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Maximum Likelihood

General framework
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@ The maximum likelihood estimate is the parameter value
that makes the likelihood as great as possible.

e That is, it maximizes the probability of observing the data
we did observe.
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Close your eyes and differentiate?

o Often, can differentiate the log likelihood with respect to
the parameter, set the derivative to zero, and solve.

o But it does not always work.

o Consider a gamma distribution with parameter o > 0
unknown, and 8 = 1.
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Gamma log likelihood
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Differentiate the log likelihood?
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Differentiate
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@ Good luck trying to solve this for a.
o But given some data, we can still find the MLE.
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We can plot the log likelihood

Log likelihood of Gamma Distribution with parameter o
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Grid search

> # Max seems to be between 2 and 4. Where is it?
> a[LL==max(LL)]

[1] 3.4

> # That’s rough: Grid search

>
>
+
+
+
+
+
>
>

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
7.1
[8,]
[9,]

r4mn 1

alpha = seq(from=3.35,t0=3.45,by=0.01)
GLL = function(alpha,data) # Gamma Log Likelihood

{

n = length(data)

GLL = -n*lgamma(alpha) - sum(data) + (alpha-1)*sum(log(data))
GLL

} # End function GLL

loglike = GLL(alpha,data=y)
cbind(alpha,loglike)

alpha loglike
3.35 -96.47796
.36 -96.47072
.37 -96.46521
.38 -96.46143
.39 -96.45936
.40 -96.45901
.41 -96.46037
.42 -96.46343
.43 -96.46818
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Numerical minimization

Most numerical optimization functions like to minimize things.

> # Numerical minimization (define a new function)

> mGLL = function(alpha,data) # Minus gamma Log Likelihood

+ {mGLL = -1*GLL(alpha,data); mGLL}

> start = mean(y); start # Could start at 3.4

[1] 3.4014

> gamsearch = nlm(mGLL,p=start,data=y) # p is parameter starting value
> gamsearch

$minimum

[1] 96.45894

$estimate
[1] 3.397055

$gradient
[1] 5.019944e-09

$code
[1] 1

$iterations
[1] 3
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Is the derivative zero at the MLE?

dlogl(a) I"a) <
TONY log ¥;
O " I'«) +; Rid

> # Does the derivative equal zero at the MLE?
> n = length(y)

> alphahat = gamsearch$estimate

> -n * digamma(alphahat) + sum(log(y))

[1] -1.163801e-07
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Logistic regression

1+ exXB
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Log likelihood

n enge Yi ex;ﬁ 1-y;
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Specialize to simple logistic regression

One explanatory variable

n n
logl(8) = Y uxiB— log(1+c7)
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Differentiate, obtaining two equations in two unknowns

log £(B) = Bo Z yi + B Z TiY; — Z log (1 + 650-0—512%)
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Set to zero and solve.



Given some data, can compute the minus log likelihood
log £(8) = Bo Yoy yi + Br Doiey Titii — Doy log (1 + efotPiee)

LRLL = function(beta,data)
# Log likelihood for simple logistic regression
{
beta0 = betal[l]; betal = betal[2]
X = datal,1]; Y = datal,2]; xb = beta0 + betal*X
LRLL = betaOxsum(Y) + betal * sum(X*Y) - sum(log(il+exp(xb)))
LRLL
} # End function LRLL

LRmLL = function(beta,data) # Minus LL
{LRmLL = -LRLL(beta,data); LRmLL}

> # Get halfway reasonable starting values
> start = lm(y~x)$coefficients; start
(Intercept) X

-1.0480186  0.1533418
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Minimize numerically

> xy = cbind(x,y) # Put data in a matrix
> nlm(LRmLL,p=start,data=xy)

$minimum

[1] 41.43899

$estimate
[1] -11.500810 1.143899

$gradient
[1] -4.089719e-07 -5.713416e-06

$code
[1] 1

$iterations
[1] 19

> # For comparison

> betahat = glm(y~x,family=binomial)$coefficients
> betahat

(Intercept) X

-11.500808 1.143899

16 / 30



Iterative Proportional Model Fitting

Log-linear models

It’s numerical maximum likelihood, but ...
@ Does not just walk downhill in the parameter space.
e Goes straight to estimated expected values ;s

o Called “Iterative proportional model fitting.”
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Idea behind Iterative proportional model fitting

@ The model specifies certain marginals, meaning marginal
tables.

e For example, (XY)(Z) specifies a two-dimensional X x Y
table and a one-dimensional Z table.

o The marginal estimated expected frequencies must match
the observed marginal totals for the marginals specified by
the model (proved).

o That iS, ﬁ”+ = Nij+ and /./Z_‘__'_k = N4k
o Start with complete independence.

o Adjust the cell expected frequencies fi;j; up or down so as
to match the totals of the marginals in the model.

e But don’t introduce any additional relationships in the
process.
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Outline of the algorithm

For iterative proportional model fitting

For each marginal in the model
For each cell in the table (say is the marginal is ij+)
If ﬂij+ < Nty adjust ﬁijk: up.
If fijy > nijy, adjust i, down.
Re-calculate all expected marginal totals in the model.

Keep cycling until the expected marginal totals are very close
to the observed.
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Example: (XY )(XZ2)(YZ)

Know analytically that

Mij+ = Mg+
Hivk = Nitk
Uik = MNijk
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Try to make marginals match up

Re-calculate all expected marginal totals after each step.

~0)  _
Pie = 1
~(1)  _ Mij+ ~(0)
Fijk = —(0) Pijk
Hij+
~(2) _ Ttk ~(1)
ik = @) Hijk
Fiv
~(3)  _ ik ~(2)
Pijk = —(2) Mijk
+ik

See how it’s proportional?
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Now repeat the cycle
Re-calculating all expected marginal totals after each step.

A4 M+ (3)

Pijk = —(3) Mijk
ij+

~(5)  _ Mitk~(4)

Fijke = @) Pijk
Fitk

~6)  _ Pjk ~(5)

Pijk = —(5) Mijk
Htjk

o Keep repeating until the ji;j;, stop moving.
@ They will stop moving; the algorithm converges.

e It converges to the right answer (Proved).
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A small numerical example: (X)(Y)

> obs = rbind(c(10,20),

+ c( 5, B))

> # See what the expected frequencies should be
> goal = chisq.test(obs)$expected; goal

[,11 [,2]
1,] 11.25 18.75
2,] 3.75 6.25

[
[
>
> namz = C("l","Q")

> rownames (obs) = namz; colnames(obs) = namz
>

>

>

addmargins (obs)
1 2 Sum
1 10 20 30
2 5 5 10
Sum 15 25 40
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Match these marginals: Get started

> rowmarg = margin.table(obs,1); rowmarg
1 2
30 10
> colmarg = margin.table(obs,2); colmarg
1 2
15 25

>

> # Start with no relationship: Total n does not matter

> muhat = rbind(c(1,1),

+ c(1,1))

> rowhat = margin.table(muhat,1); colhat = margin.table(muhat,2)
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~(1) _ Mij+ ~(0)

ijk — =0y Mijk

> # Step 1: Row marginals

> muhat[1,1] = rowmarg[1]/rowhat[1]
> muhat[1,2] = rowmarg[1]/rowhat[1]
>
>
>

muhat[2,1] rowmarg [2] /rowhat [2]
muhat[2,2] = rowmarg[2]/rowhat [2]
muhat
[,11 [,2]
[1,] 15 15
[2,1] 5 5
> # Re-calculate the marginal totals

ij+

muhat[1,1]
muhat [1,2]
muhat[2,1]
muhat [2,2]

> rowhat = margin.table(muhat,1); colhat = margin.table(muhat,2)
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> # Step 2: Col marginals
> muhat[1,1] = colmarg[1]/colhat[1] * muhat[1,1]
> muhat[1,2] = colmarg[2]/colhat[2] * muhat[1,2]
> muhat[2,1] = colmarg[1]/colhat[1] * muhat[2,1]
> muhat[2,2] = colmarg[2]/colhat[2] * muhat[2,2]
> muhat
[,11 [,2]

[1,] 11.25 18.75
[2,] 3.75 6.25
> # Re-calculate the marginal totals
> rowhat = margin.table(muhat,1); colhat = margin.table(muhat,2)
>
> goal

[,11 [,2]
[1,] 11.25 18.75
[2,] 3.75 6.25
>
> # We’re done, but the algorithm does not know it yet.
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# Step 3: Row marginals again
muhat[1,1] = rowmarg[1]/rowhat[1]
muhat[1,2] = rowmarg[1]/rowhat[1]
muhat[2,1] = rowmarg[2]/rowhat [2]
muhat[2,2] = rowmarg[2]/rowhat [2]
muhat

[,11 [,2]
[1,] 11.25 18.75
[2,] 3.75 6.25
> # Now it will stop, because mu-hats

* ¥ *x *

muhat [1,1]
muhat [1,2]
muhat [2,1]
muhat [2,2]

did not change.
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Do it with loglin

> muhat
[,11 [,2]
[1,] 11.25 18.75
[2,] 3.75 6.25
> loglin(obs,margin=c(1,2),fit=T)$fit
2 iterations: deviation O
1 2
1 11.25 18.75
2 3.75 6.25
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This is remarkable

Very general.

No starting values required.
e Can handle very large problems without crashing.
o Parameters may be redundant, but it doesn’t matter.

o The expected frequencies are what you want anyway.

This is typical of mature maximum likelihood.

You get the right answer, but not the way you would think.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The

ETEX source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/312f12
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