Numerical Maximum Likelihood¹ STA 312: Fall 2012

¹See last slide for copyright information.

2 Iterative Proportional Model Fitting

Maximum Likelihood General framework

$$Y_1, \dots, Y_n \stackrel{i.i.d.}{\sim} F_{\beta}, \ \beta \in \mathcal{B}$$
$$\ell(\beta) = \prod_{i=1}^n f(y_i; \beta)$$
$$L(\beta) = \log \ell(\beta) = \sum_{i=1}^n \log f(y_i; \beta)$$

- The maximum likelihood estimate is the parameter value that makes the likelihood as great as possible.
- That is, it maximizes the probability of observing the data we did observe.

Close your eyes and differentiate?

- Often, can differentiate the log likelihood with respect to the parameter, set the derivative to zero, and solve.
- But it does not always work.
- Consider a gamma distribution with parameter $\alpha > 0$ unknown, and $\beta = 1$.

$$f(y|\alpha) = \frac{1}{\Gamma(\alpha)} e^{-y} y^{\alpha-1}$$

Direct Numerical MLEs

Iterative Proportional Model Fitting

$\operatorname{Gamma}_{f(y|\alpha) = \frac{1}{\Gamma(\alpha)}e^{-y}y^{\alpha-1}} \operatorname{likelihood}$

$$\log \ell(\alpha) = \log \prod_{i=1}^{n} \frac{1}{\Gamma(\alpha)} e^{-y_i} y_i^{\alpha - 1}$$
$$= \log \left(\Gamma(\alpha)^{-n} \exp\{-\sum_{i=1}^{n} y_i\} \left(\prod_{i=1}^{n} y_i\right)^{\alpha - 1}\right)$$
$$= -n \log \Gamma(\alpha) - \sum_{i=1}^{n} y_i + (\alpha - 1) \sum_{i=1}^{n} \log y_i$$

Differentiate the log likelihood?

Differentiate

$$\begin{aligned} \frac{\partial \log \ell(\alpha)}{\partial \alpha} &= \frac{\partial}{\partial \alpha} \left(-n \log \Gamma(\alpha) - \sum_{i=1}^{n} y_i + (\alpha - 1) \sum_{i=1}^{n} \log y_i \right) \\ &= -n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + \sum_{i=1}^{n} \log y_i \\ \\ &\stackrel{\text{set}}{=} 0 \\ &\Leftrightarrow \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} = \frac{1}{n} \sum_{i=1}^{n} \log y_i \end{aligned}$$

- Good luck trying to solve this for α .
- But given some data, we can still find the MLE.

```
> y
[1] 4.51 4.01 3.34 1.43 3.62 0.37 2.21 2.01 4.56 2.15 9.24 3.08 2.27 3.29 1.75 3.38 2.72
[18] 2.73 5.09 3.81 1.50 4.15 1.97 2.90 2.32 6.65 2.30 2.29 1.01 5.52 3.03 1.85 2.51 6.92
[35] 3.67 2.10 2.50 9.27 2.40 2.96 0.96 3.15 1.30 4.04 2.40 5.49 2.42 6.75 5.42 4.75
```

We can plot the log likelihood

Grid search

```
> # Max seems to be between 2 and 4. Where is it?
> a[LL==max(LL)]
[1] 3.4
> # That's rough: Grid search
> alpha = seq(from=3.35,to=3.45,by=0.01)
> GLL = function(alpha,data) # Gamma Log Likelihood
       Ł
+
      n = length(data)
+
      GLL = -n*lgamma(alpha) - sum(data) + (alpha-1)*sum(log(data))
+
      GLL
+
      } # End function GLL
+
> loglike = GLL(alpha,data=y)
> cbind(alpha,loglike)
      alpha loglike
 [1,] 3,35 -96,47796
 [2,] 3.36 -96.47072
 [3,] 3.37 -96.46521
 [4,] 3.38 -96.46143
 [5,] 3.39 -96.45936
 [6,] 3.40 -96.45901
 [7,] 3.41 -96.46037
 [8,] 3.42 -96.46343
 [9,] 3.43 -96.46818
FID ] 2 44 OC 474CO
```

Numerical minimization

Most numerical optimization functions like to minimize things.

```
> # Numerical minimization (define a new function)
> mGLL = function(alpha,data) # Minus gamma Log Likelihood
    {mGLL = -1*GLL(alpha,data); mGLL}
+
> start = mean(y); start # Could start at 3.4
[1] 3.4014
> gamsearch = nlm(mGLL,p=start,data=y) # p is parameter starting value
> gamsearch
$minimum
[1] 96.45894
$estimate
[1] 3.397055
$gradient
[1] 5.019944e-09
$code
[1] 1
$iterations
```

[1] 3

Is the derivative zero at the MLE?

$$\frac{\partial \log \ell(\alpha)}{\partial \alpha} = -n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + \sum_{i=1}^{n} \log y_i$$

```
> # Does the derivative equal zero at the MLE?
> n = length(y)
> alphahat = gamsearch$estimate
> -n * digamma(alphahat) + sum(log(y))
[1] -1.163801e-07
```

Logistic regression

$$\log\left(\frac{\pi}{1-\pi}\right) = \mathbf{x}'\boldsymbol{\beta} \quad \Leftrightarrow \quad \pi = \frac{e^{\mathbf{x}'\boldsymbol{\beta}}}{1+e^{\mathbf{x}'\boldsymbol{\beta}}}$$

Log likelihood

$$\log \ell(\boldsymbol{\beta}) = \log \prod_{i=1}^{n} \left(\frac{e^{\mathbf{x}_{i}'\boldsymbol{\beta}}}{1 + e^{\mathbf{x}_{i}'\boldsymbol{\beta}}} \right)^{y_{i}} \left(1 - \frac{e^{\mathbf{x}_{i}'\boldsymbol{\beta}}}{1 + e^{\mathbf{x}_{i}'\boldsymbol{\beta}}} \right)^{1-y_{i}}$$
$$= \log \prod_{i=1}^{n} \left(\frac{e^{\mathbf{x}_{i}'\boldsymbol{\beta}}}{1 + e^{\mathbf{x}_{i}'\boldsymbol{\beta}}} \right)^{y_{i}} \left(\frac{1}{1 + e^{\mathbf{x}_{i}'\boldsymbol{\beta}}} \right)^{1-y_{i}}$$
$$= \log \prod_{i=1}^{n} \frac{e^{y_{i}\mathbf{x}_{i}'\boldsymbol{\beta}}}{1 + e^{\mathbf{x}_{i}'\boldsymbol{\beta}}}$$
$$= \log \frac{\exp\{\sum_{i=1}^{n} y_{i}\mathbf{x}_{i}'\boldsymbol{\beta}\}}{\prod_{i=1}^{n} (1 + e^{\mathbf{x}_{i}'\boldsymbol{\beta}})}$$
$$= \sum_{i=1}^{n} y_{i}\mathbf{x}_{i}'\boldsymbol{\beta} - \sum_{i=1}^{n} \log \left(1 + e^{\mathbf{x}_{i}'\boldsymbol{\beta}} \right)$$

Direct Numerical MLEs

Iterative Proportional Model Fitting

Specialize to simple logistic regression One explanatory variable

$$\log \ell(\beta) = \sum_{i=1}^{n} y_i \mathbf{x}'_i \beta - \sum_{i=1}^{n} \log \left(1 + e^{\mathbf{x}'_i \beta} \right)$$

=
$$\sum_{i=1}^{n} y_i (\beta_0 + \beta_1 x_i) - \sum_{i=1}^{n} \log \left(1 + e^{\beta_0 + \beta_1 x_i} \right)$$

=
$$\beta_0 \sum_{i=1}^{n} y_i + \beta_1 \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} \log \left(1 + e^{\beta_0 + \beta_1 x_i} \right)$$

Differentiate, obtaining two equations in two unknowns

$$\log \ell(\beta) = \beta_0 \sum_{i=1}^n y_i + \beta_1 \sum_{i=1}^n x_i y_i - \sum_{i=1}^n \log \left(1 + e^{\beta_0 + \beta_1 x_i} \right)$$

$$\begin{aligned} \frac{\partial L}{\partial \beta_0} &= \sum_{i=1}^n y_i - \sum_{i=1}^n \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} \\ \frac{\partial L}{\partial \beta_1} &= \sum_{i=1}^n x_i y_i - \sum_{i=1}^n \frac{x_i e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} \end{aligned}$$

Set to zero and solve.

Given some data, can compute the minus log likelihood $\log \ell(\beta) = \beta_0 \sum_{i=1}^n y_i + \beta_1 \sum_{i=1}^n x_i y_i - \sum_{i=1}^n \log (1 + e^{\beta_0 + \beta_1 x_i})$

```
LRLL = function(beta.data)
# Log likelihood for simple logistic regression
    beta0 = beta[1]; beta1 = beta[2]
    X = data[,1]; Y = data[,2]; xb = beta0 + beta1*X
    LRLL = beta0*sum(Y) + beta1 * sum(X*Y) - sum(log(1+exp(xb)))
   L.R.I.I.
    } # End function LRLL
LRmLL = function(beta,data) # Minus LL
    {LRmLL = -LRLL(beta,data); LRmLL}
> # Get halfway reasonable starting values
> start = lm(y~x)$coefficients; start
(Intercept)
                      х
-1.0480186 0.1533418
```

Minimize numerically

```
> xy = cbind(x,y) # Put data in a matrix
> nlm(LRmLL,p=start,data=xy)
$minimum
[1] 41.43899
$estimate
[1] -11.500810 1.143899
$gradient
[1] -4.089719e-07 -5.713416e-06
$code
[1] 1
$iterations
[1] 19
> # For comparison
> betahat = glm(y<sup>x</sup>,family=binomial)$coefficients
> betahat
(Intercept)
                       x
 -11.500808 1.143899
```

Log-linear models

It's numerical maximum likelihood, but ...

- Does not just walk downhill in the parameter space.
- Goes straight to estimated expected values $\hat{\mu}_{ijk}$
- Called "Iterative proportional model fitting."

Idea behind Iterative proportional model fitting

- The model specifies certain marginals, meaning marginal tables.
- For example, (XY)(Z) specifies a two-dimensional $X \times Y$ table and a one-dimensional Z table.
- The marginal estimated expected frequencies must match the observed marginal totals for the marginals specified by the model (proved).
- That is, $\widehat{\mu}_{ij+} = n_{ij+}$ and $\widehat{\mu}_{++k} = n_{++k}$.
- Start with complete independence.
- Adjust the cell expected frequencies $\hat{\mu}_{ijk}$ up or down so as to match the totals of the marginals in the model.
- But don't introduce any *additional* relationships in the process.

Outline of the algorithm For iterative proportional model fitting

For each marginal in the model For each cell in the table (say is the marginal is ij+) If $\hat{\mu}_{ij+} < n_{ij+}$, adjust $\hat{\mu}_{ijk}$ up. If $\hat{\mu}_{ij+} > n_{ij+}$, adjust $\hat{\mu}_{ijk}$ down. Re-calculate all expected marginal totals in the model.

Keep cycling until the expected marginal totals are very close to the observed.

Example: (XY)(XZ)(YZ)

Know analytically that

$$\begin{array}{rcl} \widehat{\mu}_{ij+} &=& n_{ij+} \\ \widehat{\mu}_{i+k} &=& n_{i+k} \\ \widehat{\mu}_{+jk} &=& n_{+jk} \end{array}$$

Try to make marginals match up

Re-calculate *all* expected marginal totals after each step.

$$\begin{array}{rcl} \widehat{\mu}_{ijk}^{(0)} &=& 1 \\ \widehat{\mu}_{ijk}^{(1)} &=& \frac{n_{ij+}}{\widehat{\mu}_{ij+}^{(0)}} \widehat{\mu}_{ijk}^{(0)} \\ \widehat{\mu}_{ijk}^{(2)} &=& \frac{n_{i+k}}{\widehat{\mu}_{ij+}^{(1)}} \widehat{\mu}_{ijk}^{(1)} \\ \widehat{\mu}_{ijk}^{(3)} &=& \frac{n_{+jk}}{\widehat{\mu}_{ijk}^{(2)}} \widehat{\mu}_{ijk}^{(2)} \end{array}$$

See how it's proportional?

Now repeat the cycle Re-calculating all expected marginal totals after each step.

$$\widehat{\mu}_{ijk}^{(4)} = \frac{n_{ij+}}{\widehat{\mu}_{ij+}^{(3)}} \widehat{\mu}_{ijk}^{(3)}$$

$$\widehat{\mu}_{ijk}^{(5)} = \frac{n_{i+k}}{\widehat{\mu}_{i+k}^{(4)}} \widehat{\mu}_{ijk}^{(4)}$$

$$\widehat{\mu}_{ijk}^{(6)} = \frac{n_{+jk}}{\widehat{\mu}_{ijk}^{(5)}} \widehat{\mu}_{ijk}^{(5)}$$

- Keep repeating until the $\hat{\mu}_{ijk}$ stop moving.
- They will stop moving; the algorithm converges.
- It converges to the right answer (Proved).

A small numerical example: (X)(Y)

```
> obs = rbind(c(10,20),
           c(5,5))
+
> # See what the expected frequencies should be
> goal = chisq.test(obs)$expected; goal
      [,1] [,2]
[1,] 11.25 18.75
[2,] 3.75 6.25
>
> namz = c("1", "2")
> rownames(obs) = namz; colnames(obs) = namz
>
>
> addmargins(obs)
    1 2 Sum
1
  10 20 30
2
    5 5 10
Sum 15 25 40
```

Match these marginals: Get started

```
> rowmarg = margin.table(obs,1); rowmarg
1 2
30 10
> colmarg = margin.table(obs,2); colmarg
1 2
15 25
> # Start with no relationship: Total n does not matter
> muhat = rbind(c(1,1),
+ c(1,1))
> rowhat = margin.table(muhat,1); colhat = margin.table(muhat,2)
```

Step 1

$$\widehat{\mu}_{ijk}^{(1)} = \frac{n_{ij+}}{\widehat{\mu}_{ij+}^{(0)}} \widehat{\mu}_{ijk}^{(0)}$$

```
> # Step 1: Row marginals
> muhat[1,1] = rowmarg[1]/rowhat[1] * muhat[1,1]
> muhat[1,2] = rowmarg[1]/rowhat[1] * muhat[1,2]
> muhat[2,1] = rowmarg[2]/rowhat[2] * muhat[2,1]
> muhat[2,2] = rowmarg[2]/rowhat[2] * muhat[2,2]
> muhat
        [,1] [,2]
[1,] 15 15
[2,] 5 5
> # Re-calculate the marginal totals
> rowhat = margin.table(muhat,1); colhat = margin.table(muhat,2)
```

Step 2

```
> # Step 2: Col marginals
> muhat[1,1] = colmarg[1]/colhat[1] * muhat[1,1]
> muhat[1,2] = colmarg[2]/colhat[2] * muhat[1,2]
> muhat[2,1] = colmarg[1]/colhat[1] * muhat[2,1]
> muhat[2,2] = colmarg[2]/colhat[2] * muhat[2,2]
> muhat
      [,1] [,2]
[1,] 11.25 18.75
[2,] 3.75 6.25
> # Re-calculate the marginal totals
> rowhat = margin.table(muhat,1); colhat = margin.table(muhat,2)
>
> goal
      [,1] [,2]
[1,] 11.25 18.75
[2,] 3.75 6.25
>
> # We're done, but the algorithm does not know it yet.
```

Step 3

```
> # Step 3: Row marginals again
> muhat[1,1] = rowmarg[1]/rowhat[1] * muhat[1,1]
> muhat[1,2] = rowmarg[1]/rowhat[1] * muhat[1,2]
> muhat[2,1] = rowmarg[2]/rowhat[2] * muhat[2,1]
> muhat[2,2] = rowmarg[2]/rowhat[2] * muhat[2,2]
> muhat
        [,1] [,2]
[1,] 11.25 18.75
[2,] 3.75 6.25
> # Now it will stop, because mu-hats did not change.
```

Do it with loglin

This is remarkable

- Very general.
- No starting values required.
- Can handle very large problems without crashing.
- Parameters may be redundant, but it doesn't matter.
- The expected frequencies are what you want anyway.
- This is typical of *mature* maximum likelihood.
- You get the right answer, but not the way you would think.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/312f12