
Wald tests 

•  MLEs have an approximate multivariate 
normal sampling distribution for large 
samples (Thanks Mr. Wald.) 

•  Approximate mean vector = vector of 
true parameter values for large samples 

•  Asymptotic variance-covariance matrix 
is easy to estimate 

•  H0:  Cθ = h (Linear hypothesis) 
•  For logistic regression, θ = β 



H0 : Cθ = h

Cθ̂ − h is multivariate normal as n→∞

Leads to a straightforward chisquare test  

•  Called a Wald test 
•  Based on the full (maybe even saturated) 

model 
•  Asymptotically equivalent to the LR test 
•  Not as good as LR for smaller samples 
•  Very convenient, especially with SAS 



Example of  H0: Cθ=h 

Suppose θ = (θ1, . . . θ7), with

H0 : θ1 = θ2, θ6 = θ7,
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Multivariate Normal Facts 

where C is r × k, rank r, r ≤ k.

(X− µ)′Σ−1(X− µ) ∼ χ2(k)

(CX−Cµ)′(CΣC′)−1(CX−Cµ) ∼ χ2(r)

X ∼ Nk(µ,Σ)⇒ CX ∼ Nr(Cµ,CΣC′)



Analogies 
• Univariate Normal

– f(x) = 1
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σ2 is the squared Euclidian distance between x and µ, in a space
that is stretched by σ2.
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• Multivariate Normal
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– (x−µ)′Σ−1(x−µ) is the squared Euclidian distance between x and
µ, in a space that is warped and stretched by Σ.

– (X− µ)′Σ−1(X− µ) ∼ χ2(k)



Distance:  Suppose Σ = I2 
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Approximately, for large N 

θ̂ ∼ Nk(θ,V(θ)) Cθ̂ ∼ Nk(Cθ,CVC′)

If H0 : Cθ = h is true,

(Cθ̂ − h)′(CVC′)−1(Cθ̂ − h) ∼ χ2(r)

V = V(θ) is unknown, but

W = (Cθ̂ − h)′(CV̂C′)−1(Cθ̂ − h)
∼ χ2(r)



Wald Test Statistic 

•  Approximately chi-square with df = r  for 
large N if H0: Cθ=h is true 

•  Matrix C is r × k, r ≤ k, rank r 
•  Matrix V(θ) is called the “Asymptotic 

Covariance Matrix” of  
•       is the estimated Asymptotic 

Covariance Matrix 
•  How to calculate     ? 

θ̂
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V̂

V̂



Fisher Information Matrix    

•  Element (i,j) is  

•  The log likelihood is 

•  This is sometimes called the observed 
Fisher information – based on the 
observed data Y1, …, YN 

J
− ∂2

∂θi∂θj
#(θ,Y), where

!(θ,Y) =
N∑

i=1

log f(Yi;θ).



For a random sample Y1, …, YN 
(No x values) 

•  Independent and identically distributed 
•  Fisher information in a single observation is 

•  Estimate expected value with sample mean 

I(θ) =
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Î(θ) =
1
N

N∑

i=1

− ∂2

∂θi∂θj
log f(Yi;θ)



Fisher Information in the whole sample 
•    
•  Estimate it with the observed information  

•  Evaluate this at the MLE and we have a 
statistic: 

•  Call it the Fisher Information. Technically 
it’s the observed Fisher information 
evaluated at the MLE. 

N · I(θ)

N · Î(θ) = J (θ)

J (θ̂)



For a simple logistic regression  
•    

•    

θ = β = (β0,β1)

!(β,y) = β0
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The asymptotic covariance matrix 
is the inverse of the Fisher 

Information  

Meaning that the estimated asymptotic 
covariance matrix of the MLE is the inverse of 
the observed Fisher information matrix, 
evaluated at the MLE. 

V̂ = J (θ̂)−1, where J (θ̂) =
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Low Birth Weight Example 
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> simp = glm(low ~ lwt, family=binomial); simp$coefficients
(Intercept) lwt
0.99831432 -0.01405826

> x = lwt; xb = simp$coefficients[1]+x*simp$coefficients[2]
> kore = exp(xb)/(1+exp(xb))^2
> J = matrix(nrow=2,ncol=2)
> J[1,1] = sum(kore); J[1,2] = sum(x*kore)
> J[2,1]=J[1,2]; J[2,2] = sum(x^2*kore)
> J

[,1] [,2]
[1,] 39.38591 4908.917
[2,] 4908.91670 638101.268



Compare Outputs 

•  R 

•  SAS proc logistic output from covb option 

> solve(J) # Inverse
[,1] [,2]

[1,] 0.616681831 -4.744137e-03
[2,] -0.004744137 3.806382e-05

Estimated Covariance Matrix

Parameter Intercept lwt

Intercept 0.616679 -0.00474
lwt -0.00474 0.000038



Connection to Numerical Optimization 
•  Suppose we are minimizing the minus log likelihood by a 

direct search. 
•  We have reached a point where the gradient is close to 

zero. Is this point a minimum? 
•  Hessian is a matrix of mixed partial derivatives. If its 

determinant is positive at a point, the function is concave 
up there. 

•  It’s the multivariable second derivative test. 

•  The Hessian at the MLE is exactly the Fisher 
Information:  

J (θ̂) =
[
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− #(θ,Y)

]∣∣∣∣
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Asymptotic Covariance Matrix  
is Useful 

•  Square roots of diagonal elements are 
standard errors – Denominators of Z-test 
statistics.  Also used for confidence intervals. 

•  Diagonal elements converge to the 
respective Cramér-Rao lower bounds for the 
variance of an estimator:  “Asymptotic 
efficiency” 

•  And of course there are Wald tests 

V̂

W = (Cθ̂ − h)′(CV̂C′)−1(Cθ̂ − h)



Score Tests 
• θ̂ is the MLE of θ, size k × 1

• θ̂0 is the MLE under H0, size k × 1

• u(θ) = ( ∂"
∂θ1

, . . . ∂"
∂θk

)′ is the gradient.

• u(θ̂) = 0

• If H0 is true, u(θ̂0) should also be close to zero.

• Under H0 for large N , u(θ̂0) ∼ Nk(0,J (θ)), approximately.

• And,

S = u(θ̂0)′J (θ̂0)−1u(θ̂0) ∼ χ2(r)

Where r is the number of restrictions imposed by H0 


