
[1] 3

Direct Numerical MLEs

Is the derivative zero at the MLE?

dlogl(a) I"a) <
TONY log ¥;
O " I'«) +; Rid

> # Does the derivative equal zero at the MLE?
> n = length(y)

> alphahat = gamsearch$estimate

> -n * digamma(alphahat) + sum(log(y))

[1] -1.163801e-07

10 / 30

Direct Numerical MLEs

Logistic regression

1+ exXB

Direct Numerical MLEs

Log likelihood

n enge Yi ex;ﬁ 1-y;
g f(5) = 1°gH<1+exm) (“Hfs)

exp{d_i_, yix;B}
H?:l(l + exgﬁ)

n n
— Z yixi3 — Z log <1 + eX;f})
i=1 i=1

= log

Direct Numerical MLEs

Specialize to simple logistic regression

One explanatory variable

n n
logl(8) = Y uxiB— log(1+c7)
=1 i=1

= Zyz‘(ﬂo + Br) — Zlog (1 + eﬁ°+ﬁlxi>

i=1 i=1

n n n
= fo Z yi + P Z TilYi — Z log <1 + 650+51“i>
=1 i=1 i=1

Direct Numerical MLEs

Differentiate, obtaining two equations in two unknowns

log £(B) = Bo Z yi + B Z TiY; — Z log (1 + 650-0—512%)
=1 i=1 i=1

n ePotBiz;

oL
8By Zy’ Z 1 + ePotPizi

.€B0+5136i

oL
87/31 Z Lili = Z 1 + eBotbrz;

Set to zero and solve.

Given some data, can compute the minus log likelihood
log £(8) = Bo Yoy yi + Br Doiey Titii — Doy log (1 + efotPiee)

LRLL = function(beta,data)
Log likelihood for simple logistic regression
{
beta0 = betal[l]; betal = betal[2]
X = datal,1]; Y = datal,2]; xb = beta0 + betal*X
LRLL = betaOxsum(Y) + betal * sum(X*Y) - sum(log(il+exp(xb)))
LRLL
} # End function LRLL

LRmLL = function(beta,data) # Minus LL
{LRmLL = -LRLL(beta,data); LRmLL}

> # Get halfway reasonable starting values
> start = lm(y~x)$coefficients; start
(Intercept) X

-1.0480186 0.1533418

t Num al MLEs

Minimize numerically

> xy = cbind(x,y) # Put data in a matrix
> nlm(LRmLL,p=start,data=xy)

$minimum

[1] 41.43899

$estimate
[1] -11.500810 1.143899

$gradient
[1] -4.089719e-07 -5.713416e-06

$code
[1] 1

$iterations
[1] 19

> # For comparison

> betahat = glm(y~x,family=binomial)$coefficients
> betahat

(Intercept) X

-11.500808 1.143899

16 / 30

Iterative Proportional Model Fitting

Log-linear models

It’s numerical maximum likelihood, but ...
@ Does not just walk downhill in the parameter space.
e Goes straight to estimated expected values ;s

o Called “Iterative proportional model fitting.”

Iterative Proportional Model Fitting

Idea behind Iterative proportional model fitting

@ The model specifies certain marginals, meaning marginal
tables.

e For example, (XY)(Z) specifies a two-dimensional X x Y
table and a one-dimensional Z table.

o The marginal estimated expected frequencies must match
the observed marginal totals for the marginals specified by
the model (proved).

o That iS, ﬁ”+ = Nij+ and /./Z_‘__'_k = N4k
o Start with complete independence.

o Adjust the cell expected frequencies fi;j; up or down so as
to match the totals of the marginals in the model.

e But don’t introduce any additional relationships in the
process.

Iterative Proportional Model Fitting

Outline of the algorithm

For iterative proportional model fitting

For each marginal in the model
For each cell in the table (say is the marginal is ij+)
If ﬂij+ < Nty adjust ﬁijk: up.
If fijy > nijy, adjust i, down.
Re-calculate all expected marginal totals in the model.

Keep cycling until the expected marginal totals are very close
to the observed.

19 / 30

Iterative Proportional Model Fitting

Example: (XY)(XZ2)(YZ)

Know analytically that

Mij+ = Mg+
Hivk = Nitk
Uik = MNijk

Iterative Proportional Model Fitting

Try to make marginals match up

Re-calculate all expected marginal totals after each step.

~0) _
Pie = 1
~(1) _ Mij+ ~(0)
Fijk = —(0) Pijk
Hij+
~(2) _ Ttk ~(1)
ik = @) Hijk
Fiv
~(3) _ ik ~(2)
Pijk = —(2) Mijk
+ik

See how it’s proportional?

Iterative Proportional Model Fitting

Now repeat the cycle
Re-calculating all expected marginal totals after each step.

A4 M+ (3)

Pijk = —(3) Mijk
ij+

~(5) _ Mitk~(4)

Fijke = @) Pijk
Fitk

~6) _ Pjk ~(5)

Pijk = —(5) Mijk
Htjk

o Keep repeating until the ji;j;, stop moving.
@ They will stop moving; the algorithm converges.

e It converges to the right answer (Proved).

Iterative Pro nal Model Fitting

A small numerical example: (X)(Y)

> obs = rbind(c(10,20),

+ c(5, B))

> # See what the expected frequencies should be
> goal = chisq.test(obs)$expected; goal

[,11 [,2]
1,] 11.25 18.75
2,] 3.75 6.25

[
[
>
> namz = C("l","Q")

> rownames (obs) = namz; colnames(obs) = namz
>

>

>

addmargins (obs)
1 2 Sum
1 10 20 30
2 5 5 10
Sum 15 25 40

Iterative Proportional Model Fitting

Match these marginals: Get started

> rowmarg = margin.table(obs,1); rowmarg
1 2
30 10
> colmarg = margin.table(obs,2); colmarg
1 2
15 25

>

> # Start with no relationship: Total n does not matter

> muhat = rbind(c(1,1),

+ c(1,1))

> rowhat = margin.table(muhat,1); colhat = margin.table(muhat,2)

/30

Iterative Pro nal Model Fitting

~(1) _ Mij+ ~(0)

ijk — =0y Mijk

> # Step 1: Row marginals

> muhat[1,1] = rowmarg[1]/rowhat[1]
> muhat[1,2] = rowmarg[1]/rowhat[1]
>
>
>

muhat[2,1] rowmarg [2] /rowhat [2]
muhat[2,2] = rowmarg[2]/rowhat [2]
muhat
[,11 [,2]
[1,] 15 15
[2,1] 5 5
> # Re-calculate the marginal totals

ij+

muhat[1,1]
muhat [1,2]
muhat[2,1]
muhat [2,2]

> rowhat = margin.table(muhat,1); colhat = margin.table(muhat,2)

ative Proportional Model Fitting

> # Step 2: Col marginals
> muhat[1,1] = colmarg[1]/colhat[1] * muhat[1,1]
> muhat[1,2] = colmarg[2]/colhat[2] * muhat[1,2]
> muhat[2,1] = colmarg[1]/colhat[1] * muhat[2,1]
> muhat[2,2] = colmarg[2]/colhat[2] * muhat[2,2]
> muhat
[,11 [,2]

[1,] 11.25 18.75
[2,] 3.75 6.25
> # Re-calculate the marginal totals
> rowhat = margin.table(muhat,1); colhat = margin.table(muhat,2)
>
> goal

[,11 [,2]
[1,] 11.25 18.75
[2,] 3.75 6.25
>
> # We’re done, but the algorithm does not know it yet.

Iterative Proportional Model Fitting

Step 3: Row marginals again
muhat[1,1] = rowmarg[1]/rowhat[1]
muhat[1,2] = rowmarg[1]/rowhat[1]
muhat[2,1] = rowmarg[2]/rowhat [2]
muhat[2,2] = rowmarg[2]/rowhat [2]
muhat

[,11 [,2]
[1,] 11.25 18.75
[2,] 3.75 6.25
> # Now it will stop, because mu-hats

* ¥ *x *

muhat [1,1]
muhat [1,2]
muhat [2,1]
muhat [2,2]

did not change.

Iterative Proportional Model Fitting

Do it with loglin

> muhat
[,11 [,2]
[1,] 11.25 18.75
[2,] 3.75 6.25
> loglin(obs,margin=c(1,2),fit=T)$fit
2 iterations: deviation O
1 2
1 11.25 18.75
2 3.75 6.25

Iterative Proportional Model Fitting

This is remarkable

Very general.

No starting values required.
e Can handle very large problems without crashing.
o Parameters may be redundant, but it doesn’t matter.

o The expected frequencies are what you want anyway.

This is typical of mature maximum likelihood.

You get the right answer, but not the way you would think.

Iterative Proportional Model Fitting

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The

ETEX source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/312f12

30 /30

http://www.utstat.toronto.edu/~brunner
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://www.utstat.toronto.edu/~brunner/oldclass/312f12

	Direct Numerical MLEs
	Iterative Proportional Model Fitting

