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Testing for the Product Multinomial Fisher’s Exact Test Tables of Higher Dimension

Suggested Reading: Chapter 2

Read Section 2.6 about Fisher’s exact test

Read Section 2.7 about multi-dimensional tables and
Simpson’s paradox.
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Overview

1 Testing for the Product Multinomial

2 Fisher’s Exact Test

3 Tables of Higher Dimension
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Testing Association for the Product Multinomial
Prospective and retrospective designs

Prospective design:

A conditional multinomial in each row

I independent random samples, one for each value of X

Likelihood is a product of I multinomials

Null hypothesis is that all I sets of conditional probabilities
are the same.

A retrospective design is just like this, but with rows and
columns reversed.
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Testing for the Product Multinomial Fisher’s Exact Test Tables of Higher Dimension

Null hypothesis is no differences among the I vectors of
conditional probabilities

Attack Stroke Both Neither Total
Drug n1+
Drug and Exercise n2+
Total n+1 n+2 n+3 n+4 n

Both n1+ and n2+ are fixed by the design. They are sample
sizes.

Under H0, MLE of the (common) conditional probability is
the marginal sample proportion:

π̂ij = p+j =
n+j

n

And the expected cell frequency is just

µ̂ij = ni+ π̂ij = ni+
n+j

n
=
ni+n+j

n
.
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Expected frequencies are the same!

For testing both independence and testing equal conditional
probabilities,

µ̂ij =
ni+n+j

n
.

The degrees of freedom are the same too. For the product
multinomial,

There are I(J − 1) free parameters in the unconstrained
model.

There are J − 1 free parameters under the null hypothesis.

H0 imposes I(J − 1) − (J − 1) = (I − 1)(J − 1) constraints
on the parameter vector.

So df = (I − 1)(J − 1).

Attack Stroke Both Neither Total
Drug n1+
Drug and Exercise n2+
Total n+1 n+2 n+3 n+4 n
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This is very fortunate

The cross-sectional, prospective and retrospectives are
different from one another conceptually.

The multinomial and product-multinomial models are
different from one another technically.

But the tests for relationship between explanatory and
response variables are 100% the same.

Same expected frequencies and same degrees of freedom.

Therefore we get the same test statistics and p-values.
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Fisher’s Exact Test

Everything so far is based on large-sample theory.

What if the sample is small?

Fisher’s exact test is good for 2 × 2 tables.

There are extensions for larger tables.
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Testing for the Product Multinomial Fisher’s Exact Test Tables of Higher Dimension

Fisher’s exact test is a permutation test

X
1
2

Y
1 2

x a− x a

b− x n− a− b+ x n− a

b n− b n

Think of a data file with 2 columns, X and Y , filled with
ones and twos.

X has a ones and Y has b ones.

Calculate the estimated odds ratio θ̂.

If X and Y are unrelated, all possible pairings of X and Y
values should be equally likely.

There are n! ways to order the X values, and for each of
these, n! ways to order the Y values.
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Idea of a permutation test

X
1
2

Y
1 2
x a − x a

b − x n − a − b + x n − a
b n − b n

There are (n!)2 ways to arrange the X and Y values.

For what fraction of these is the (estimated) odds ratio

Greater than or equal to θ̂ (Upper tail p-value)

Less than or equal to θ̂ (Lower tail p-value)

For a 2-sided test, add the probabilities of all the tables
less likely than or equally likely to the one we have
observed. (This is what R does.)

Nice idea, but hard to compute. Fisher thought of it and
simplified it.
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Testing for the Product Multinomial Fisher’s Exact Test Tables of Higher Dimension

Let us count together

X
1
2

Y
1 2
x a − x a

b − x n − a − b + x n − a
b n − b n

The n! permutations of 1s and 2s have lots of repeats that look
the same.

There are
(
n
a

)
ways to choose which cases have X = 1.

For each of these, there are
(
n
b

)
ways to choose which cases have

Y = 1.

So the total number of 2 × 2 tables with n observations, n1+ = a
and n+1 = b is

(
n
a

)(
n
b

)
.

Of these, the number of ways to get the values in the table is
just the multinomial coefficient(

n

x a− x b− x n− a− b+ x

)
=

n!

x!(a− x)!(b− x)!(n− a− b+ x)!
.
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Hypergeometric probability

X
1
2

Y
1 2
x a − x a = n1+

b − x n − a − b + x n − a = n2+
b = n+1 n − b = n+2 n

Dividing the number of ways to get n11 = x by the total number of
equally likely outcomes,

P (n11 = x) =

(
n

x a−x b−x n−a−b+x

)(
n
a

)(
n
b

)
=

n!
x!(a−x)!(b−x)!(n−a−b+x)!

n!
a!(n−a)!

n!
b!(n−b)!

=

(
a
x

)(
n−a
b−x

)(
n
b

)
=

(
n1+

n11

)(
n2+

n+1−n11

)(
n

n+1

) (Eq. 2.11, p. 46)
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Testing for the Product Multinomial Fisher’s Exact Test Tables of Higher Dimension

Adding up the probabilities
Always remembering that a, b and n are fixed

X
1
2

Y
1 2
x a − x a

b − x n − a − b + x n − a
b n − b n

Fortunately, θ(x) is an increasing function of x
(differentiate).

So, tables with larger x values than the one observed also
have greater sample odds ratios. Add P (n11 = x) over x to
get tail probabilities.

Range of x:

x ≤ min(a, b)
n22 = n− a− b+ x ≥ 0, so x ≥ a+ b− n.
Thus, x ranges from max(0, a+ b− n) to min(a, b).

13 / 36



Testing for the Product Multinomial Fisher’s Exact Test Tables of Higher Dimension

Example: Sinking of the the Titanic

> # help(Titanic)

> dimnames(Titanic)

$Class

[1] "1st" "2nd" "3rd" "Crew"

$Sex

[1] "Male" "Female"

$Age

[1] "Child" "Adult"

$Survived

[1] "No" "Yes"

> # Women in 1st class vs Women in crew

>

> ladies = Titanic[c(1,4),2,2,]
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Testing for the Product Multinomial Fisher’s Exact Test Tables of Higher Dimension

Just the ladies

> ladies

Survived

Class No Yes

1st 4 140

Crew 3 20

> 140/144 # Rich ladies

[1] 0.9722222

> 20/23 # Cleaning ladies

[1] 0.8695652

> X2 = chisq.test(ladies,correct=F); X2

Warning message:

In chisq.test(ladies, correct = F) :

Chi-squared approximation may be incorrect

Pearson’s Chi-squared test

data: ladies

X-squared = 5.2043, df = 1, p-value = 0.02253
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Testing for the Product Multinomial Fisher’s Exact Test Tables of Higher Dimension

Check the expected frequencies

> X2$expected

Survived

Class No Yes

1st 6.0359281 137.96407

Crew 0.9640719 22.03593

>

> fisher.test(ladies)

Fisher’s Exact Test for Count Data

data: ladies

p-value = 0.05547

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.03027561 1.41705937

sample estimates:

odds ratio

0.1935113

16 / 36



Testing for the Product Multinomial Fisher’s Exact Test Tables of Higher Dimension

Conclusion

Though a higher percentage of women in first class survived
than female crew, it could have been due to chance.
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Fisher’s exact test makes sense even without the
pretending we have a random sample

You could say

Assume that status on the ship for these women (First
Class passenger vs. crew) is fixed. It was what it was.

Survival also was what it was.

Given this, is the observed pairing of status and survival an
unusual one?

That is, for what fraction of the possible pairings is the
status difference in survival as great or greater than the
one we have observed?

A little over 5%? That’s a bit unusual, but perhaps not
very unusual.

There is not even any need to talk about
probability.
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Tables of Higher Dimension: Conditional independence

Suppose X and Y are related.

Are X and Y related conditionally on the value of W?

One sub-table for each value of W .

X and Y can easily be related unconditionally, but still be
conditionally independent.

Example: Among adults 18 and older, X =Tattoos and
Y =Grey hair.

Need a 3-way table, showing the relationship of tattoos and
grey hair separately for each age group.

Speak of the relationship between X and Y “controlling
for” W , or “allowing for” W .
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Was UC Berkeley discriminating against women?
Data from the 1970s

Data in a 3-dimensional array: Variables are

Sex of the person applying for graduate study

Department to which the person applied

Whether or not the person was admitted
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Berkeley data

> ##########################################################

> # More than one Explanatory Variable at once #

> # data() to list the nice data sets that come with R #

> # help(UCBAdmissions) #

> ##########################################################

> dim(UCBAdmissions)

[1] 2 2 6

> dimnames(UCBAdmissions)

$Admit

[1] "Admitted" "Rejected"

$Gender

[1] "Male" "Female"

$Dept

[1] "A" "B" "C" "D" "E" "F"

> # Look at gender by admit.

> # Apply sum to rows and columns, obtaining the marginal freqs.

> sexadmit = apply(UCBAdmissions,c(1,2),sum) 21 / 36
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Sex by Admission

> sexadmit

Gender

Admit Male Female

Admitted 1198 557

Rejected 1493 1278

> sexadmit = t(sexadmit); sexadmit

Admit

Gender Admitted Rejected

Male 1198 1493

Female 557 1278

> rowmarg = apply(sexadmit,1,sum); rowmarg

Male Female

2691 1835

> percentadmit = 100 * sexadmit[,1]/rowmarg ; percentadmit

Male Female

44.51877 30.35422

It certainly looks suspicious.
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Test sex by admission

> chisq.test(sexadmit,correct=F)

Pearson’s Chi-squared test

data: sexadmit

X-squared = 92.2053, df = 1, p-value < 2.2e-16

> fisher.test(sexadmit) # Gives same p-value

Fisher’s Exact Test for Count Data

data: sexadmit

p-value < 2.2e-16

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

1.621356 2.091246

sample estimates:

odds ratio

1.840856
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But look at the whole table

> UCBAdmissions

, , Dept = A

Gender

Admit Male Female

Admitted 512 89

Rejected 313 19

, , Dept = B

Gender

Admit Male Female

Admitted 353 17

Rejected 207 8
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Berkeley table continued

, , Dept = C

Gender

Admit Male Female

Admitted 120 202

Rejected 205 391

, , Dept = D

Gender

Admit Male Female

Admitted 138 131

Rejected 279 244
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Berkeley table continued some more

, , Dept = E

Gender

Admit Male Female

Admitted 53 94

Rejected 138 299

, , Dept = F

Gender

Admit Male Female

Admitted 22 24

Rejected 351 317
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Look at Department A

> # Just Department A

> JustA = t(UCBAdmissions[,,1]); JustA

Admit

Gender Admitted Rejected

Male 512 313

Female 89 19

> JustA[1,1]/sum(JustA[1,]) # Men

[1] 0.6206061

> JustA[2,1]/sum(JustA[2,]) # Women

[1] 0.8240741

> chisq.test(UCBAdmissions[,,1],correct=F)

Pearson’s Chi-squared test

data: UCBAdmissions[, , 1]

X-squared = 17.248, df = 1, p-value = 3.28e-05

Women are more likely to be admitted.
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Summarize analyses of sub-tables
Just the code, for reference

# Summarize analyses of sub-tables: Loop over departments

# Sum of chi-squared values in X2

ndepts = dim(UCBAdmissions)[3]

gradschool=NULL; X2=0

for(j in 1:ndepts)

{

dept = dimnames(UCBAdmissions)$Dept[j] # A B C etc.

tabl = t(UCBAdmissions[,,j]) # All rows, all cols, level j

Rowmarg = apply(tabl,1,sum)

Percentadmit = round( 100*tabl[,1]/Rowmarg ,1)

per = round(Percentadmit,2)

Test = chisq.test(tabl,correct=F)

tstat = round(Test$statistic,2); pval = round(Test$p.value,5)

gradschool = rbind(gradschool,c(dept,Percentadmit,tstat,pval))

X2 = X2+Test$statistic

} # Next Department

colnames(gradschool) = c("Dept","%MaleAcc","%FemAcc","Chisq","p-value")

noquote(gradschool) # Print character strings without quote marks
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Simpson’s paradox

> noquote(gradschool) # Print character strings without quote marks

Dept %MaleAcc %FemAcc Chisq p-value

[1,] A 62.1 82.4 17.25 3e-05

[2,] B 63 68 0.25 0.61447

[3,] C 36.9 34.1 0.75 0.38536

[4,] D 33.1 34.9 0.3 0.58515

[5,] E 27.7 23.9 1 0.31705

[6,] F 5.9 7 0.38 0.53542
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Overall test of conditional independence

Add the chi-squared values and add the degrees of freedom.

> # Overall test of conditional independence

> names(X2) = "Pooled Chi-square"

> df = ndepts ; names(df)="df"

> pval=1-pchisq(X2,df)

> names(pval) = "P-value"

> print(c(X2,df,pval))

Pooled Chi-square df P-value

19.938413378 6.000000000 0.002840164

Conclusion: Gender and admission are not conditionally
independent. From the preceding slide, we see it comes from
Department A’s being more likely to admit women than men.
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Track it down

Make a table showing Department, Number of applicants,
Percent female applicants and Percent of applicants admitted.

> # What’s happening?

> whoapplies = NULL

> for(j in 1:ndepts)

+ {

+ dept = dimnames(UCBAdmissions)$Dept[j]; names(dept) = "Dept"

+ tabl = t(UCBAdmissions[,,j]) # All rows, all cols, level j

+ nj = sum(tabl); names(nj)=" n "

+ mf = apply(tabl,1,sum); femapp = round(100*mf[2]/nj,2)

+ succ = apply(tabl,2,sum); getin = round(100*succ[1]/nj,2)

+ whoapplies = rbind(whoapplies,c(dept,nj,femapp,getin))

+ } # Next Department

>

Now it’s in a table called whoapplies.
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The explanation

> noquote(whoapplies)

Dept n Female Admitted

[1,] A 933 11.58 64.42

[2,] B 585 4.27 63.25

[3,] C 918 64.6 35.08

[4,] D 792 47.35 33.96

[5,] E 584 67.29 25.17

[6,] F 714 47.76 6.44

Departments with a higher acceptance rate have a higher
percentage of male applicants.
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Does this mean that the University of California at
Berkeley was not discriminating against women?

By no means. Why does a department admit very few
applicants relative to the number who apply?

Because they do not have enough professors and other
resources to offer more classes.

This implies that the departments popular with men were
getting more resources, relative to the level of interest
measured by number of applicants.

Why? Maybe because men were running the show.

The “show,” definitely includes the U. S. military, which
funds a lot of engineering and similar stuff at big American
universities.
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Some uncomfortable truths

Especially for non-experimental studies, statistical analyses
involving just one explanatory variable at a time can be
very misleading.

When you include a new variable in an analysis, the results
could get weaker, they could get stronger, or they could
reverse direction — all depending upon the inter-relations
of the explanatory variables and the response variable.

Failing to include important explanatory variables in
observational studies is a common source of bias.

Ask: “Did you control for . . . ”
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At least it’s a start

We have seen one way to “control” for potentially
misleading variables (sometimes called “confounding
variables”).

It’s control by sub-division, in which you examine the
relationship in question separately for each value of a
control variable or variables.

We have a good way of pooling the tests within each level
of the control variable, to obtain a test of conditional
independence.

There’s also model-based control, which is coming next.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/312f12
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