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1See last slide for copyright information.
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Background: Re-parameterization

Data are denoted D ∼ Pθ, θ ∈ Θ

Likelihood function `(θ,D) = `(θ)

Another, equivalent way of writing the parameter may be
more convenient.

Let β = g(θ), β ∈ B
The function g : Θ→ B is one-to-one, meaning θ = g−1(β).

Re-parameterize, writing the likelihood function in a
different form.

`[θ] = `[g−1(g(θ))] = `[g−1(β)] = `2[β].

The largest value of `[θ] is the same as the largest value of
`2[β].

`[θ̂] = `2[β̂]
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Invariance principle of maximum likelihood estimation

β̂ = g(θ̂)

Assume θ̂ is unique, meaning `(θ̂) > `(θ) for all θ ∈ Θ with
θ 6= θ̂.

What if there were a β 6= g(θ̂) in B with `2(β) ≥ `2(g(θ̂)).

In that case we would have

`[g−1(β)] ≥ `[g−1(g(θ̂))]

⇔ `(θ) ≥ `(θ̂)

for some θ 6= θ̂. But that’s impossible, so there can be no such
β. �
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Main point about re-parameterization

If you have a reasonable model, you can re-write the
parameters in any way that’s convenient, as long as it’s
one-to-one with (equivalent to) the original way.

Maximum likelihood does not care how you express the
parameters.

Log-linear models depend heavily on re-parameterization.
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Features of log-linear models

Used to analyze multi-dimensional contingency tables.

All variables are categorical.

No distinction between explanatory and response variables.

Build a picture of how all the variables are related to each
other.

ANOVA-like models for the logs of the expected
frequencies.

“Response variable” is a vector of log observed frequencies.

Relationships between variables correspond to interactions
in the ANOVA model.
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ANOVA-like models
For the logs of the expected frequencies

Relationships between variables are represented by
two-factor interactions.

Three-factor interactions mean the nature of the
relationship depends . . .

Etc.
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It’s like the rotten potatoes example

Course

Passed Catch-up Mainstream Elite

No π11 π12 π13
Yes π21 π22 π23

No relationship means the conditional distribution of
Course is the same, regardless of whether the student
passed or not.

Probabilities are proportional:

π11
π21

=
π12
π22

=
π13
π23

Because µij = nπij , same applies to the expected
frequencies.
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Expected frequencies are proportional
Under H0 of independence

µ11

µ21

=
µ12

µ2

=
µ13

µ23

⇔ (log µ11 − log µ21) = (log µ12 − log µ22) = (log µ13 − log µ23)

So the profiles are parallel in the log scale — no interaction means no relationship.
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For the record: R code for the last plot
Log expected frequencies

# Using mathcat.data

# Get expected frequencies to plot logs

c1 = chisq.test(tab1)

tab0 = c1$expected; tab0

Course = c(1,2,3,1,2,3)

logexpect = log(c(tab0[1,],tab0[2,]))

# Plot

plot(Course,logexpect, pch=’ ’, frame.plot=F, axes=F,

xlab="Course", ylab=expression(paste(’log(’,mu[ij],’)’) , xaxt=’n’) )

axis(side=1,labels=c("Catch-Up","Elite","MainStr"),at=1:3)

axis(side=2)

lines(1:3,logexpect[1:3],lty=2) # Did not pass

points(1:3,logexpect[1:3])

lines(1:3,logexpect[4:6],lty=1) # Yes Passed

points(1:3,logexpect[4:6],pch=19)

title("Log Expected Frequencies Under Independence")

legend(1.25,4.5,legend=’Passed’,lty=1,pch=19,bty=’n’)

legend(1.25,4.25,legend=’Did not pass’,lty=2,pch=1,bty=’n’)
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Suggests plotting log observed frequencies
To see departure from independence
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For the record: R code for the last plot
Log observed frequencies

# Using mathcat.data

Course = c(1,2,3,1,2,3)

logobs = log(c(tab1[1,],tab1[2,]))

# Plot

plot(Course,logobs, pch=’ ’, frame.plot=F, axes=F,

xlab="Course", ylab=expression(paste(’log(’,n[ij],’)’) , xaxt=’n’) )

axis(side=1,labels=c("Catch-Up","Elite","MainStr"),at=1:3)

axis(side=2)

lines(1:3,logobs[1:3],lty=2) # Did not pass

points(1:3,logobs[1:3])

lines(1:3,logobs[4:6],lty=1) # Yes Passed

points(1:3,logobs[4:6],pch=19)

title("Log Observed Frequencies")

legend(1.25,4.5,legend=’Passed’,lty=1,pch=19,bty=’n’)

legend(1.25,4.25,legend=’Did not pass’,lty=2,pch=1,bty=’n’)

It would be faster to do this in MS Excel.
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Regression-like model of independence for the log
expected frequencies: No interaction
Use effect coding

log µ = β0 + β1p1 + β2c1 + β3c2

Passed Course p1 c1 c2 logµ

No Catch-up 1 1 0 β0 + β1 + β2
No Elite 1 0 1 β0 + β1 + β3
No Mainstream 1 -1 -1 β0 + β1 − β2 − β3
Yes Catch-up -1 1 0 β0 − β1 + β2
Yes Elite -1 0 1 β0 − β1 + β3
Yes Mainstream -1 -1 -1 β0 − β1 − β2 − β3

Notice how this assumes there are no zero probabilities.
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Model of independence has main effects only
No interaction terms

logµ = β0 + β1p1 + β2c1 + β3c2

Course
Passed Catch-up Elite Mainstream Mean
No β0 + β1 + β2 β0 + β1 + β3 β0 + β1 − β2 − β3 β0 + β1
Yes β0 − β1 + β2 β0 − β1 + β3 β0 − β1 − β2 − β3 β0 − β1
Mean β0 + β2 β0 + β3 β0 − β2 − β3 β0

Grand mean is β0.

Main effects for Passed are β1 and −β1.
Main effects for Course are β2, β3 and −β2 − β3.
Effects always add up to zero.

This is an additive model.

logµij = Grand Mean + Main effect for factor A + Main effect
for factor B
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Textbook’s notation for the additive model
logµij = Grand Mean + Main effect for factor A + Main effect for factor B

log µij = λ + λXi + λYj
Course

Passed Catch-up Elite Mainstream Mean

No λ+ λX1 + λY1 λ+ λX1 + λY2 λ+ λX1 + λY3 β0 + β1

Yes λ+ λX2 + λY1 λ+ λX2 + λY2 λ+ λX2 + λY3 β0 − β1

Mean β0 + β2 β0 + β3 β0 − β2 − β3 β0

There is more than one parameterization. I like this one:

λ = β0 The grand mean

λX1 = β1 The main effect for X = 1

λX2 = −β1 The main effect for X = 1

λY1 = β2 The main effect for Y = 1

λY2 = β3 The main effect for Y = 2

λY3 = −β2 − β3 The main effect for Y = 3
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Some effects are redundant
Just like in classical ANOVA models

log µij = λ + λXi + λYj ,

where

I∑
i=1

λXi = 0 and

J∑
j=1

λYj = 0
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Explore the meaning of the parameters

This is a multinomial model (of independence).

Set of unique main effects must correspond somehow to the
set of unique marginal probabilities.

But how?

First, how many parameters are there?
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Count the parameters
logµij = λ+ λXi + λYj

There are (I − 1) + (J − 1) unique marginal probabilities.

There are (I − 1) + (J − 1) unique main effects.

Plus the grand mean λ.

Parameterizations cannot be one-to-one unless number of
parameters is the same.

It turns out that the grand mean is redundant, but not in
the way you might think.
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The grand mean is redundant
But . . .

You might think that since under independence

µij = nπij

= nπi+π+j

⇔ log µij = log n + log πi+ + log π+j

= λ + λXi + λYj

We should have λ = log n,

And λXi = log πi+
And λYj = log π+j
But it’s not so simple.
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Expressing λ in terms of the other parameters

n =

I∑
i=1

J∑
j=1

µij

=

I∑
i=1

J∑
j=1

eλ+λ
X
i +λYj

= eλ
I∑
i=1

J∑
j=1

eλ
X
i +λYj

⇔ eλ =
n∑I

i=1

∑J
j=1 e

λXi +λYj

⇔ λ = log
n∑I

i=1

∑J
j=1 e

λXi +λYj
6= log n
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Connection of main effects to marginal probabilities

Consider 2× 2 case

Simplify the notation

X
1
2

Y
1 2

1
ne

β0+β1+β2 1
ne

β0+β1−β2 a
1
ne

β0−β1+β2 1
ne

β0−β1−β2 1− a
b 1− b 1

=

X
1
2

Y
1 2

eβ1+β2

s
eβ1−β2

s a
e−β1+β2

s
e−β1−β2

s 1− a
b 1− b 1

where s = eβ1+β2 + eβ1−β2 + e−β1+β2 + e−β1−β2

20 / 31



Four equations in two unknowns
Solve for β1 and β2

X
1
2

Y
1 2

eβ1+β2

s = ab eβ1−β2

s = a(1− b) a
e−β1+β2

s = (1− a)b e−β1−β2

s = (1− a)(1− b) 1− a
b 1− b 1

Odds(Y = 1|X = 1) = e2β2 = ab
a(1−b) = b

1−b
Odds(X = 1|Y = 1) = e2β1 = ab

(1−a)b = a
1−a

So

β1 =
1

2
log

a

1− a

β2 =
1

2
log

b

1− b
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Regression coefficients (Main Effects)

β1 =
1

2
log

a

1− a

β2 =
1

2
log

b

1− b

Are functions of the marginal log odds.

More generally, they are functions of log odds ratios.

Notice β1 = 0⇔ a = 1/2.

Zero main effects correspond to equal probabilities, if there
are no interactions involving that factor.
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What if there are interactions?

log µ = β0 + β1p1 + β2c1 + β3c2 + β4p1c1 + β5p1c2

Five parameters correspond to five probabilities

A saturated model

Passed Course p1 c1 c2 p1c1 p1c2 Interactions only
No Catch-up 1 1 0 1 0 β4
No Elite 1 0 1 0 1 β5
No Mainstream 1 -1 -1 -1 -1 −β4 − β5
Yes Catch-up -1 1 0 -1 0 −β4
Yes Elite -1 0 1 0 -1 −β5
Yes Mainstream -1 -1 -1 1 1 β4 + β5

logµij = λ+ λXi + λYj + λXYij
23 / 31



Interactions are departures from an additive model

Course
Passed Catch-up Elite Mainstream Sum
No β4 β5 −β4 − β5 0
Yes −β4 −β5 β4 + β5 0
Sum 0 0 0 0

Add to zero down each row and across each column.

Unique interaction effects are easy to count.

They correspond to products of dummy variables.

If non-zero, they make the profiles non-parallel.
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Why probabilities and effects (β values) are one-to-one
in general

Since we know n, πij and µij are one-to-one.

µij and log µij are one-to-one.

So if we have all the β values, we can solve for the πij .

Suppose we have all the πij values. Can we solve for the βs?

We can get the logµij values.

β0 is the mean of all the logµij .

Look how easy it is to solve for the main effects.
Course

Passed Catch-up Elite Mainstream Mean
No logµ11 log µ12 log µ13 β0 + β1

Yes logµ21 log µ22 log µ23 β0 − β1

Mean β0 + β2 β0 + β3 β0 − β2 − β3 β0

Interaction terms are just differences between differences
(the difference depends).

So we can get all the βs.
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Extension to higher dimensional tables

Relationships between variables are represented by
two-factor interactions.

Three-factor interactions mean the nature of the
relationship depends . . . etc.

This holds provided all lower-order interactions involving
the factors are in the model.

Stick to hierarchical models, meaning if an interaction is in
the model, then all main effects and lower-order
interactions involving those factors are also in the model.
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Bracket notation for hierarchical models

Enclosing two or more factors (variables) in brackets means
they interact.

And all lower-order effects are automatically in the model.

Suppose there are 4 variables, A,B,C,D

(AB) (CD) means A is related to B and C is related to D,
but A is independent of C and D, and B is independent of
C and D.

The log-linear model includes 4 main effects and 2
interactions.
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More examples

(A)(B)(C)(D) means mutual independence.

(AB)(AC)(AD)(BC)(BD)(CD) means all two-way
relationships are present, but the form of those
relationships do not depend on the values of the other
variables.

Sometimes called “homogeneous association.”
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Given bracket notation, write the model in λ notation

(XY )(Z)

logµijk = λ+ λXi + λYj + λZk + λXYij

(XY Z)

logµijk = λ+ λXi + λYj + λZk

+λXYij + λXZik + λY Zjk

+λXY Zijk
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Parameter estimation: Iterative proportional model
fitting

Indirect maximum likelihood: Goes straight to estimated
expected frequencies, and then estimates all the parameters
(unique or not) from there.

Just specify a list of vectors: Bracket notation.

Each vector contains a set of indices corresponding to
variables

1=rows, 2=cols, etc.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/312f12

31 / 31

http://www.utstat.toronto.edu/~brunner
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://www.utstat.toronto.edu/~brunner/oldclass/312f12

