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Conditional Independence in Log-linear Models1
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1See last slide for copyright information.
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Overview

1 Modeling

2 Testing
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Modeling Testing

Conditional independence: (XZ) (Y Z)

X is related to Z and Y is related to Z.

This may cause a relationship in the marginal X by Y
table.

But it only happens because both X and Y are related to
Z.

For each fixed value of Z, X and Y are independent.

Z is a kind of confounding variable.

Want to test the relationship of X and Y controlling for Z.
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Modeling Testing

Example

X is body weight, above vs. below the median.

Y is amount of smiling in a standard conversation, above
vs. below the median.

We find that heavier people tend to smile less.

Does this mean that on average, fat people are not jolly?

Z is Gender, Male vs. Female.
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Modeling Testing

It can happen in ordinary regression, too
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Modeling Testing

More ways to think about (XZ) (Y Z)

Sub-tables

Path diagrams

Formal log-linear models
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Modeling Testing

Sub-tables
One for each category of Z

Z = 1 Z = 2 Z = 3

X
1
2

Y
1 2

X
1
2

Y
1 2

X
1
2

Y
1 2

Control by sub-division: Hold Z constant.

Test independence for each fixed value of Z

Conditional independence says that within each sub-table,
X and Y are independent.

Again, X could be related to Z and Y could be related to
Z,

Causing a relationship between in the X by Y table of
marginal totals.
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Modeling Testing

Path diagrams: X and Y are connected only through Z
(XZ) (Y Z)

X Y

Z

Path diagrams can clarify relationships among variables.

Not as useful when there are 3-way and higher
relationships.
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Modeling Testing

Log-linear models of conditional independence
Equivalent to (XZ) (Y Z)

µijk = λ+ λXi + λYj + λZk + λXZik + λY Zjk

= β0 + β1x+ β2y + β3z + β4xz + β5yz

X Y Z x y z xz yz

1 1 1 1 1 1 1 1

1 2 1 1 -1 1 1 -1

2 1 1 -1 1 1 -1 1

2 2 1 -1 -1 1 -1 -1

1 1 2 1 1 -1 -1 -1

1 2 2 1 -1 -1 -1 1

2 1 2 -1 1 -1 1 -1

2 2 2 -1 -1 -1 1 1
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Modeling Testing

µijk = β0 + β1x+ β2y + β3z + β4xz + β5yz
(XZ) (Y Z)

X Y Z x y z xz yz
1 1 1 1 1 1 1 1
1 2 1 1 -1 1 1 -1
2 1 1 -1 1 1 -1 1
2 2 1 -1 -1 1 -1 -1
1 1 2 1 1 -1 -1 -1
1 2 2 1 -1 -1 -1 1
2 1 2 -1 1 -1 1 -1
2 2 2 -1 -1 -1 1 1

X
1
2

Y = 1 Y = 2
β0 + β1 + β2 + β3 + β4 + β5 β0 + β1 − β2 + β3 + β4 − β5
β0 − β1 + β2 + β3 − β4 + β5 β0 − β1 − β2 + β3 − β4 − β5

X
1
2

Y = 1 Y = 2
β0 + β1 + β2 − β3 − β4 − β5 β0 + β1 − β2 − β3 − β4 + β5
β0 − β1 + β2 − β3 + β4 − β5 β0 − β1 − β2 − β3 + β4 + β5
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Modeling Testing

Odds ratio for Z = 1

X
1
2

Y = 1 Y = 2
exp{β0 + β1 + β2 + β3 + β4 + β5} exp{β0 + β1 − β2 + β3 + β4 − β5}
exp{β0 − β1 + β2 + β3 − β4 + β5} exp{β0 − β1 − β2 + β3 − β4 − β5}

θ1 =
exp{2β0 + 2β3}
exp{2β0 + 2β3}

= 1
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Modeling Testing

Odds ratio for Z = 2

X
1
2

Y = 1 Y = 2
β0 + β1 + β2 − β3 − β4 − β5 β0 + β1 − β2 − β3 − β4 + β5
β0 − β1 + β2 − β3 + β4 − β5 β0 − β1 − β2 − β3 + β4 + β5

θ2 =
exp{2β0 − 2β3}
exp{2β0 − 2β3}

= 1
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Modeling Testing

So no matter how you look at it

(XZ) (Y Z) means X and Y are independent, conditionally
on Z

Of course there may be more than 3 variables.

Conditional independence may be embedded in a larger
structure.
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Modeling Testing

Two ways to test conditional independence

Test in sub-tables

Test using log-linear models
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Modeling Testing

Testing conditional independence using sub-tables

Z = 1 Z = 2 Z = 3

X
1
2

Y
1 2

X
1
2

Y
1 2

X
1
2

Y
1 2

One table for each value of the control variable (or
variables).

Do a separate test on each table and combine them
somehow.

This is a reasonable, common-sense approach.

Sum of independent chi-squares is chi-squared.

So add the χ2 values and add the degrees of freedom.

This was illustrated on the Berkeley graduate admissions
data.
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Modeling Testing

Test relationship of X to Y controlling for Z using
log-linear models

H0 is conditional independence: (XZ) (Y Z)

One alternative hypothesis is (XY ) (XZ) (Y Z)

Another is (XY Z)

The last model is saturated, so when this is the alternative,
the test is a test of goodness of fit for the model of
conditional independence.

I would do them both; maybe test goodness of fit first.

(Remember that for any table, the log-linear model
with the highest-order interaction is saturated, and
equivalent to an unrestricted multinomial.)
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Modeling Testing

Connection between the methods for testing conditional
independence
Sub-tables and log-linear models

Adding chi-squares and degrees of freedom for sub-tables
gives exactly the test of (XZ) (Y Z) against the saturated
model

Likelihood ratio or Pearson

Test is a simultaneous test of H0 : λXYij = λXY Zijk = 0

Degrees of freedom should be K(I − 1)(J − 1), adding df in
sub-tables.

Or counting the missing product terms,

(I − 1)(J − 1) + (I − 1)(J − 1)(K − 1)

= (I − 1)(J − 1) (K − 1 + 1)

= K(I − 1)(J − 1)
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/312f12
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