Log-linear Models Part One¹ STA 312: Fall 2012

¹See last slide for copyright information.

Background: Re-parameterization

- Data are denoted $D \sim P_{\theta}, \theta \in \Theta$
- Likelihood function $\ell(\theta,D)=\ell(\theta)$
- Another, equivalent way of writing the parameter may be more convenient.
- Let $\beta = g(\theta), \beta \in \mathcal{B}$
- The function $g: \Theta \to \mathcal{B}$ is one-to-one, meaning $\theta = g^{-1}(\beta)$.
- Re-parameterize, writing the likelihood function in a different form.
- $\ell[\theta] = \ell[g^{-1}(g(\theta))] = \ell[g^{-1}(\beta)] = \ell_2[\beta].$
- The largest value of $\ell[\theta]$ is the same as the largest value of $\ell_2[\beta]$.
- $\ell[\widehat{\theta}] = \ell_2[\widehat{\beta}]$

Invariance principle of maximum likelihood estimation

$$\widehat{\beta}=g(\widehat{\theta})$$

- Assume $\widehat{\theta}$ is unique, meaning $\ell(\widehat{\theta}) > \ell(\theta)$ for all $\theta \in \Theta$ with $\theta \neq \widehat{\theta}$.
- What if there were a $\beta \neq g(\widehat{\theta})$ in \mathcal{B} with $\ell_2(\beta) \geq \ell_2(g(\widehat{\theta}))$.
- In that case we would have

$$\ell[g^{-1}(\beta)] \ge \ell[g^{-1}(g(\widehat{\theta}))]$$

$$\Leftrightarrow \quad \ell(\theta) \ge \ell(\widehat{\theta})$$

for some $\theta \neq \hat{\theta}$. But that's impossible, so there can be no such β .

- If you have a reasonable model, you can re-write the parameters in any way that's convenient, as long as it's one-to-one with (equivalent to) the original way.
- Maximum likelihood does not care how you express the parameters.
- Log-linear models depend heavily on re-parameterization.

Features of log-linear models

- Used to analyze multi-dimensional contingency tables.
- All variables are categorical.
- No distinction between explanatory and response variables.
- Build a picture of how all the variables are related to each other.
- ANOVA-like models for the logs of the expected frequencies.
- "Response variable" is a vector of log observed frequencies.
- Relationships between variables correspond to interactions in the ANOVA model.

- Relationships between variables are represented by two-factor interactions.
- Three-factor interactions mean the nature of the relationship *depends* ...
- Etc.

Course						
Passed	Catch-up	Mainstream	Elite			
No	π_{11}	π_{12}	π_{13}			
Yes	π_{21}	π_{22}	π_{23}			

M-----

• No relationship means the conditional distribution of Course is the same, regardless of whether the student passed or not.

• Probabilities are proportional:

$$\frac{\pi_{11}}{\pi_{21}} = \frac{\pi_{12}}{\pi_{22}} = \frac{\pi_{13}}{\pi_{23}}$$

• Because $\mu_{ij} = n\pi_{ij}$, same applies to the expected frequencies.

Expected frequencies are proportional Under H_0 of independence

$$\frac{\mu_{11}}{\mu_{21}} = \frac{\mu_{12}}{\mu_2} = \frac{\mu_{13}}{\mu_{23}}$$

$$\Leftrightarrow \quad (\log \mu_{11} - \log \mu_{21}) = (\log \mu_{12} - \log \mu_{22}) = (\log \mu_{13} - \log \mu_{23})$$

So the profiles are parallel in the log scale — no interaction means no relationship.

Log Expected Frequencies Under Independence

For the record: R code for the last plot Log expected frequencies

```
# Using mathcat.data
# Get expected frequencies to plot logs
c1 = chisq.test(tab1)
tab0 = c1$expected; tab0
Course = c(1,2,3,1,2,3)
logexpect = log(c(tab0[1,],tab0[2,]))
# Plot
plot(Course,logexpect, pch=' ', frame.plot=F, axes=F,
     xlab="Course", ylab=expression(paste('log(',mu[ij],')') , xaxt='n') )
axis(side=1,labels=c("Catch-Up","Elite","MainStr"),at=1:3)
axis(side=2)
lines(1:3,logexpect[1:3],lty=2) # Did not pass
points(1:3,logexpect[1:3])
lines(1:3,logexpect[4:6],lty=1) # Yes Passed
points(1:3,logexpect[4:6],pch=19)
title("Log Expected Frequencies Under Independence")
legend(1.25,4.5,legend='Passed',lty=1,pch=19,bty='n')
legend(1.25,4.25,legend='Did not pass',lty=2,pch=1,bty='n')
```

Suggests plotting log *observed* frequencies To see departure from independence

Log Observed Frequencies

Course

```
# Using mathcat.data
Course = c(1,2,3,1,2,3)
logobs = log(c(tab1[1,],tab1[2,]))
# Plot
plot(Course,logobs, pch=' ', frame.plot=F, axes=F,
     xlab="Course", ylab=expression(paste('log(',n[ij],')') , xaxt='n') )
axis(side=1,labels=c("Catch-Up","Elite","MainStr"),at=1:3)
axis(side=2)
lines(1:3,logobs[1:3],lty=2) # Did not pass
points(1:3,logobs[1:3])
lines(1:3,logobs[4:6],lty=1) # Yes Passed
points(1:3,logobs[4:6],pch=19)
title("Log Observed Frequencies")
legend(1.25,4.5,legend='Passed',lty=1,pch=19,bty='n')
legend(1.25,4.25,legend='Did not pass',lty=2,pch=1,bty='n')
```

It would be faster to do this in MS Excel.

Regression-like model of independence for the log expected frequencies: No interaction Use effect coding

$$\log \mu = \beta_0 + \beta_1 p_1 + \beta_2 c_1 + \beta_3 c_2$$

Passed	Course	p_1	c_1	c_2	$\log \mu$
No	Catch-up	1	1	0	$\beta_0 + \beta_1 + \beta_2$
No	Elite	1	0	1	$\beta_0 + \beta_1 + \beta_3$
No	Mainstream	1	-1	-1	$\beta_0 + \beta_1 - \beta_2 - \beta_3$
Yes	Catch-up	-1	1	0	$\beta_0 - \beta_1 + \beta_2$
Yes	Elite	-1	0	1	$\beta_0 - \beta_1 + \beta_3$
Yes	Mainstream	-1	-1	-1	$\beta_0 - \beta_1 - \beta_2 - \beta_3$

Notice how this assumes there are no zero probabilities.

Model of independence has main effects only $_{\rm No\ interaction\ terms}$

$$\log \mu = \beta_0 + \beta_1 p_1 + \beta_2 c_1 + \beta_3 c_2$$

Course

Passed	Catch-up	Elite	Mainstream	Mean
No	$\beta_0 + \beta_1 + \beta_2$	$\beta_0 + \beta_1 + \beta_3$	$\beta_0 + \beta_1 - \beta_2 - \beta_3$	$\beta_0 + \beta_1$
Yes	$\beta_0 - \beta_1 + \beta_2$	$\beta_0 - \beta_1 + \beta_3$	$\beta_0 - \beta_1 - \beta_2 - \beta_3$	$\beta_0 - \beta_1$
Mean	$\beta_0 + \beta_2$	$\beta_0 + \beta_3$	$\beta_0 - \beta_2 - \beta_3$	β_0

- Grand mean is β_0 .
- Main effects for Passed are β_1 and $-\beta_1$.
- Main effects for Course are β_2 , β_3 and $-\beta_2 \beta_3$.
- Effects always add up to zero.
- This is an additive model.

 $\log \mu_{ij} = {\rm Grand}$ Mean + Main effect for factor A + Main effect for factor B

Textbook's notation for the additive model $\log \mu_{ij} = \text{Grand Mean} + \text{Main effect for factor } A + \text{Main effect for factor } B$

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y$$

Course							
Passed	Catch-up	Elite	Mainstream	Mean			
No	$\lambda + \lambda_1^X + \lambda_1^Y$	$\lambda + \lambda_1^X + \lambda_2^Y$	$\lambda + \lambda_1^X + \lambda_3^Y$	$\beta_0 + \beta_1$			
Yes	$\lambda + \lambda_2^X + \lambda_1^Y$	$\lambda + \lambda_2^X + \lambda_2^Y$	$\lambda + \lambda_2^X + \lambda_3^Y$	$\beta_0 - \beta_1$			
Mean	$\beta_0 + \beta_2$	$\beta_0 + \beta_3$	$\beta_0 - \beta_2 - \beta_3$	β_0			

There is more than one parameterization. I like this one:

 \sim

$\lambda = \beta_0$	The grand mean
$\lambda_1^X = \beta_1$	The main effect for $X = 1$
$\lambda_2^X = -\beta_1$	The main effect for $X = 1$
$\lambda_1^Y = \beta_2$	The main effect for $Y = 1$
$\lambda_2^Y = \beta_3$	The main effect for $Y = 2$
$\lambda_3^Y = -\beta_2 - \beta_3$	The main effect for $Y = 3$

Some effects are redundant Just like in classical ANOVA models

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y,$$
where
$$\sum_{i=1}^{I} \lambda_i^X = 0 \text{ and } \sum_{j=1}^{J} \lambda_j^Y = 0$$

Explore the meaning of the parameters

- This is a multinomial model (of independence).
- Set of unique main effects must correspond somehow to the set of unique marginal probabilities.
- But how?
- First, how many parameters are there?

- There are (I-1) + (J-1) unique marginal probabilities.
- There are (I-1) + (J-1) unique main effects.
- Plus the grand mean λ .
- Parameterizations cannot be one-to-one unless number of parameters is the same.
- It turns out that the grand mean is redundant, but not in the way you might think.

You might think that since under independence

$$\mu_{ij} = n\pi_{ij}$$

= $n\pi_{i+}\pi_{+j}$
 $\Leftrightarrow \log \mu_{ij} = \log n + \log \pi_{i+} + \log \pi_{+j}$
= $\lambda + \lambda_i^X + \lambda_j^Y$

- We should have $\lambda = \log n$,
- And $\lambda_i^X = \log \pi_{i+}$
- And $\lambda_j^Y = \log \pi_{+j}$
- But it's not so simple.

Expressing λ in terms of the other parameters

$$n = \sum_{i=1}^{I} \sum_{j=1}^{J} \mu_{ij}$$

$$= \sum_{i=1}^{I} \sum_{j=1}^{J} e^{\lambda + \lambda_i^X + \lambda_j^Y}$$

$$= e^{\lambda} \sum_{i=1}^{I} \sum_{j=1}^{J} e^{\lambda_i^X + \lambda_j^Y}$$

$$\Leftrightarrow e^{\lambda} = \frac{n}{\sum_{i=1}^{I} \sum_{j=1}^{J} e^{\lambda_i^X + \lambda_j^Y}}$$

$$\Leftrightarrow \lambda = \log \frac{n}{\sum_{i=1}^{I} \sum_{j=1}^{J} e^{\lambda_i^X + \lambda_j^Y}} \neq \log n$$

Connection of main effects to marginal probabilities

• Consider 2×2 case

_

• Simplify the notation

20/31

Four equations in two unknowns solve for β_1 and β_2

$$X = \begin{array}{c} 1 & 2 \\ 1 & \frac{e^{\beta_1 + \beta_2}}{s} = ab & \frac{e^{\beta_1 - \beta_2}}{s} = a(1 - b) & a \\ \frac{e^{-\beta_1 + \beta_2}}{s} = (1 - a)b & \frac{e^{-\beta_1 - \beta_2}}{s} = (1 - a)(1 - b) & 1 - a \\ \hline b & 1 - b & 1 \end{array}$$

$$\begin{array}{rcl} \text{Odds}(Y=1|X=1) & = & e^{2\beta_2} & = & \frac{ab}{a(1-b)} & = & \frac{b}{1-b} \\ \text{Odds}(X=1|Y=1) & = & e^{2\beta_1} & = & \frac{ab}{(1-a)b} & = & \frac{a}{1-a} \end{array}$$

 So

$$\beta_1 = \frac{1}{2} \log \frac{a}{1-a}$$
$$\beta_2 = \frac{1}{2} \log \frac{b}{1-b}$$

Regression coefficients (Main Effects)

$$\beta_1 = \frac{1}{2} \log \frac{a}{1-a}$$
$$\beta_2 = \frac{1}{2} \log \frac{b}{1-b}$$

- Are functions of the marginal log odds.
- More generally, they are functions of log odds ratios.
- Notice $\beta_1 = 0 \Leftrightarrow a = 1/2$.
- Zero main effects correspond to equal probabilities, if there are no interactions involving that factor.

$$\log \mu = \beta_0 + \beta_1 p_1 + \beta_2 c_1 + \beta_3 c_2 + \beta_4 p_1 c_1 + \beta_5 p_1 c_2$$

- Five parameters correspond to five probabilities
- A saturated model

Passed	Course	p_1	c_1	c_2	$p_1 c_1$	$p_1 c_2$	Interactions only
No	Catch-up	1	1	0	1	0	β_4
No	Elite	1	0	1	0	1	eta_5
No	Mainstream	1	-1	-1	-1	-1	$-\beta_4 - \beta_5$
Yes	Catch-up	-1	1	0	-1	0	$-\beta_4$
Yes	Elite	-1	0	1	0	-1	$-\beta_5$
Yes	Mainstream	-1	-1	-1	1	1	$\beta_4 + \beta_5$

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY}$$

Passed	Catch-up	Elite	Mainstream	Sum
No	β_4	β_5	$-\beta_4 - \beta_5$	0
Yes	$-\beta_4$	$-\beta_5$	$\beta_4 + \beta_5$	0
Sum	0	0	0	0

Course

- Add to zero down each row and across each column.
- Unique interaction effects are easy to count.
- They correspond to products of dummy variables.
- If non-zero, they make the profiles non-parallel.

Why probabilities and effects (β values) are one-to-one in general

- Since we know n, π_{ij} and μ_{ij} are one-to-one.
- μ_{ij} and $\log \mu_{ij}$ are one-to-one.
- So if we have all the β values, we can solve for the π_{ij} .

Suppose we have all the π_{ij} values. Can we solve for the β s?

- We can get the $\log \mu_{ij}$ values.
- β_0 is the mean of all the log μ_{ij} .
- Look how easy it is to solve for the main effects.

		course		
Passed	Catch-up	Elite	Mainstream	Mean
No	$\log \mu_{11}$	$\log \mu_{12}$	$\log \mu_{13}$	$\beta_0 + \beta_1$
Yes	$\log \mu_{21}$	$\log \mu_{22}$	$\log \mu_{23}$	$\beta_0 - \beta_1$
Mean	$\beta_0 + \beta_2$	$\beta_0 + \beta_3$	$\beta_0 - \beta_2 - \beta_3$	β_0

- Interaction terms are just differences between differences (the difference depends).
- So we can get all the β s.

Extension to higher dimensional tables

- Relationships between variables are represented by two-factor interactions.
- Three-factor interactions mean the nature of the relationship *depends* ... etc.
- This holds provided all lower-order interactions involving the factors are in the model.
- Stick to *hierarchical* models, meaning if an interaction is in the model, then all main effects and lower-order interactions involving those factors are also in the model.

Bracket notation for hierarchical models

- Enclosing two or more factors (variables) in brackets means they interact.
- And all lower-order effects are automatically in the model.
- Suppose there are 4 variables, A, B, C, D
- (AB) (CD) means A is related to B and C is related to D, but A is independent of C and D, and B is independent of C and D.
- The log-linear model includes 4 main effects and 2 interactions.

- (A)(B)(C)(D) means mutual independence.
- (AB)(AC)(AD)(BC)(BD)(CD) means all two-way relationships are present, but the form of those relationships do not depend on the values of the other variables.
- Sometimes called "homogeneous association."

Given bracket notation, write the model in λ notation

• (XY)(Z) $\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY}$ • (XYZ) $\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z$

$$\begin{array}{lll} \log \mu_{ijk} &=& \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z \\ && + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} \\ && + \lambda_{ijk}^{XYZ} \end{array}$$

Parameter estimation: Iterative proportional model fitting

- Indirect maximum likelihood: Goes straight to estimated expected frequencies, and then estimates all the parameters (unique or not) from there.
- Just specify a list of vectors: Bracket notation.
- Each vector contains a set of indices corresponding to variables
- 1=rows, 2=cols, etc.

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/312f12