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Variables and Cases

I There are n cases (people, rats, factories, wolf packs) in a
data set.

I A variable is a characteristic or piece of information that
can be recorded for each case in the data set.

I For example cases could be patients in a hospital, and
variables could be Age, Sex, Diagnosis, Have family doctor
(Yes-No), Family history of heart disease (Yes-No), etc.
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Variables can be Categorical, or Continuous

I Categorical: Gender, Diagnosis, Job category, Have family
doctor, Family history of heart disease, 5-year survival
(Y-N)

I Some categories are ordered (birth order, health status)

I Continuous: Height, Weight, Blood pressure

I Some questions:
I Are all normally distributed variables continuous?
I Are all continuous variables quantitative?
I Are all quantitative variables continuous?
I Are there really any data sets with continuous variables?
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Variables can be Explanatory, or Response

I Explanatory variables are sometimes called “independent
variables.”

I The x variables in regression are explanatory variables.

I Response variables are sometimes called “dependent
variables.”

I The Y variable in regression is the response variable.

I Sometimes the distinction is not useful: Does each twin get
cancer, Yes or No?
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Our main interest is in categorical variables

I Especially categorical response variables

I In ordinary regression, outcomes are normally distributed,
and so continuous.

I But often, outcomes of interest are categorical
I Buy the product, or not
I Marital status 5 years after graduation
I Survive the operation, or not.

I Ordered categorical response variables, too: for example
highest level of hockey ever played.
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Distributions
We will mostly use

I Bernoulli

I Binomial

I Multinomial

I Poisson
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The Poisson process
Why the Poisson distribution is such a useful model for count data

I Events happening randomly in space or time

I Independent increments

I For a small region or interval,
I Chance of 2 or more events is negligible
I Chance of an event roughly proportional to the size of the

region or interval

I Then (solve a system of differential equations), the
probability of observing x events in a region of size t is

e−λt(λt)x

x!
for x = 0, 1, . . .
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Poisson process examples
Some variables that have a Poisson distribution

I Calls coming in to an emergency number

I Customers arriving in a given time period

I Number of raisins in a loaf of raisin bread

I Number of bomb craters in a region after a bombing raid,
London WWII

I In a jar of peanut butter . . .
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Steps in the process of statistical analysis
One possible approach

I Consider a fairly realistic example or problem

I Decide on a statistical model

I Perhaps decide sample size

I Acquire data

I Examine and clean the data; generate displays and
descriptive statistics

I Estimate parameters, perhaps by maximum likelihood

I Carry out tests, compute confidence intervals, or both

I Perhaps re-consider the model and go back to estimation

I Based on the results of inference, draw conclusions about
the example or problem
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Coffee taste test

A fast food chain is considering a change in the blend of coffee
beans they use to make their coffee. To determine whether their
customers prefer the new blend, the company plans to select a
random sample of n = 100 coffee-drinking customers and ask
them to taste coffee made with the new blend and with the old
blend, in cups marked “A” and “B.” Half the time the new
blend will be in cup A, and half the time it will be in cup B.
Management wants to know if there is a difference in preference
for the two blends.
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Statistical model

Letting π denote the probability that a consumer will choose the
new blend, treat the data Y1, . . . , Yn as a random sample from a
Bernoulli distribution. That is, independently for i = 1, . . . , n,

P (yi|π) = πyi(1− π)1−yi

for yi = 0 or yi = 1, and zero otherwise.

Note that Y =
∑n

i=1 Yi is the number of consumers who choose
the new blend. Because Y ∼ B(n, π), the whole experiment
could also be treated as a single observation from a Binomial.
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Find the MLE of π
Show your work

Maximize the log likelihood.

∂

∂π
log ` =

∂

∂π
log

(
n∏
i=1

P (yi|π)

)

=
∂

∂π
log

(
n∏
i=1

πyi(1− π)1−yi

)

=
∂

∂π
log
(
π
∑n
i=1 yi(1− π)n−

∑n
i=1 yi

)
=

∂

∂π

(
(

n∑
i=1

yi) log π + (n−
n∑
i=1

yi) log(1− π)

)

=

∑n
i=1 yi
π

−
n−

∑n
i=1 yi

1− π
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Setting the derivative to zero,

∑n
i=1 yi
π

=
n−

∑n
i=1 yi

1− π
⇒ (1− π)

n∑
i=1

yi = π(n−
n∑
i=1

yi)

⇒
n∑
i=1

yi − π
n∑
i=1

yi = nπ − π
n∑
i=1

yi

⇒
n∑
i=1

yi = nπ

⇒ π =

∑n
i=1 yi
n

= y = p

So it looks like the MLE is the sample proportion. Carrying out
the second derivative test to be sure,
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Second derivative test

∂2 log `

∂π2
=

∂

∂π

(∑n
i=1 yi
π

−
n−

∑n
i=1 yi

1− π

)
=
−
∑n

i=1 yi
π2

−−−
n−

∑n
i=1 yi

(1− π)2

= −n
(

1− y
(1− π)2

+
y

π2

)
< 0

Concave down, maximum, and π̂ = y = p.

14 / 35



Numerical estimate

Suppose 60 of the 100 consumers prefer the new blend. Give a
point estimate the parameter π. Your answer is a number.

> p = 60/100; p

[1] 0.6
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Carry out a test to answer the question
Is there a difference in preference for the two blends?

Start by stating the null hypothesis

I H0 : π = 0.50

I H1 : π 6= 0.50

I A case could be made for a one-sided test, but we’ll stick
with two-sided.

I α = 0.05 as usual.

I Central Limit Theorem says π̂ = Y is approximately
normal with mean π and variance π(1−π)

n .
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Several valid test statistics for H0 : π = π0 are available
Two of them are

Z1 =

√
n(p− π0)√
π0(1− π0)

and

Z2 =

√
n(p− π0)√
p(1− p)

What is the critical value? Your answer is a number.

> alpha = 0.05

> qnorm(1-alpha/2)

[1] 1.959964
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Calculate the test statistic(s)
and the p-value(s)

> pi0 = .5; p = .6; n = 100

> Z1 = sqrt(n)*(p-pi0)/sqrt(pi0*(1-pi0)); Z1

[1] 2

> pval1 = 2 * (1-pnorm(Z1)); pval1

[1] 0.04550026

>

> Z2 = sqrt(n)*(p-pi0)/sqrt(p*(1-p)); Z2

[1] 2.041241

> pval2 = 2 * (1-pnorm(Z2)); pval2

[1] 0.04122683
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Conclusions
I Do you reject H0? Yes, just barely.
I Isn’t the α = 0.05 significance level pretty arbitrary? Yes,

but if people insist on a Yes or No answer, this is what you
give them.

I What do you conclude, in symbols? π 6= 0.50. Specifically,
π > 0.50.

I What do you conclude, in plain language? Your answer is a
statement about coffee. More consumers prefer the new
blend of coffee beans.

I Can you really draw directional conclusions when all you
did was reject a non-directional null hypothesis? Yes.
Decompose the two-sided size α test into two one-sided
tests of size α/2. This approach works in general.

It is very important to state directional conclusions, and state
them clearly in terms of the subject matter. Say what
happened! If you are asked state the conclusion in plain
language, your answer must be free of statistical mumbo-jumbo.
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What about negative conclusions?
What would you say if Z = 1.84?

Here are two possibilitie, in plain languages.

I “This study does not provide clear evidence that
consumers prefer one blend of coffee beans over the other.”

I “The results are consistent with no difference in preference
for the two coffee bean blends.”

In this course, we will not just casually accept the null
hypothesis.
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Confidence Intervals
Approximately for large n,

1− α = Pr{−zα/2 < Z < zα/2}

≈ Pr

{
−zα/2 <

√
n(p− π)√
p(1− p)

< zα/2

}

= Pr

{
p− zα/2

√
p(1− p)

n
< π < p+ zα/2

√
p(1− p)

n

}

I Could express this as p± zα/2
√

p(1−p)
n

I zα/2

√
p(1−p)
n is sometimes called the margin of error.

I If α = 0.05, it’s the 95% margin of error.
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Give a 95% confidence interval for the taste test data.
The answer is a pair of numbers. Show some work.

(
p− zα/2

√
p(1− p)

n
, p+ zα/2

√
p(1− p)

n

)

=

(
0.60− 1.96

√
0.6× 0.4

100
, 0.60 + 1.96

√
0.6× 0.4

100

)

= (0.504, 0.696)

In a report, you could say

I The estimated proportion preferring the new coffee bean
blend is 0.60± 0.096, or

I “Sixty percent of consumers preferred the new blend.
These results are expected to be accurate within 10
percentage points, 19 times out of 20.”
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Meaning of the confidence interval

I We calculated a 95% confidence interval of (0.504, 0.696)
for π.

I Does this mean Pr{0.504 < π < 0.696} = 0.95?

I No! The quantities 0.504, 0.696 and π are all constants, so
Pr{0.504 < π < 0.696} is either zero or one.

I The endpoints of the confidence interval are random
variables, and the numbers 0.504 and 0.696 are realizations
of those random variables, arising from a particular
random sample.

I Meaning of the probability statement: If we were to
calculate an interval in this manner for a large number of
random samples, the interval would contain the true
parameter around 95% of the time.

I So we sometimes say that we are “95% confident” that
0.504 < π < 0.696.
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Confidence intervals (regions) correspond to tests
Recall Z1 =

√
n(p−π0)√
π0(1−π0)

and Z2 =
√
n(p−π0)√
p(1−p)

.

From the derivation of the confidence interval,

−zα/2 < Z2 < zα/2

if and only if

p− zα/2

√
p(1− p)

n
< π0 < p+ zα/2

√
p(1− p)

n

I So the confidence interval consists of those parameter
values π0 for which H0 : π = π0 is not rejected.

I That is, the null hypothesis is rejected at significance level
α if and only if the value given by the null hypothesis is
outside the (1− α)× 100% confidence interval.

I There is a confidence interval corresponding to Z1 too.
Maybe it’s better – See Chapter 1.

I In general, any test can be inverted to obtain a confidence
region.
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Selecting sample size

I Where did that n = 100 come from?

I Probably off the top of someone’s head.

I We can (and should) be more systematic.

I Sample size can be selected
I To achieve a desired margin of error
I To achieve a desired statistical power
I In other reasonable ways
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Power

The power of a test is the probability of rejecting H0 when H0

is false.

I More power is good.

I Power is not just one number. It is a function of the
parameter.

I Usually,
I For any n, the more incorrect H0 is, the greater the power.
I For any parameter value satisfying the alternative

hypothesis, the larger n is, the greater the power.
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Statistical power analysis
To select sample size

I Pick an effect you’d like to be able to detect – a parameter
value such that H0 is false. It should be just over the
boundary of interesting and meaningful.

I Pick a desired power, a probability with which you’d like to
be able to detect the effect by rejecting the null hypothesis.

I Start with a fairly small n and calculate the power.
Increase the sample size until the desired power is reached.

There are two main issues.

I What is an “interesting” or “meaningful” parameter value?

I How do you calculate the probability of rejecting H0?
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Calculating power for the test of a single proportion
True parameter value is π

Z1 =

√
n(p− π0)√
π0(1− π0)

Power = 1− Pr{−zα/2 < Z1 < zα/2}

= 1− Pr
{
−zα/2 <

√
n(p− π0)√
π0(1− π0)

< zα/2

}
= . . .

= 1− Pr
{√

n(π0 − π)√
π(1− π)

− zα/2

√
π0(1− π0)

π(1− π)
<

√
n(p− π)√
π(1− π)

<

√
n(π0 − π)√
π(1− π)

+ zα/2

√
π0(1− π0)

π(1− π)

}

≈ 1− Pr
{√

n(π0 − π)√
π(1− π)

− zα/2

√
π0(1− π0)

π(1− π)
< Z <

√
n(π0 − π)√
π(1− π)

+ zα/2

√
π0(1− π0)

π(1− π)

}

= 1− Φ

(√
n(π0 − π)√
π(1− π)

+ zα/2

√
π0(1− π0)

π(1− π)

)
+ Φ

(√
n(π0 − π)√
π(1− π)

− zα/2

√
π0(1− π0)

π(1− π)

)
,

where Φ(·) is the cumulative distribution function of the
standard normal.
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An R function to calculate approximate power
For the test of a single proportion

Power = 1− Φ

(√
n(π0 − π)√
π(1− π)

+ zα/2

√
π0(1− π0)

π(1− π)

)
+ Φ

(√
n(π0 − π)√
π(1− π)

− zα/2

√
π0(1− π0)

π(1− π)

)

Z1power = function(pi,n,pi0=0.50,alpha=0.05)

{

a = sqrt(n)*(pi0-pi)/sqrt(pi*(1-pi))

b = qnorm(1-alpha/2) * sqrt(pi0*(1-pi0)/(pi*(1-pi)))

Z1power = 1 - pnorm(a+b) + pnorm(a-b)

Z1power

} # End of function Z1power
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Some numerical examples

> Z1power(0.50,100)

[1] 0.05

>

> Z1power(0.55,100)

[1] 0.168788

> Z1power(0.60,100)

[1] 0.5163234

> Z1power(0.65,100)

[1] 0.8621995

> Z1power(0.40,100)

[1] 0.5163234

> Z1power(0.55,500)

[1] 0.6093123

> Z1power(0.55,1000)

[1] 0.8865478
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Find smallest sample size needed to detect π = 0.55 as
different from π0 = 0.50 with probability at least 0.80

> samplesize = 50

> power=Z1power(pi=0.55,n=samplesize); power

[1] 0.1076602

> while(power < 0.80)

+ {

+ samplesize = samplesize+1

+ power = Z1power(pi=0.55,n=samplesize)

+ }

> samplesize; power

[1] 783

[1] 0.8002392
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Find smallest sample size needed to detect π = 0.60 as
different from π0 = 0.50 with probability at least 0.80

> samplesize = 50

> power=Z1power(pi=0.60,n=samplesize); power

[1] 0.2890491

> while(power < 0.80)

+ {

+ samplesize = samplesize+1

+ power = Z1power(pi=0.60,n=samplesize)

+ }

> samplesize; power

[1] 194

[1] 0.8003138
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Conclusions from the power analysis

I Detecting true π = 0.60 as different from 0.50 is a
reasonable goal.

I Power with n = 100 is barely above one half – pathetic.

I As Fisher said, “To call in the statistician after the
experiment is done may be no more than asking him to
perform a postmortem examination: he may be able to say
what the experiment died of.”

I n = 200 is much better.

I How about n = 250?

> Z1power(pi=0.60,n=250)

[1] 0.8901088

It depends on what you can afford, but I like n = 250.
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What is required of the scientist
Who wants to select sample size by power analysis

The scientist must specify

I Parameter values that he or she wants to be able to detect
as different from H0 value.

I Desired power (probability of detection)

It’s not always easy for the scientist to think in terms of the
parameters of a statistical model.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/312f12
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