Generalized Linear Models¹ STA 312: Fall 2012

 $^{^1 \}mathrm{See}$ last slide for copyright information.

Suggested Reading: Chapter 3

- Read Pages 65-77
- Section 3.4.3, Pages 85-86 on the deviance is important. The rest of the chapter is optional.

2 The Exponential Family of Distributions

Examples of Generalized Linear Models

- Normal regression
- Logistic regression
- Poisson regression

Components of a Generalized Linear Model

- Random Component: Probability distribution for Y
- **Systematic component**: Specifies explanatory variables in the form of a "linear predictor that looks like a regression equation.
- Link function: Connects $\mu = E(Y|\mathbf{X})$ to the linear predictor

Random Component: Distribution of Y

- Ordinary regression: Normal
- Logistic regression: Bernoulli
- Poisson regression: Poisson

• Other possibilities: Binomial, Exponential, Gamma, Geometric . . .

Systematic component: A regression-like equation called the *linear predictor*

$$\eta = \beta_0 + \beta_1 x_1 + \dots, + \beta_{p-1} x_{p-1}$$

Or

 $\eta = \alpha + \beta_1 x_1 + \dots, + \beta_k x_k$

Basics

Link Function: The linear predictor is an increasing function of the expected value

$$g(\mu) = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

- The function g(x) is strictly increasing.
- The linear predictor is an increasing function of μ .
- So μ is an increasing function of the linear predictor.

Basics

Normal Distribution Link function $g(\mu) = \alpha + \beta_1 x_1 + \dots, + \beta_k x_k$

- $E(Y) = \mu$
- $g(\mu) = \mu$
- $\mu = \alpha + \beta_1 x_1 + \dots, + \beta_k x_k$
- The identity link

Bernoulli Distribution Link function $g(\mu) = \alpha + \beta_1 x_1 + \dots, + \beta_k x_k$

•
$$E(Y) = \mu = \pi$$

•
$$g(\mu) = \log \frac{\mu}{1-\mu}$$

•
$$\log \frac{\mu}{1-\mu} = \alpha + \beta_1 x_1 + \dots, +\beta_k x_k$$

• The logit link

Poisson Distribution Link function $g(\mu) = \alpha + \beta_1 x_1 + \dots, + \beta_k x_k$

- $E(Y) = \mu = \lambda$
- $\bullet \ g(\mu) = \log(\mu)$
- $\log(\mu) = \alpha + \beta_1 x_1 + \dots, +\beta_k x_k$
- The log link

"Natural" Exponential Family of Distributions

- Includes most of the familiar distributions
- Provides a unified theory for generalized linear models
- Leads to a general, highly efficient method for finding MLEs numerically
 - Iterative weighted least squares
 - Closely related to Newton-Raphson
- Points to a *natural* link function.
- The natural parameter of a one-parameter exponential family is $\theta = g(\mu)$.
- The link functions we have been using are natural links.

Deviance

- Goal is to compare a model to a "Super" model that fits the data as well as possible.
- Example: If an experiment has c outcomes, you can't beat a multinomial with c categories.
- The c-1 parameters soak up all c-1 degrees of freedom, so in this case you could call the Super model "Saturated."

Deviance = $-2(L_M - L_S)$ *L* is the maximized log likelihood

- Denote the parameter of the Model by θ and the parameter of the Supermodel by σ
- The models might look very different, including the parameter spaces.

$$-2(L_M - L_S) = -2log \frac{\prod_{i=1}^n f(y_i|\widehat{\theta})}{\prod_{i=1}^n f(y_i|\widehat{\sigma})}$$
$$= -2log \prod_{i=1}^n \frac{f(y_i|\widehat{\theta})}{f(y_i|\widehat{\sigma})}$$
$$= \sum_{i=1}^n -2\log\left(\frac{f(y_i|\widehat{\theta})}{f(y_i|\widehat{\sigma})}\right)$$
$$= \sum_{i=1}^n d_i$$

- The deviance terms d_i are contributions to a difference in fit (deviance) between the model and the best possible model.
- They are somewhat like residuals.
- Maybe big ones are worth investigating.
- Deviance residuals are defined as $r_i^D = \operatorname{sign}(y_i \hat{\mu}_i)\sqrt{d_i}$

Deviance looks like the likelihood ratio statistic G^2

Deviance =
$$-2log \frac{\prod_{i=1}^{n} f(y_i|\hat{\theta})}{\prod_{i=1}^{n} f(y_i|\hat{\sigma})} = \sum_{i=1}^{n} d_i$$

- Looks like the model represents a null hypothesis.
- The Supermodel is somehow less restricted.
- So *sometimes* it must be a chi-squared test for goodness of model fit.
- What is that ideal "Supermodel" that fits as well as possible?

What is the model that fits as well as possible?

- If just a few (c) categories and plenty of observations in each category (say at least 5), it's a multinomial.
 - Any model with c-1 parameters that are 1-1 with π_1, \ldots, π_{c-1} will soak up all the degrees of freedom and is said to be "saturated."
 - For a saturated model, the deviance is zero.
 - A model with fewer than c-1 parameters cannot be saturated, and the deviance is a likelihood ratio test statistic, null hypothesis that the model is true.
- There are some other examples of super-models that are reasonable. In structural equation models, an example is the unrestricted multivariate normal.
- Often, the super-model is not a reasonable model.

An unreasonable model

Logistic regression with continuous explanatory variables

- One observation only in each of *n* combinations of explanatory, response variable values.
- One parameter for each observation.
- Model fits perfectly.
- Likelihood equals one.
- All parameter estimates on the boundary of the parameter space.
- Not chi-squared under H_0 .
- Denominator of deviance equals one.
- Deviance is just -2 log likelihood of the model.
- Deviance is not a test of model fit, or anyway nobody knows the distribution under H_0 .

What happens when there are a few ties in the explanatory variable values ...

R's help glm defines the deviance as

"... up to a constant, minus twice the maximized log-likelihood. Where sensible, the constant is chosen so that a saturated model has deviance zero."

At least, Deviance $= -2(L_M - L_S)$ is -2log likelihood plus a constant, so the *difference* in deviance values between 2 nested models should be the large-sample likelihood ratio test of full *vs.* reduced.

One last scary question

If you fit a full and a reduced model separately, might they use a different definition of the supermodel, and hence the deviance?

- I have tried unsuccessfully to make R misbehave this way.
- The null deviance is the deviance of a model with just an intercept.
- Compare the null deviance of your full and reduced models. If they are the same, both models are using the same definition of deviance and everything is okay.
- And in my experience with R's glm functon, they are always the same.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/312f12