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Chapter 4
Introduction to Categorical Data

Analysis Procedures

Overview

Several procedures in SAS/STAT software can be used for the analysis of categorical
data:

CATMOD fits linear models to functions of categorical data, facilitating such
analyses as regression, analysis of variance, linear modeling, log-
linear modeling, logistic regression, and repeated measures anal-
ysis. Maximum likelihood estimation is used for the analysis of
logits and generalized logits, and weighted least squares analysis
is used for fitting models to other response functions. Iterative pro-
portional fitting (IPF), which avoids the need for parameter esti-
mation, is available for fitting hierarchical log-linear models when
there is a single population.

CORRESP performs simple and multiple correspondence analyses, using a
contingency table, Burt table, binary table, or raw categorical
data as input. For more on PROC CORRESP, seeChapter 5,
“Introduction to Multivariate Procedures,”andChapter 24, “The
CORRESP Procedure.”

FREQ builds frequency tables or contingency tables and can produce nu-
merous statistics. For one-way frequency tables, it can perform
tests for equal proportions, specified proportions, or the binomial
proportion. For contingency tables, it can compute various tests
and measures of association and agreement including chi-square
statistics, odds ratios, correlation statistics, Fisher’s exact test for
any size two-way table, kappa, and trend tests. In addition, it
performs stratified analysis, computing Cochran-Mantel-Haenszel
statistics and estimates of the common relative risk. Exactp-values
and confidence intervals are available for various test statistics and
measures.

GENMOD fits generalized linear models with maximum-likelihood methods.
This family includes logistic, probit, and complementary log-log
regression models for binomial data, Poisson and negative bino-
mial regression models for count data, and multinomial models for
ordinal response data. It performs likelihood ratio and Wald tests
for type I, type III, and user-defined contrasts. It analyzes repeated
measures data with generalized estimating equation (GEE) meth-
ods.
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LOGISTIC fits linear logistic regression models for discrete response data with
maximum-likelihood methods. It provides four variable selection
methods and computes regression diagnostics. It can also per-
form stratified conditional logistic regression analysis for binary
response data and exact conditional regression analysis for binary
and nominal response data. The logit link function in the logis-
tic regression models can be replaced by the probit function or the
complementary log-log function.

PROBIT fits models with probit, logit, or complementary log-log links for
quantal assay or other discrete event data. It is mainly designed
for dose-response analysis with a natural response rate. It com-
putes the fiducial limits for the dose variable and provides various
graphical displays for the analysis.

Other procedures that perform analyses for categorical data are the TRANSREG
and PRINQUAL procedures. PROC PRINQUAL is summarized inChapter 5,
“Introduction to Multivariate Procedures,”and PROC TRANSREG is summarized
in Chapter 2, “Introduction to Regression Procedures.”

A categorical variableis defined as one that can assume only a limited number of
discrete values. The measurement scale for such a variable is unrestricted. It can be
nominal, which means that the observed levels are not ordered. It can beordinal,
which means that the observed levels are ordered in some way. Or it can beinterval,
which means that the observed levels are ordered and numeric and that any interval
of one unit on the scale of measurement represents the same amount, regardless of
its location on the scale. One example of a categorical variable is litter size; another
is the number of times a subject has been married. A variable that lies on a nominal
scale is sometimes called aqualitativeor classification variable.

Categorical data result from observations on multiple subjects where one or more
categorical variables are observed for each subject. If there is only one categorical
variable, then the data are generally represented by afrequency table, which lists each
observed value of the variable and its frequency of occurrence.

If there are two or more categorical variables, then a subject’sprofile is defined as
the subject’s observed values for each of the variables. Such categorical data can be
represented by a frequency table that lists each observed profile and its frequency of
occurrence.

If there are exactly two categorical variables, then the data are often represented by
a two-dimensionalcontingency table, which has one row for each level of variable 1
and one column for each level of variable 2. The intersections of rows and columns,
calledcells, correspond to variable profiles, and each cell contains the frequency of
occurrence of the corresponding profile.

If there are more than two categorical variables, then the data can be represented by
a multidimensional contingency table. There are two commonly used methods for
displaying such tables, and both require that the variables be divided into two sets.
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In the first method, one set contains a row variable and a column variable for a two-
dimensional contingency table, and the second set contains all of the other variables.
The variables in the second set are used to form a set of profiles. Thus, the data
are represented as a series of two-dimensional contingency tables, one for each pro-
file. This is the data representation used by PROC FREQ. For example, if you re-
quest tables for RACE*SEX*AGE*INCOME, the FREQ procedure represents the
data as a series of contingency tables: the row variable is AGE, the column variable
is INCOME, and the combinations of levels of RACE and SEX form a set of profiles.

In the second method, one set contains the independent variables, and the other set
contains the dependent variables. Profiles based on the independent variables are
calledpopulation profiles, whereas those based on the dependent variables are called
response profiles. A two-dimensional contingency table is then formed, with one
row for each population profile and one column for each response profile. Since any
subject can have only one population profile and one response profile, the contingency
table is uniquely defined. This is the data representation used by PROC CATMOD.

Sampling Frameworks and Distribution
Assumptions

This section discusses the sampling frameworks and distribution assumptions for the
CATMOD and FREQ procedures.

Simple Random Sampling: One Population

Suppose you take a simple random sample of 100 people and ask each person the
following question: Of the three colors red, blue, and green, which is your favorite?
You then tabulate the results in a frequency table as shown inTable 4.1.

Table 4.1. One-Way Frequency Table

Favorite Color
Red Blue Green Total

Frequency 52 31 17 100
Proportion 0.52 0.31 0.17 1.00

In the population you are sampling, you assume there is an unknown probability that
a population member, selected at random, would choose any given color. In order to
estimate that probability, you use the sample proportion

pj =
nj

n

wherenj is the frequency of thejth response andn is the total frequency.

Because of the random variation inherent in any random sample, the frequencies
have a probability distribution representing their relative frequency of occurrence in
a hypothetical series of samples. For a simple random sample, the distribution of
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frequencies for a frequency table with three levels is as follows. The probability that
the first frequency isn1, the second frequency isn2, and the third isn3 = n−n1−n2,
is given by

Pr(n1, n2, n3) =
n!

n1!n2!n3!
πn1

1 πn2
2 πn3

3

whereπj is the true probability of observing thejth response level in the population.

This distribution, called themultinomial distribution, can be generalized to any num-
ber of response levels. The special case of two response levels is called thebinomial
distribution.

Simple random sampling is the type of sampling required by PROC CATMOD when
there is one population. PROC CATMOD uses the multinomial distribution to esti-
mate a probability vector and its covariance matrix. If the sample size is sufficiently
large, then the probability vector is approximately normally distributed as a result of
central limit theory. PROC CATMOD uses this result to compute appropriate test
statistics for the specified statistical model.

Stratified Simple Random Sampling: Multiple Populations

Suppose you take two simple random samples, 50 men and 50 women, and ask the
same question as before. You are now sampling two different populations that may
have different response probabilities. The data can be tabulated as shown inTable
4.2.

Table 4.2. Two-Way Contingency Table: Sex by Color

Favorite Color
Sex Red Blue Green Total

Male 30 10 10 50
Female 20 10 20 50
Total 50 20 30 100

Note that the row marginal totals (50, 50) of the contingency table are fixed by the
sampling design, but the column marginal totals (50, 20, 30) are random. There
are six probabilities of interest for this table, and they are estimated by the sample
proportions

pij =
nij

ni

wherenij denotes the frequency for theith population and thejth response, andni

is the total frequency for theith population. For this contingency table, the sample
proportions are shown inTable 4.3.
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Table 4.3. Table of Sample Proportions by Sex

Favorite Color
Sex Red Blue Green Total

Male 0.60 0.20 0. 20 1.00
Female 0.40 0. 20 0.40 1.00

The probability distribution of the six frequencies is theproduct multinomial distri-
bution

Pr(n11, n12, n13, n21, n22, n23) =
n1!n2!πn11

11 πn12
12 πn13

13 πn21
21 πn22

22 πn23
23

n11!n12!n13!n21!n22!n23!

whereπij is the true probability of observing thejth response level in theith pop-
ulation. The product multinomial distribution is simply the product of two or more
individual multinomial distributions since the populations are independent. This dis-
tribution can be generalized to any number of populations and response levels.

Stratified simple random sampling is the type of sampling required by PROC
CATMOD when there is more than one population. PROC CATMOD uses the prod-
uct multinomial distribution to estimate a probability vector and its covariance matrix.
If the sample sizes are sufficiently large, then the probability vector is approximately
normally distributed as a result of central limit theory, and PROC CATMOD uses
this result to compute appropriate test statistics for the specified statistical model.
The statistics are known as Wald statistics, and they are approximately distributed as
chi-square when the null hypothesis is true.

Observational Data: Analyzing the Entire Population

Sometimes the observed data do not come from a random sample but instead rep-
resent a complete set of observations on some population. For example, suppose a
class of 100 students is classified according to sex and favorite color. The results are
shown inTable 4.4.

In this case, you could argue that all of the frequencies are fixed since the entire
population is observed; therefore, there is no sampling error. On the other hand,
you could hypothesize that the observed table has only fixed marginals and that the
cell frequencies represent one realization of a conceptual process of assigning color
preferences to individuals. The assignment process is open to hypothesis, which
means that you can hypothesize restrictions on the joint probabilities.

Table 4.4. Two-Way Contingency Table: Sex by Color

Favorite Color
Sex Red Blue Green Total

Male 16 21 20 57
Female 12 20 11 43
Total 28 41 31 100
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The usual hypothesis (sometimes calledrandomness) is that the distribution of the
column variable (Favorite Color) does not depend on the row variable (Sex). This
implies that, for each row of the table, the assignment process corresponds to a sim-
ple random sample (without replacement) from the finite population represented by
the column marginal totals (or by the column marginal subtotals that remain after
sampling other rows). The hypothesis of randomness induces a probability distribu-
tion on the frequencies in the table; it is called thehypergeometric distribution.

If the same row and column variables are observed for each of several populations,
then the probability distribution of all the frequencies can be called themultiple hy-
pergeometric distribution.Each population is called astratum, and an analysis that
draws information from each stratum and then summarizes across them is called a
stratified analysis(or ablocked analysisor amatched analysis). PROC FREQ does
such a stratified analysis, computing test statistics and measures of association.

In general, the populations are formed on the basis of cross-classifications of inde-
pendent variables. Stratified analysis is a method of adjusting for the effect of these
variables without being forced to estimate parameters for them.

The multiple hypergeometric distribution is the one used by PROC FREQ for the
computation of Cochran-Mantel-Haenszel statistics. These statistics are in the class
of randomization model test statistics, which require minimal assumptions for their
validity. PROC FREQ uses the multiple hypergeometric distribution to compute the
mean and the covariance matrix of a function vector in order to measure the deviation
between the observed and expected frequencies with respect to a particular type of
alternative hypothesis. If the cell frequencies are sufficiently large, then the function
vector is approximately normally distributed as a result of central limit theory, and
FREQ uses this result to compute a quadratic form that has a chi-square distribution
when the null hypothesis is true.

Randomized Experiments

Consider arandomized experimentin which patients are assigned to one of two treat-
ment groups according to a randomization process that allocates 50 patients to each
group. After a specified period of time, each patient’s status (cured or uncured) is
recorded. Suppose the data shown inTable 4.5give the results of the experiment. The
null hypothesis is that the two treatments are equally effective. Under this hypothesis,
treatment is a randomly assigned label that has no effect on the cure rate of the pa-
tients. But this implies that each row of the table represents a simple random sample
from the finite population whose cure rate is described by the column marginal to-
tals. Therefore, the column marginals (58, 42) are fixed under the hypothesis. Since
the row marginals (50, 50) are fixed by the allocation process, the hypergeometric
distribution is induced on the cell frequencies. Randomized experiments can also be
specified in a stratified framework, and Cochran-Mantel-Haenszel statistics can be
computed relative to the corresponding multiple hypergeometric distribution.
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Table 4.5. Two-Way Contingency Table: Treatment by Status

Status
Treatment Cured Uncured Total

1 36 14 50
2 22 28 50

Total 58 42 100

Relaxation of Sampling Assumptions

As indicated previously, the CATMOD procedure assumes that the data are from a
stratified simple random sample, so it uses the product multinomial distribution. If
the data are not from such a sample, then in many cases it is still possible to use PROC
CATMOD by arguing that each row of the contingency tabledoesrepresent a simple
random sample from some hypothetical population. The extent to which the infer-
ences are generalizable depends on the extent to which the hypothetical population is
perceived to resemble the target population.

Similarly, the Cochran-Mantel-Haenszel statistics use the multiple hypergeometric
distribution, which requires fixed row and column marginal totals in each contingency
table. If the sampling process does not yield a table with fixed margins, then it is
usually possible to fix the margins through conditioning arguments similar to the ones
used by Fisher when he developed the Exact Test for2× 2 tables. In other words, if
you want fixed marginal totals, you can generally make your analysis conditional on
those observed totals.

For more information on sampling models for categorical data, see Bishop, Fienberg,
and Holland (1975, Chapter 13).

Comparison of FREQ and CATMOD Procedures

PROC FREQ is used primarily to investigate the relationship between two variables;
any confounding variables are taken into account by stratification rather than by pa-
rameter estimation. PROC CATMOD is used to investigate the relationship among
many variables, all of which are integrated into a parametric model.

When PROC CATMOD estimates the covariance matrix of the frequencies, it as-
sumes that the frequencies were obtained by a stratified simple random sampling
procedure. However, PROC CATMOD can also analyze input data that consist of a
function vector and a covariance matrix. Therefore, if the sampling procedure is dif-
ferent, you can estimate the covariance matrix of the frequencies in the appropriate
manner before submitting the data to PROC CATMOD.

For the FREQ procedure, Fisher’s Exact Test and Cochran-Mantel-Haenszel statistics
are based on the hypergeometric distribution, which corresponds to fixed marginal
totals. However, by conditioning arguments, these tests are generally applicable to
a wide range of sampling procedures. Similarly, the Pearson and likelihood-ratio
chi-square statistics can be derived under a variety of sampling situations.
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PROC FREQ can do some traditional nonparametric analysis (such as the Kruskal-
Wallis test and Spearman’s correlation) since it can generate rank scores internally.
Fisher’s Exact Test and the Cochran-Mantel-Haenszel statistics are also inherently
nonparametric. However, the main vehicle for nonparametric analyses in the SAS
System is the NPAR1WAY procedure.

A large sample size is required for the validity of the chi-square distributions, the stan-
dard errors, and the covariance matrices for both PROC FREQ and PROC CATMOD.
If sample size is a problem, then PROC FREQ has the advantage with its CMH statis-
tics because it does not use any degrees of freedom to estimate parameters for con-
founding variables. In addition, PROC FREQ can compute exactp-values for any
two-way table, provided that the sample size is sufficiently small in relation to the
size of the table. It can also produce exactp-values for many tests, including the test
of binomial proportions, the Cochran-Armitage test for trend, and the Jonckheere-
Terpstra test for ordered differences among classes.

See the chapters on the FREQ and CATMOD procedures for more information. In
addition, some well-known texts that deal with analyzing categorical data are listed
in the “References” section of this chapter.

Comparison of CATMOD, GENMOD, LOGISTIC,
and PROBIT Procedures

The CATMOD, GENMOD, LOGISTIC, and PROBIT procedures can all be used
for statistical modeling of categorical data. The CATMOD procedure provides max-
imum likelihood estimation for logistic regression, including the analysis of logits
for dichotomous outcomes and the analysis of generalized logits for polychotomous
outcomes. It provides weighted least squares estimation of many other response func-
tions, such as means, cumulative logits, and proportions, and you can also compute
and analyze other response functions that can be formed from the proportions corre-
sponding to the rows of a contingency table. In addition, a user can input and analyze
a set of response functions and user-supplied covariance matrix with weighted least
squares. With the CATMOD procedure, by default, all explanatory (independent)
variables are treated as classification variables.

The GENMOD procedure is also a general statistical modeling tool which fits gener-
alized linear models to data: it fits several useful models to categorical data includ-
ing logistic regression, the proportional odds model, and Poisson regression. The
GENMOD procedure also provides a facility for fitting generalized estimating equa-
tions to correlated response data that are categorical, such as repeated dichotomous
outcomes. The GENMOD procedure fits models using maximum likelihood estima-
tion, and you include classification variables in your models with a CLASS statement.
PROC GENMOD can perform type I and type III tests, and it provides predicted val-
ues and residuals.

The LOGISTIC procedure is specifically designed for logistic regression. It performs
the usual logistic regression analysis for dichotomous outcomes and it fits the propor-
tional odds model and the generalized logit model for ordinal and nominal outcomes,
respectively, by the method of maximum likelihood. With the CLASS statement, you
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can include independent CLASS variables in the model. This procedure has capa-
bilities for a variety of model-building techniques, including stepwise, forward, and
backward selection. It computes predicted values, the receiver operating characteris-
tics (ROC) curve and the area beneath the curve, and a number of regression diagnos-
tics. It can create output data sets containing these values and other statistics. PROC
LOGISTIC can perform a conditional logistic regression analysis (matched-set and
case-controlled) for binary response data. For small data sets, PROC LOGISTIC can
perform the exact conditional logistic analysis of Hirji, Mehta, and Patel (1987) and
Mehta, Patel, and Senchaudhuri (1992).

The PROBIT procedure is designed for quantal assay or other discrete event data. In
additional to performing the logistic regression analysis, it can estimate the threshold
response rate. PROC PROBIT can also estimate the values of independent variables
that yield a desired response. With the CLASS statement, you can include CLASS
variables in the model. PROC PROBIT allows only the less-than-full-rank parame-
terization for the CLASS variables.

Stokes, Davis, and Koch (2000) provide substantial discussion of these procedures,
particularly the use of the FREQ, LOGISTIC, GENMOD, and CATMOD procedures
for statistical modeling.

Logistic Regression

Dichotomous Response

You have many choices of performing logistic regression in the SAS System. The
CATMOD, GENMOD, LOGISTIC, and PROBIT procedures fit the usual logistic
regression model.

PROC LOGISTIC provides the capability of model-building, and performs condi-
tional logistic regression analysis for case-control studies and exact conditional lo-
gistic regression analysis. You may choose to use it for these reasons.

PROC CATMOD may not be efficient when there are continous independent vari-
ables with large numbers of different values. For a continuous variable with a very
limited number of values, PROC CATMOD may be useful. You list the continuous
variables in the DIRECT statement.

The LOGISTIC, GENMOD, and PROBIT procedures can analyze summarized data
by enabling you to input the numbers of events and trials; the ratio of events to tri-
als must be between 0 and 1. PROC PROBIT enables you to estimate the natural
response rate and compute fiducial limits for the dose variable.

Ordinal Response

PROC LOGISTIC fits the proportional odds model to the ordinal response data by
default. PROC PROBIT fits this model if you specify the logistic distribution, and
PROC GENMOD fits the same model if you specify the CLOGIT link and the multi-
nomial distribution.
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Nominal Response

When the response variable is nominal, there is no concept of ordering of the re-
sponse values. PROC CATMOD fits a logistic model to response functions called
generalized logits. PROC LOGISTIC fits the generalized logit model if you specify
the GLOGIT link.

Parameterization

There are some differences in the way that models are parameterized, which means
that you might get different parameter estimates if you were to perform logistic re-
gression in each of these procedures.

• Parameter estimates from the procedures may differ in sign, depending on the
ordering of response levels, which you can change if you want.

• The parameter estimates associated with a categorical independent variable
may differ among the procedures, since the estimates depend on the coding
of the indicator variables in the design matrix. By default, the design matrix
column produced by PROC CATMOD for a binary independent variable is
coded using the values 1 and−1 . The same column produced by the CLASS
statement of PROC PROBIT is coded using 1 and 0. PROC CATMOD uses
the deviation from the mean coding, which is a full-rank parameterization, and
PROC PROBIT uses the less-than-full-rank coding. As a result, the parameter
estimate printed by PROC CATMOD is one-half of the estimate produced by
PROC PROBIT. Both PROC GENMOD and PROC LOGISTIC allow either a
full-rank parameterization or the less-than-full-rank parameterization. See the
“Details” sections in the chapters on the CATMOD, GENMOD, LOGISTIC,
and PROBIT procedures for more information on the generation of the design
matrices used by these procedures.

• The maximum-likelihood algorithm used differs among the procedures. PROC
LOGISTIC uses the Fisher’s scoring method by default, while PROC PROBIT,
PROC GENMOD, and PROC CATMOD use the Newton-Raphson method.
The parameter estimates should be the same for all three procedures, and the
standard errors should be the same for the logistic model. For the normal and
extreme-value (Gompertz) distributions in PROC PROBIT, which correspond
to the probit and cloglog links, respectively, in PROC GENMOD and PROC
LOGISTIC, the standard errors may differ. In general, tests computed using the
standard errors from the Newton-Raphson method will be more conservative.

• The LOGISTIC, GENMOD, and PROBIT procedures can be used to fit
a cumulative regression model for ordinal response data using maximum-
likelihood estimation. PROC LOGISTIC and PROC GENMOD use a different
parameterization from that of PROC PROBIT, which results in different inter-
cept parameters. Estimates of the slope parameters, however, should be the
same for both procedures. The estimated standard errors of the slope estimates
are slightly different between the two procedures because of the different com-
putational algorithms used as default.
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Chapter 42
The LOGISTIC Procedure
Overview

Binary responses (for example, success and failure), ordinal responses (for example,
normal, mild, and severe), and nominal responses (for example, major TV networks
viewed at a certain hour) arise in many fields of study. Logistic regression analysis
is often used to investigate the relationship between these discrete responses and a
set of explanatory variables. Several texts that discuss logistic regression are Collett
(1991), Agresti (1990), Cox and Snell (1989), Hosmer and Lemeshow (2000), and
Stokes, Davis, and Koch (2000).

For binary response models, the response,Y , of an individual or an experimental
unit can take on one of two possible values, denoted for convenience by 1 and 2 (for
example,Y = 1 if a disease is present, otherwiseY = 2). Supposex is a vector
of explanatory variables andπ = Pr(Y = 1 | x) is the response probability to be
modeled. The linear logistic model has the form

logit(π) ≡ log
(

π

1− π

)
= α+ β′x

whereα is the intercept parameter andβ is the vector of parameters. Notice that
the LOGISTIC procedure, by default, models the probability of thelower response
levels.

The logistic model shares a common feature with a more general class of linear mod-
els, that a functiong = g(µ) of the mean of the response variable is assumed to be
linearly related to the explanatory variables. Since the meanµ implicitly depends on
the stochastic behavior of the response, and the explanatory variables are assumed to
be fixed, the functiong provides the link between the random (stochastic) component
and the systematic (deterministic) component of the response variableY . For this
reason, Nelder and Wedderburn (1972) refer tog(µ) as a link function. One advan-
tage of the logit function over other link functions is that differences on the logistic
scale are interpretable regardless of whether the data are sampled prospectively or ret-
rospectively (McCullagh and Nelder 1989, Chapter 4). Other link functions that are
widely used in practice are the probit function and the complementary log-log func-
tion. The LOGISTIC procedure enables you to choose one of these link functions,
resulting in fitting a broader class of binary response models of the form

g(π) = α+ β′x

For ordinal response models, the response,Y , of an individual or an experimental
unit may be restricted to one of a (usually small) number,k + 1(k ≥ 1), of ordinal
values, denoted for convenience by1, . . . , k, k + 1. For example, the severity of
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coronary disease can be classified into three response categories as 1=no disease,
2=angina pectoris, and 3=myocardial infarction. The LOGISTIC procedure fits a
common slopes cumulative model, which is a parallel lines regression model based on
the cumulative probabilities of the response categories rather than on their individual
probabilities. The cumulative model has the form

g(Pr(Y ≤ i | x)) = αi + β′x, i = 1, . . . , k

whereα1, . . . , αk arek intercept parameters, andβ is the vector of parameters. This
model has been considered by many researchers. Aitchison and Silvey (1957) and
Ashford (1959) employ a probit scale and provide a maximum likelihood analysis;
Walker and Duncan (1967) and Cox and Snell (1989) discuss the use of the log-odds
scale. For the log-odds scale, the cumulative logit model is often referred to as the
proportional oddsmodel.

For nominal response logistic models, where thek + 1 possible responses have no
natural ordering, the logit model can also be extended to ageneralized logitmodel,
which has the form

log
(

Pr(Y = i | x)
Pr(Y = k + 1 | x)

)
= αi + β′ix, i = 1, . . . , k

where theα1, . . . , αk arek intercept parameters, and theβ1, . . . ,βk arek vectors
of parameters. These models were introduced by McFadden (1974) as thediscrete
choicemodel, and they are also known asmultinomialmodels.

The LOGISTIC procedure fits linear logistic regression models for discrete response
data by the method of maximum likelihood. It can also perform conditional logistic
regression for binary response data and exact conditional logistic regression for bi-
nary and nominal response data. The maximum likelihood estimation is carried out
with either the Fisher-scoring algorithm or the Newton-Raphson algorithm. You can
specify starting values for the parameter estimates. The logit link function in the lo-
gistic regression models can be replaced by the probit function, the complementary
log-log function, or the generalized logit function.

The LOGISTIC procedure enables you to specify categorical variables (also known
as CLASS variables) or continuous variables as explanatory variables. You can also
specify more complex model terms such as interactions and nested terms in the same
way as in the GLM procedure. Any term specified in the model is referred to as
aneffect, whether it is a continuous variable, a CLASS variable, an interaction, or a
nested term.

The LOGISTIC procedure allows either a full-rank parameterization or a less-than-
full-rank parameterization. The full-rank parameterization offers eight coding meth-
ods: effect, reference, ordinal, polynomial, and orthogonalizations of these. The
effect coding is the same method that is used in the CATMOD procedure. The less-
than-full-rank parameterization is the same coding as that used in the GLM proce-
dure.

The LOGISTIC procedure provides four effect selection methods: forward selection,
backward elimination, stepwise selection, and best subset selection. The best subset
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selection is based on the likelihood score statistic. This method identifies a specified
number of best models containing one, two, three effects, and so on, up to a single
model containing effects for all the explanatory variables.

The LOGISTIC procedure has some additional options to control how to move ef-
fects in and out of a model with various model-building strategies such as forward
selection, backward elimination, or stepwise selection. When there are no interaction
terms, a main effect can enter or leave a model in a single step based on thep-value
of the score or Wald statistic. When there are interaction terms, the selection process
also depends on whether you want to preserve model hierarchy. These additional op-
tions enable you to specify whether model hierarchy is to be preserved, how model
hierarchy is applied, and whether a single effect or multiple effects can be moved in
a single step.

Odds ratio estimates are displayed along with parameter estimates. You can also spec-
ify the change in the explanatory variables for which odds ratio estimates are desired.
Confidence intervals for the regression parameters and odds ratios can be computed
based either on the profile likelihood function or on the asymptotic normality of the
parameter estimators.

Various methods to correct for overdispersion are provided, including Williams’
method for grouped binary response data. The adequacy of the fitted model can be
evaluated by various goodness-of-fit tests, including the Hosmer-Lemeshow test for
binary response data.

Like many procedures in SAS/STAT software that enable the specification of CLASS
variables, the LOGISTIC procedure provides aCONTRASTstatement for specify-
ing customized hypothesis tests concerning the model parameters. The CONTRAST
statement also provides estimation of individual rows of contrasts, which is particu-
larly useful for obtaining odds ratio estimates for various levels of the CLASS vari-
ables.

You can perform a conditional logistic regression on binary response data by spec-
ifying the STRATA statement. This enables you to perform matched-set and case-
control analyses. The number of events and nonevents can vary across the strata.
Many of the features available with the unconditional analysis are also available with
a conditional analysis.

The LOGISTIC procedure enables you to perform exact conditional logistic regres-
sion using the method of Hirji, Mehta, and Patel (1987) and Mehta, Patel, and
Senchaudhuri (1992) by specifying one or moreEXACT statements. You can test
individual parameters or conduct a joint test for several parameters. The procedure
computes two exact tests: the exact conditional score test and the exact conditional
probability test. You can request exact estimation of specific parameters and corre-
sponding odds ratios where appropriate. Both point estimates and confidence inter-
vals are provided.

Further features of the LOGISTIC procedure enable you to

• control the ordering of the response categories

• compute a generalizedR2 measure for the fitted model
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• reclassify binary response observations according to their predicted response
probabilities

• test linear hypotheses about the regression parameters

• create a data set for producing a receiver operating characteristic curve for each
fitted model

• create a data set containing the estimated response probabilities, residuals, and
influence diagnostics

• score a data set using a previously fitted model

Experimental graphics are now available with the LOGISTIC procedure. For more
information, see the“ODS Graphics”section on page 2388.

The remaining sections of this chapter describe how to use PROC LOGISTIC and
discuss the underlying statistical methodology. The“Getting Started”section in-
troduces PROC LOGISTIC with an example for binary response data. The“Syntax”
section (page 2289) describes the syntax of the procedure. The“Details” section
(page 2329) summarizes the statistical technique employed by PROC LOGISTIC.
The“Examples”section (page 2391) illustrates the use of the LOGISTIC procedure
with 10 applications.

For more examples and discussion on the use of PROC LOGISTIC, refer to Stokes,
Davis, and Koch (2000), Allison (1999), and SAS Institute Inc. (1995).

Getting Started

The LOGISTIC procedure is similar in use to the other regression procedures in the
SAS System. To demonstrate the similarity, suppose the response variabley is binary
or ordinal, andx1 andx2 are two explanatory variables of interest. To fit a logistic
regression model, you can use a MODEL statement similar to that used in the REG
procedure:

proc logistic;
model y=x1 x2;

run;

The response variabley can be either character or numeric. PROC LOGISTIC enu-
merates the total number of response categories and orders the response levels ac-
cording to the response variable optionORDER=in the MODEL statement. The
procedure also allows the input of binary response data that are grouped:

proc logistic;
model r/n=x1 x2;

run;

Here,n represents the number of trials andr represents the number of events.
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The following example illustrates the use of PROC LOGISTIC. The data, taken from
Cox and Snell (1989, pp. 10–11), consist of the number,r, of ingots not ready for
rolling, out of n tested, for a number of combinations of heating time and soaking
time. The following invocation of PROC LOGISTIC fits the binary logit model to
the grouped data:

data ingots;
input Heat Soak r n @@;
datalines;

7 1.0 0 10 14 1.0 0 31 27 1.0 1 56 51 1.0 3 13
7 1.7 0 17 14 1.7 0 43 27 1.7 4 44 51 1.7 0 1
7 2.2 0 7 14 2.2 2 33 27 2.2 0 21 51 2.2 0 1
7 2.8 0 12 14 2.8 0 31 27 2.8 1 22 51 4.0 0 1
7 4.0 0 9 14 4.0 0 19 27 4.0 1 16
;

proc logistic data=ingots;
model r/n=Heat Soak;

run;

The results of this analysis are shown in the following tables.

The LOGISTIC Procedure

Model Information

Data Set WORK.INGOTS
Response Variable (Events) r
Response Variable (Trials) n
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 19
Number of Observations Used 19
Sum of Frequencies Read 387
Sum of Frequencies Used 387

Figure 42.1. Binary Logit Model

PROC LOGISTIC first lists background information inFigure 42.1about the fitting
of the model. Included are the name of the input data set, the response variable(s)
used, the number of observations used, and the link function used.
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Response Profile

Ordered Binary Total
Value Outcome Frequency

1 Event 12
2 Nonevent 375

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Figure 42.2. Response Profile with Events/Trials Syntax

The “Response Profile” table (Figure 42.2) lists the response categories (which are
Event and Nonevent when grouped data are input), their ordered values, and their
total frequencies for the given data.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 108.988 101.346
SC 112.947 113.221
-2 Log L 106.988 95.346

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 11.6428 2 0.0030
Score 15.1091 2 0.0005
Wald 13.0315 2 0.0015

Figure 42.3. Fit Statistics and Hypothesis Tests

The “Model Fit Statistics” table (Figure 42.3) contains the Akaike Information
Criterion (AIC), the Schwarz Criterion (SC), and the negative of twice the log likeli-
hood (-2 Log L) for the intercept-only model and the fitted model. AIC and SC can
be used to compare different models, and the ones with smaller values are preferred.
Results of the likelihood ratio test and the efficient score test for testing the joint sig-
nificance of the explanatory variables (Soak andHeat) are included in the “Testing
Global Null Hypothesis: BETA=0” table (Figure 42.3).
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -5.5592 1.1197 24.6503 <.0001
Heat 1 0.0820 0.0237 11.9454 0.0005
Soak 1 0.0568 0.3312 0.0294 0.8639

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

Heat 1.085 1.036 1.137
Soak 1.058 0.553 2.026

Figure 42.4. Parameter Estimates and Odds Ratios

The “Analysis of Maximum Likelihood Estimates” table inFigure 42.4lists the pa-
rameter estimates, their standard errors, and the results of the Wald test for individual
parameters. The odds ratio for each effect parameter, estimated by exponentiating
the corresponding parameter estimate, is shown in the “Odds Ratios Estimates” table
(Figure 42.4), along with 95% Wald confidence intervals.

Using the parameter estimates, you can calculate the estimated logit ofπ as

−5.5592 + 0.082× Heat+ 0.0568× Soak

If Heat=7 andSoak=1, then logit(π̂) = −4.9284. Using this logit estimate, you
can calculatêπ as follows:

π̂ = 1/(1 + e4.9284) = 0.0072

This gives the predicted probability of the event (ingot not ready for rolling) for
Heat=7 andSoak=1. Note that PROC LOGISTIC can calculate these statistics
for you; use the OUTPUT statement with thePREDICTED=option.

Association of Predicted Probabilities and Observed Responses

Percent Concordant 64.4 Somers’ D 0.460
Percent Discordant 18.4 Gamma 0.555
Percent Tied 17.2 Tau-a 0.028
Pairs 4500 c 0.730

Figure 42.5. Association Table

Finally, the “Association of Predicted Probabilities and Observed Responses” table
(Figure 42.5) contains four measures of association for assessing the predictive abil-
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ity of a model. They are based on the number of pairs of observations with dif-
ferent response values, the number of concordant pairs, and the number of discor-
dant pairs, which are also displayed. Formulas for these statistics are given in the
“Rank Correlation of Observed Responses and Predicted Probabilities”section on
page 2350.

To illustrate the use of an alternative form of input data, the following program cre-
ates the INGOTS data set with new variablesNotReady andFreq instead ofn and
r. The variableNotReady represents the response of individual units; it has a value
of 1 for units not ready for rolling (event) and a value of 0 for units ready for rolling
(nonevent). The variableFreq represents the frequency of occurrence of each com-
bination ofHeat, Soak, andNotReady. Note that, compared to the previous data
set,NotReady=1 impliesFreq=r, andNotReady=0 impliesFreq=n−r.

data ingots;
input Heat Soak NotReady Freq @@;
datalines;

7 1.0 0 10 14 1.0 0 31 14 4.0 0 19 27 2.2 0 21 51 1.0 1 3
7 1.7 0 17 14 1.7 0 43 27 1.0 1 1 27 2.8 1 1 51 1.0 0 10
7 2.2 0 7 14 2.2 1 2 27 1.0 0 55 27 2.8 0 21 51 1.7 0 1
7 2.8 0 12 14 2.2 0 31 27 1.7 1 4 27 4.0 1 1 51 2.2 0 1
7 4.0 0 9 14 2.8 0 31 27 1.7 0 40 27 4.0 0 15 51 4.0 0 1
;

The following SAS statements invoke PROC LOGISTIC to fit the same model using
the alternative form of the input data set.

proc logistic data=ingots;
model NotReady(event=’1’) = Soak Heat;
freq Freq;

run;

Results of this analysis are the same as the previous one. The displayed output for
the two runs are identical except for the background information of the model fit and
the “Response Profile” table shown inFigure 42.6.

The LOGISTIC Procedure

Response Profile

Ordered Total
Value NotReady Frequency

1 0 375
2 1 12

Probability modeled is NotReady=1.

Figure 42.6. Response Profile with Single-Trial Syntax
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By default, Ordered Values are assigned to the sorted response values in ascending
order, and PROC LOGISTIC models the probability of the response level that corre-
sponds to the Ordered Value 1. There are several methods to change these defaults;
the preceding statements specify the response variable optionEVENT= to model the
probability of NotReady=1 as displayed inFigure 42.6. See the“Response Level
Ordering”section on page 2329 for more details.

Syntax

The following statements are available in PROC LOGISTIC:

PROC LOGISTIC < options >;
BY variables ;
CLASS variable <(v-options)> <variable <(v-options)>... >

< / v-options >;
CONTRAST ’label’ effect values <,... effect values >< / options >;
EXACT < ’label’ >< Intercept >< effects >< / options > ;
FREQ variable ;
MODEL events/trials = < effects >< / options >;
MODEL variable < (variable–options) > = < effects >< / options >;
OUTPUT < OUT=SAS-data-set >

< keyword=name. . .keyword=name >< / option >;
SCORE < options >;
STRATA effects < / options >;
< label: > TEST equation1 < , . . . , < equationk >>< / option >;
UNITS independent1=list1 < . . . independentk=listk >< / option > ;
WEIGHT variable < / option >;

The PROC LOGISTIC and MODEL statements are required; only one MODEL state-
ment can be specified. The CLASS statement (if used) must precede the MODEL
statement, and the CONTRAST, EXACT, and STRATA statements (if used) must
follow the MODEL statement. The rest of this section provides detailed syntax infor-
mation for each of the preceding statements, beginning with the PROC LOGISTIC
statement. The remaining statements are covered in alphabetical order.
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PROC LOGISTIC Statement

PROC LOGISTIC < options > ;

The PROC LOGISTIC statement starts the LOGISTIC procedure and optionally
identifies input and output data sets and suppresses the display of results.

ALPHA= α
specifies the level of significanceα for 100(1−α)% confidence intervals. The value
α must be between 0 and 1; the default value is 0.05, which results in 95% intervals.
This value is used as the default confidence level for limits computed by the following
options.

Statement Options
CONTRAST ESTIMATE=

EXACT ESTIMATE=

MODEL CLODDS= CLPARM=

OUTPUT UCL= LCL=

SCORE CLM

You can override the default in each of these cases by specifying the ALPHA= option
for each statement individually.

COVOUT
adds the estimated covariance matrix to theOUTEST=data set. For the COVOUT
option to have an effect, the OUTEST= option must be specified. See the section
“OUTEST= Output Data Set”on page 2374 for more information.

DATA=SAS-data-set
names the SAS data set containing the data to be analyzed. If you omit the DATA=
option, the procedure uses the most recently created SAS data set. TheINMODEL=
option cannot be specified with this option.

DESCENDING
DESC

reverses the sorting order for the levels of the response variable. If both the
DESCENDING andORDER=options are specified, PROC LOGISTIC orders the
levels according to the ORDER= option and then reverses that order. This option
has the same effect as the response variable optionDESCENDINGin the MODEL
statement. See the“Response Level Ordering”section on page 2329 for more detail.

EXACTONLY
requests only the exact analyses. The asymptotic analysis that PROC LOGISTIC
usually performs is suppressed.
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EXACTOPTIONS(options)
specifies options that apply to everyEXACT statement in the program. The following
options are available:

ADDTOBS adds the observed sufficient statistic to the sampled exact distribu-
tion if the statistic was not sampled. This option has no effect unless the
METHOD=NETWORKMC option is specified and theESTIMATE option is
specified in the EXACT statement. If the observed statistic has not been sam-
pled, then the parameter estimate does not exist; by specifying this option, you
can produce (biased) estimates.

MAXTIME=seconds specifies the maximum clock time (in seconds) that PROC
LOGISTIC can use to calculate the exact distributions. If the limit is exceeded,
the procedure halts all computations and prints a note to the LOG. The default
maximum clock time is seven days.

METHOD=keyword specifies which exact conditional algorithm to use for every
EXACT statement specified. You can specify one of the followingkeywords:

DIRECT invokes the multivariate shift algorithm of Hirji, Mehta, and Patel
(1987). This method directly builds the exact distribution, but it may
require an excessive amount of memory in its intermediate stages.
METHOD=DIRECT is invoked by default when you are conditioning out
at most the intercept, or when the LINK=GLOGIT option is specified in
the MODEL statement.

NETWORK invokes an algorithm similar to that described in Mehta, Patel,
and Senchaudhuri (1992). This method builds a network for each pa-
rameter that you are conditioning out, combines the networks, then uses
the multivariate shift algorithm to create the exact distribution. The
NETWORK method can be faster and require less memory than the
DIRECT method. The NETWORK method is invoked by default for most
analyses.

NETWORKMC invokes the hybrid network and Monte Carlo algorithm of
Mehta, Patel, and Senchaudhuri (2000). This method creates a network
then samples from that network; this method does not reject any of the
samples at the cost of using a large amount of memory to create the
network. METHOD=NETWORKMC is most useful for producing pa-
rameter estimates for problems that are too large for the DIRECT and
NETWORK methods to handle and for which asymptotic methods are
invalid; for example, for sparse data on a large grid.

N=n specifies the number of Monte Carlo samples to take when
METHOD=NETWORKMC. By defaultn = 10, 000. If the procedure
cannot obtainn samples due to a lack of memory, then a note is printed in
the LOG (the number of valid samples is also reported in the listing) and the
analysis continues.

Note that the number of samples used to produce any particular statistic may
be smaller thann. For example, letX1 andX2 be continuous variables, de-
note their joint distribution byf(X1, X2), and letf(X1|X2 = x2) denote the
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marginal distribution ofX1 conditioned on the observed value ofX2. If you
request the JOINT test ofX1 andX2, thenn samples are used to generate the
estimatef̂(X1, X2) of f(X1, X2), from which the test is computed. However,
the parameter estimate forX1 is computed from the subset of̂f(X1, X2) hav-
ing X2 = x2, and this subset need not containn samples. Similarly, the dis-
tribution for each level of a classification variable is created by extracting the
appropriate subset from the joint distribution for the CLASS variable. The sam-
ple sizes used to compute the statistics are written to the ODS OUTPUT data
set of the tables.

In some cases, the marginal sample size may be too small to admit accurate
estimation of a particular statistic; a note is printed in the LOG when a marginal
sample size is less than 100. Increasingn will increase the number of samples
used in a marginal distribution; however, if you want to control the sample size
exactly, you can:

• Remove the JOINT option from the EXACT statement.

• Create dummy variables in a DATA step to represent the levels of
a CLASS variable, and specify them as independent variables in the
MODEL statement.

ONDISK uses disk-space instead of random access memory to build the exact con-
ditional distribution. Use this option to handle larger problems at the cost of
slower processing.

SEED=n specifies the initial seed for the random number generator used to take the
Monte Carlo samples for METHOD=NETWORKMC. The value of the SEED=
option must be an integer. If you do not specify a seed, or if you specify a value
less than or equal to zero, then PROC LOGISTIC uses the time of day from
the computer’s clock to generate an initial seed. The seed is displayed in the
“Model Information” table.

STATUSN=n prints a status line in the LOG after everyn Monte Carlo samples for
METHOD=NETWORKMC. The number of samples taken and the current ex-
actp-value for testing the significance of the model are displayed. You can use
this status line to track the progress of the computation of the exact conditional
distributions.

STATUSTIME=seconds specifies the time interval (in seconds) for printing a status
line in the LOG. You can use this status line to track the progress of the com-
putation of the exact conditional distributions. The time interval you specify is
approximate; the actual time interval will vary. By default, no status reports are
produced.

INEST=SAS-data-set
names the SAS data set that contains initial estimates for all the parameters in the
model. BY-group processing is allowed in setting up the INEST= data set. See the
section“INEST= Input Data Set”on page 2376 for more information.
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INMODEL=SAS-data-set
specifies the name of the SAS data set that contains the model information needed for
scoring new data. This INMODEL= data set is theOUTMODEL= data set saved in
a previous PROC LOGISTIC call. TheDATA= option cannot be specified with this
option; instead, specify the data sets to be scored in theSCOREstatements.

When the INMODEL= data set is specified, FORMAT statements are not allowed;
variables in theDATA= andPRIOR=data sets should be formatted within the data
sets. If a SCORE statement is specified in the same run as fitting the model, FORMAT
statements should be specified after the SCORE statement in order for the formats to
apply to all the DATA= and PRIOR= data sets in the SCORE statement.

You can specify the BY statement provided the INMODEL= data set is created under
the same BY-group processing.

The CLASS, EXACT, MODEL, OUTPUT, TEST, and UNIT statements are not avail-
able with the INMODEL= option.

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters,
wheren is a value between 20 and 200. The default length is 20 characters.

NOCOV
specifies that the covariance matrix is not saved in theOUTMODEL= data set. The
covariance matrix is needed for computing the confidence intervals for the posterior
probabilities in theOUT= data set in the SCORE statement. Specifying this option
will reduce the size of the OUTMODEL= data set.

NOPRINT
suppresses all displayed output. Note that this option temporarily disables the Output
Delivery System (ODS); seeChapter 14, “Using the Output Delivery System,”for
more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
RORDER=DATA | FORMATTED | INTERNAL

specifies the sorting order for the levels of the response variable. See the response
variable optionORDER=in the MODEL statement for more information.

OUTDESIGN=SAS-data-set
specifies the name of the data set that contains design matrix for the model. The
data set contains the same number of observations as the corresponding DATA= data
set and includes the response variable (with the same format as in the input data),
the FREQ variable, the WEIGHT variable, the OFFSET variable, and the design
variables for the covariates, including the Intercept variable of constant value 1 unless
the NOINT option in the MODEL statement is specified.

OUTDESIGNONLY
suppresses the model fitting and only creates the OUTDESIGN= data set. This option
is ignored if the OUTDESIGN= option is not specified.
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OUTEST= SAS-data-set
creates an output SAS data set that contains the final parameter estimates and, option-
ally, their estimated covariances (see the precedingCOVOUT option). The output
data set also includes a variable named–LNLIKE– , which contains the log likeli-
hood.

See the section“OUTEST= Output Data Set”on page 2374 for more information.

OUTMODEL=SAS-data-set
specifies the name of the SAS data set that contains the information about the fitted
model. This data set contains sufficient information to score new data without having
to refit the model. It is solely used as the input to theINMODEL= option in a sub-
sequent PROC LOGISTIC call.Note: information is stored in this data set in a very
compact form, hence you should not modify it manually.

SIMPLE
displays simple descriptive statistics (mean, standard deviation, minimum and max-
imum) for each continuous explanatory variable; and for each CLASS variable in-
volved in the modeling, the frequency counts of the classification levels are displayed.
The SIMPLE option generates a breakdown of the simple descriptive statistics or fre-
quency counts for the entire data set and also for individual response categories.

TRUNCATE
specifies that class levels should be determined using no more than the first 16 char-
acters of the formatted values of CLASS, response, and strata variables. When for-
matted values are longer than 16 characters, you can use this option to revert to the
levels as determined in releases previous to Version 9. This option invokes the same
option in theCLASSstatement.

BY Statement

BY variables ;

You can specify a BY statement with PROC LOGISTIC to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables. Thevariablesare one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the LOGISTIC procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).
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If a SCOREstatement is specified, then define theprimary data setto be theDATA=
or theINMODEL=data set in the PROC LOGISTIC statement, and define thesec-
ondary data setto be theDATA= data set andPRIOR=data set in the SCORE state-
ment. The primary data set contains all of the BY variables, and the secondary data
set must contain either all of them or none of them. If the secondary data set con-
tains all the BY-variables, matching is carried out between the primary and secondary
data sets. If the secondary data set does not contain any of the BY-variables, the en-
tire secondary data set is used for every BY-group in the primary data set and the
BY-variables are added to the output data sets specified in the SCORE statement.

Caution: The order of your response and classification variables is determined by
combining data across all BY groups; however, the observed levels may change be-
tween BY groups. This may affect the value of the reference level for these variables,
and hence your interpretation of the model and the parameters.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CLASS Statement

CLASS variable <(v-options)><variable <(v-options)>... >
< / v-options > ;

The CLASS statement names the classification variables to be used in the analysis.
The CLASS statement must precede the MODEL statement. You can specify vari-
ousv-optionsfor each variable by enclosing them in parentheses after the variable
name. You can also specify globalv-optionsfor the CLASS statement by placing
them after a slash (/). Globalv-optionsare applied to all the variables specified in
the CLASS statement. If you specify more than one CLASS statement, the global
v-optionsspecified on any one CLASS statement apply to all CLASS statements.
However, individual CLASS variablev-optionsoverride the globalv-options.

CPREFIX= n
specifies that, at most, the firstn characters of a CLASS variable name be used
in creating names for the corresponding design variables. The default is32 −
min(32,max(2, f)), wheref is the formatted length of the CLASS variable.

DESCENDING
DESC

reverses the sorting order of the classification variable. If both the DESCENDING
andORDER=options are specified, PROC LOGISTIC orders the categories accord-
ing to the ORDER= option and then reverses that order.

LPREFIX= n
specifies that, at most, the firstn characters of a CLASS variable label be used
in creating labels for the corresponding design variables. The default is256 −
min(256,max(2, f)), wheref is the formatted length of the CLASS variable.
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MISSING
allows missing value (’.’ for a numeric variable and blanks for a character variables)
as a valid value for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of classification variables. By default,
ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL,
the sort order is machine dependent. When ORDER=FORMATTED is in effect for
numeric variables for which you have supplied no explicit format, the levels are or-
dered by their internal values. This ordering determines which parameters in the
model correspond to each level in the data, so the ORDER= option may be useful
when you use the CONTRAST statement.

The following table shows how PROC LOGISTIC interprets values of the ORDER=
option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

For more information on sorting order, see the chapter on the SORT procedure in the
SAS Procedures Guideand the discussion of BY-group processing inSAS Language
Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables.
Design matrix columns are created from CLASS variables according to the follow-
ing coding schemes. The default is PARAM=EFFECT. If PARAM=ORTHPOLY or
PARAM=POLY, and the CLASS levels are numeric, then theORDER=option in the
CLASS statement is ignored, and the internal, unformatted values are used. See the
“CLASS Variable Parameterization”section on page 2331 for further details.

EFFECT specifies effect coding

GLM specifies less-than-full-rank reference cell coding; this option can
only be used as a global option

ORDINAL specifies the cumulative parameterization for an ordinal CLASS
variable.

POLYNOMIAL
POLY specifies polynomial coding
REFERENCE
REF specifies reference cell coding
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ORTHEFFECT orthogonalizes PARAM=EFFECT

ORTHORDINAL orthogonalizes PARAM=ORDINAL

ORTHPOLY orthogonalizes PARAM=POLYNOMIAL

ORTHREF orthogonalizes PARAM=REFERENCE

The EFFECT, POLYNOMIAL, REFERENCE, ORDINAL, and their orthogonal pa-
rameterizations are full rank. TheREF=option in the CLASS statement determines
the reference level for the EFFECT, REFERENCE, and their orthogonal parameteri-
zations.

Parameter names for a CLASS predictor variable are constructed by concatenating
the CLASS variable name with the CLASS levels. However, for the POLYNOMIAL
and orthogonal parameterizations, parameter names are formed by concatenating the
CLASS variable name and keywords that reflect the parameterization.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and
their orthogonalizations. For an individual (but not a global) variable REF=option,
you can specify thelevel of the variable to use as the reference level. For a global
or individual variable REF=option, you can use one of the followingkeywords. The
default is REF=LAST.

FIRST designates the first ordered level as reference

LAST designates the last ordered level as reference

TRUNCATE
specifies that class levels should be determined using no more than the first 16 char-
acters of the formatted values of CLASS, response, and strata variables. When for-
matted values are longer than 16 characters, you can use this option to revert to the
levels as determined in releases previous to Version 9. The TRUNCATE option is
only available as a global option. This option invokes the same option in thePROC
LOGISTICstatement.

CONTRAST Statement

CONTRAST ’label’ row-description <,...row-description >< / options > ;

where arow-description is: effect values <,...effect values>

The CONTRAST statement provides a mechanism for obtaining customized hypoth-
esis tests. It is similar to the CONTRAST and ESTIMATE statements in PROC GLM
and PROC CATMOD, depending on the coding schemes used with any classification
variables involved.

The CONTRAST statement enables you to specify a matrix,L, for testing the hy-
pothesisLθ = 0, whereθ is the parameter vector. You must be familiar with the
details of the model parameterization that PROC LOGISTIC uses (for more infor-
mation, see the PARAM= option in the section“CLASS Statement”on page 2295).
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Optionally, the CONTRAST statement enables you to estimate each row,l′iθ, of Lθ
and test the hypothesisl′iθ = 0. Computed statistics are based on the asymptotic
chi-square distribution of the Wald statistic.

There is no limit to the number of CONTRAST statements that you can specify, but
they must appear after the MODEL statement.

The following parameters are specified in the CONTRAST statement:

label identifies the contrast on the output. A label is required for every contrast
specified, and it must be enclosed in quotes.

effect identifies an effect that appears in the MODEL statement. The name
INTERCEPT can be used as an effect when one or more intercepts are in-
cluded in the model. You do not need to include all effects that are included
in the MODEL statement.

values are constants that are elements of theL matrix associated with the effect.
To correctly specify your contrast, it is crucial to know the ordering of
parameters within each effect and the variable levels associated with any
parameter. The “Class Level Information” table shows the ordering of lev-
els within variables. TheE option, described later in this section, enables
you to verify the proper correspondence ofvaluesto parameters.

The rows ofL are specified in order and are separated by commas. Multiple degree-
of-freedom hypotheses can be tested by specifying multiplerow-descriptions. For
any of the full-rank parameterizations, if an effect is not specified in the CONTRAST
statement, all of its coefficients in theL matrix are set to 0. If too many values are
specified for an effect, the extra ones are ignored. If too few values are specified, the
remaining ones are set to 0.

When you use effect coding (by default or by specifying PARAM=EFFECT in the
CLASS statement), all parameters are directly estimable (involve no other param-
eters). For example, suppose an effect coded CLASS variableA has four levels.
Then there are three parameters (α1, α2, α3) representing the first three levels, and
the fourth parameter is represented by

−α1 − α2 − α3

To test the first versus the fourth level ofA, you would test

α1 = −α1 − α2 − α3

or, equivalently,

2α1 + α2 + α3 = 0

which, in the formLθ = 0, is

[
2 1 1

]  α1

α2

α3

 = 0
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Therefore, you would use the following CONTRAST statement:

contrast ’1 vs. 4’ A 2 1 1;

To contrast the third level with the average of the first two levels, you would test

α1 + α2

2
= α3

or, equivalently,

α1 + α2 − 2α3 = 0

Therefore, you would use the following CONTRAST statement:

contrast ’1&2 vs. 3’ A 1 1 -2;

Other CONTRAST statements are constructed similarly. For example,

contrast ’1 vs. 2 ’ A 1 -1 0;
contrast ’1&2 vs. 4 ’ A 3 3 2;
contrast ’1&2 vs. 3&4’ A 2 2 0;
contrast ’Main Effect’ A 1 0 0,

A 0 1 0,
A 0 0 1;

When you use the less-than-full-rank parameterization (by specifying PARAM=GLM
in the CLASS statement), each row is checked for estimability. If PROC LOGISTIC
finds a contrast to be nonestimable, it displays missing values in corresponding rows
in the results. PROC LOGISTIC handles missing level combinations of classification
variables in the same manner as PROC GLM. Parameters corresponding to missing
level combinations are not included in the model. This convention can affect the way
in which you specify theL matrix in your CONTRAST statement. If the elements of
L are not specified for an effect that contains a specified effect, then the elements of
the specified effect are distributed over the levels of the higher-order effect just as the
GLM procedure does for its CONTRAST and ESTIMATE statements. For example,
suppose that the model contains effects A and B and their interaction A*B. If you
specify a CONTRAST statement involving A alone, theL matrix contains nonzero
terms for both A and A*B, since A*B contains A.

The degrees of freedom is the number of linearly independent constraints implied by
the CONTRAST statement, that is, the rank ofL.

You can specify the following options after a slash (/).
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ALPHA= α
specifies the level of significanceα for the100(1−α)% confidence interval for each
contrast when the ESTIMATE option is specified. The valueαmust be between 0 and
1. By default,α is equal to the value of theALPHA= option in the PROC LOGISTIC
statement, or 0.05 if that option is not specified.

E
displays theL matrix.

ESTIMATE=keyword
requests that each individual contrast (that is, each row,l′iθ, of Lθ) or exponentiated
contrast (el

′
iθ) be estimated and tested. PROC LOGISTIC displays the point esti-

mate, its standard error, a Wald confidence interval, and a Wald chi-square test for
each contrast. The significance level of the confidence interval is controlled by the
ALPHA= option. You can estimate the contrast or the exponentiated contrast (el

′
iθ),

or both, by specifying one of the followingkeywords:

PARM specifies that the contrast itself be estimated

EXP specifies that the exponentiated contrast be estimated

BOTH specifies that both the contrast and the exponentiated contrast be
estimated

SINGULAR = number
tunes the estimability check. This option is ignored when the full-rank parameteri-
zation is used. Ifv is a vector, define ABS(v) to be the largest absolute value of the
elements ofv. For a row vectorl′ of the contrast matrixL, definec to be equal to
ABS(l) if ABS(l) is greater than 0; otherwise,c equals 1. If ABS(l′− l′T ) is greater
thanc ∗ number, thenl is declared nonestimable. TheT matrix is the Hermite form
matrixI−0 I0, whereI−0 represents a generalized inverse of the information matrixI0

of the null model. The value fornumber must be between 0 and 1; the default value
is 1E−4.

EXACT Statement

EXACT <’label’>< Intercept >< effects >< / options > ;

The EXACT statement performs exact tests of the parameters for the specified effects
and optionally estimates the parameters and outputs the exact conditional distribu-
tions. You can specify the keyword INTERCEPT and any effects in the MODEL
statement. Inference on the parameters of the specified effects is performed by condi-
tioning on the sufficient statistics of all the other model parameters (possibly includ-
ing the intercept).

You can specify several EXACT statements, but they must follow the MODEL state-
ment. Each statement can optionally include an identifying label. If several EXACT
statements are specified, any statement without a label will be assigned a label of the
form “Exactn”, where “n” indicates thenth EXACT statement. The label is included
in the headers of the displayed exact analysis tables.
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If a STRATA statement is also specified, then a stratified exact conditional logistic
regression is performed. The model contains a different intercept for each stratum,
and these intercepts are conditioned out of the model along with any other nuisance
parameters (essentially, any parameters specified in the MODEL statement which are
not in the EXACT statement).

If the LINK=GLOGIT option is specified in the MODEL statement, then the
EXACTOPTION optionMETHOD=DIRECT is invoked by default and a general-
ized logit model is fit. Since each effect specified in the MODEL statement addsk
parameters to the model (wherek+1 is the number of response levels), exact analysis
of the generalized logit model using this method is limited to rather small problems.

The CONTRAST, OUTPUT, SCORE, TEST, and UNITS statements are not avail-
able with an exact analysis. Exact analyses are not performed when you specify a
WEIGHT statement, a link other than LINK=LOGIT or LINK=GLOGIT, an offset
variable, the NOFIT option, or a model-selection method. Exact estimation is not
available for ordinal response models.

The following options can be specified in each EXACT statement after a slash (/):

ALPHA= α
specifies the level of significanceα for 100(1−α)% confidence limits for the param-
eters or odds ratios. The valueα must be between 0 and 1. By default,α is equal to
the value of theALPHA= option in the PROC LOGISTIC statement, or 0.05 if that
option is not specified.

ESTIMATE < =keyword >
estimates the individual parameters (conditional on all other parameters) for the ef-
fects specified in the EXACT statement. For each parameter, a point estimate, a
confidence interval, and ap-value for a two-sided test that the parameter is zero are
displayed. Note that the two-sidedp-value is twice the one-sidedp-value. You can
optionally specify one of the following keywords:

PARM specifies that the parameters be estimated. This is the default.

ODDS specifies that the odds ratios be estimated. For classification variables, use
of the reference parameterization is recommended.

BOTH specifies that the parameters and odds ratios be estimated

JOINT
performs the joint test that all of the parameters are simultaneously equal to zero,
individual hypothesis tests for the parameter of each continuous variable, and joint
tests for the parameters of each classification variable. The joint test is indicated in
the “Conditional Exact Tests” table by the label “Joint.”

JOINTONLY
performs only the joint test of the parameters. The test is indicated in the “Conditional
Exact Tests” table by the label “Joint.” When this option is specified, individual tests
for the parameters of each continuous variable and joint tests for the parameters of
the classification variables are not performed.
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CLTYPE=EXACT | MIDP
requests either the exact or mid-p confidence intervals for the parameter estimates.
By default, the exact intervals are produced. The confidence coefficient can be
specified with theALPHA= option. The mid-p interval can be modified with the
MIDPFACTOR=option. See the“Inference for a Single Parameter”section on page
2373 for details.

MIDPFACTOR=δ1 | (δ1, δ2)
sets the tie factors used to produce the mid-p hypothesis statistics and the mid-p
confidence intervals.δ1 modifies both the hypothesis tests and confidence intervals,
while δ2 affects only the hypothesis tests. By default,δ1 = 0.5 andδ2 = 1.0. See the
“Hypothesis Tests”section on page 2371 and the“Inference for a Single Parameter”
section on page 2373 for details.

ONESIDED
requests one-sided confidence intervals andp-values for the individual parameter es-
timates and odds ratios. The one-sidedp-value is the smaller of the left and right
tail probabilities for the observed sufficient statistic of the parameter under the null
hypothesis that the parameter is zero. The two-sidedp-values (default) are twice the
one-sidedp-values. See the“Inference for a Single Parameter”section on page 2373
for more details.

OUTDIST=SAS-data-set
names the SAS data set containing the exact conditional distributions. This data set
contains all of the exact conditional distributions required to process the correspond-
ing EXACT statement. The data set contains the possible sufficient statistics for the
parameters of the effects specified in the EXACT statement, the counts, and, when
hypothesis tests are performed on the parameters, the probability of occurrence and
the score value for each sufficient statistic. When you request an OUTDIST= data
set, the observed sufficient statistics are displayed in the “Sufficient Statistics” table.
See the“OUTDIST= Output Data Set”section on page 2377 for more information.

EXACT Statement Examples

• In the following example, two exact tests are computed: one forx1 and the
other forx2. The test forx1 is based on the exact conditional distribution of
the sufficient statistic for thex1 parameter given the observed values of the
sufficient statistics for the intercept,x2, andx3 parameters; likewise, the test
for x2 is conditional on the observed sufficient statistics for the intercept,x1,
andx3:

proc logistic;
model y= x1 x2 x3;
exact ’lab1’ x1 x2;

run;

• You can specify multiple EXACT statements in the same PROC LOGISTIC
invocation. PROC LOGISTIC determines, from all the EXACT statements,
the distinct conditional distributions that need to be evaluated. For example,
there is only one exact conditional distribution for the following two EXACT
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statements, and it would be a waste of resources to compute the same exact
conditional distribution twice:

exact ’One’ x1 / estimate=parm;
exact ’Two’ x1 / estimate=parm onesided;

• For each EXACT statement, individual tests for the parameters of the specified
effects are computed unless the JOINTONLY option is specified. Consider the
following EXACT statements:

exact ’E12’ x1 x2 / estimate;
exact ’E1’ x1 / estimate;
exact ’E2’ x2 / estimate;
exact ’J12’ x1 x2 / joint;

In the E12 statement, the parameters forx1 andx2 are estimated and tested
separately. Specifying the E12 statement is equivalent to specifying both the
E1 and E2 statements. In the J12 statement, the joint test for the parameters of
x1 andx2 is computed as well as the individual tests forx1 andx2.

All exact conditional distributions for the tests and estimates computed in a
single EXACT statement are output to the corresponding OUTDIST= data set.
For example, consider the following EXACT statements:

exact ’O1’ x1 / outdist=o1;
exact ’OJ12’ x1 x2 / jointonly outdist=oj12;
exact ’OA12’ x1 x2 / joint outdist=oa12;
exact ’OE12’ x1 x2 / estimate outdist=oe12;

The O1 statement outputs a single exact conditional distribution. The OJ12
statement outputs only the joint distribution forx1 andx2. The OA12 state-
ment outputs three conditional distributions: one forx1, one forx2, and one
jointly for x1 andx2. The OE12 statement outputs two conditional distribu-
tions: one forx1 and the other forx2. Data setoe12 contains both thex1 and
x2 variables; the distribution forx1 has missing values in thex2 column while
the distribution forx2 has missing values in thex1 column.

See the“OUTDIST= Output Data Set”section on page 2377 for more infor-
mation.

FREQ Statement

FREQ variable ;

Thevariable in the FREQ statement identifies a variable that contains the frequency
of occurrence of each observation. PROC LOGISTIC treats each observation as if it
appearsn times, wheren is the value of the FREQ variable for the observation. If it
is not an integer, the frequency value is truncated to an integer. If the frequency value
is less than 1 or missing, the observation is not used in the model fitting. When the
FREQ statement is not specified, each observation is assigned a frequency of 1.

If a SCOREstatement is specified, then the FREQ variable is used for computing fit
statistics and the ROC curve, but they are not required for scoring. If theDATA= data
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set in the SCORE statement does not contain the FREQ variable, the frequency values
are assumed to be 1 and a warning message is issued in the LOG. If you fit a model
and perform the scoring in the same run, the same FREQ variable is used for fitting
and scoring. If you fit a model in a previous run and input it with theINMODEL=
option in the current run, then the FREQ variable can be different from the one used
in the previous run; however, if a FREQ variable was not specified in the previous
run you can still specify a FREQ variable in the current run.

MODEL Statement

MODEL events/trials= < effects >< / options > ;

MODEL variable < (variable–options) >= < effects >< / options > ;

The MODEL statement names the response variable and the explanatory effects,
including covariates, main effects, interactions, and nested effects; see the section
“Specification of Effects”on page 1784 ofChapter 32, “The GLM Procedure,”for
more information. If you omit the explanatory effects, the procedure fits an intercept-
only model.Model optionscan be specified after a slash (/).

Two forms of the MODEL statement can be specified. The first form, referred to as
single-trial syntax, is applicable to binary, ordinal, and nominal response data. The
second form, referred to asevents/trialssyntax, is restricted to the case of binary
response data. Thesingle-trial syntax is used when each observation in the DATA=
data set contains information on only a single trial, for instance, a single subject
in an experiment. When each observation contains information on multiple binary-
response trials, such as the counts of the number of subjects observed and the number
responding, thenevents/trialssyntax can be used.

In the events/trialssyntax, you specify two variables that contain count data for a
binomial experiment. These two variables are separated by a slash. The value of
the first variable,events, is the number of positive responses (or events). The value
of the second variable,trials, is the number of trials. The values of botheventsand
(trials−events) must be nonnegative and the value oftrials must be positive for the
response to be valid.

In thesingle-trialsyntax, you specify one variable (on the left side of the equal sign)
as the response variable. This variable can be character or numeric.Optionsspecific
to the response variable can be specified immediately after the response variable with
a pair of parentheses around them.

For both forms of the MODEL statement, explanatoryeffectsfollow the equal sign.
Variables can be either continuous or classification variables. Classification variables
can be character or numeric, and they must be declared in the CLASS statement.
When an effect is a classification variable, the procedure enters a set of coded columns
into the design matrix instead of directly entering a single column containing the
values of the variable.
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Response Variable Options

You can specify the following options by enclosing them in a pair of parentheses after
the response variable.

DESCENDING | DESC
reverses the order of the response categories. If both the DESCENDING and
ORDER= options are specified, PROC LOGISTIC orders the response categories
according to the ORDER= option and then reverses that order. See the“Response
Level Ordering”section on page 2329 for more detail.

EVENT=’category’ | keyword
specifies the event category for the binary response model. PROC LOGISTIC mod-
els the probability of the event category. The EVENT= option has no effect when
there are more than two response categories. You can specify the value (formatted
if a format is applied) of the event category in quotes or you can specify one of the
following keywords. The default is EVENT=FIRST.

FIRST designates the first ordered category as the event

LAST designates the last ordered category as the event

One of the most common sets of response levels is {0,1}, with 1 representing the
event for which the probability is to be modeled. Consider the example whereY
takes the values 1 and 0 for event and nonevent, respectively, andExposure is the
explanatory variable. To specify the value 1 as the event category, use the MODEL
statement

model Y(event=’1’) = Exposure;

ORDER= DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of the response variable. By default,
ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL,
the sort order is machine dependent. When ORDER=FORMATTED is in effect for
numeric variables for which you have supplied no explicit format, the levels are or-
dered by their internal values.

The following table shows the interpretation of the ORDER= values.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value
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For more information on sorting order, see the chapter on the SORT procedure in the
SAS Procedures Guideand the discussion of BY-group processing inSAS Language
Reference: Concepts.

REFERENCE=’category’ | keyword
REF=’category’ | keyword

specifies the reference category for the generalized logit model and the binary re-
sponse model. For the generalized logit model, each nonreference category is con-
trasted with the reference category. For the binary response model, specifying one
response category as the reference is the same as specifying the other response cate-
gory as the event category. You can specify the value (formatted if a format is applied)
of the reference category in quotes or you can specify one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered category as the reference

LAST designates the last ordered category as the reference

Model Options

Table42.1summarizes the options available in the MODEL statement, which can be
specified after a slash (/).

Table 42.1. Model Statement Options

Option Description
Model Specification Options
LINK= specifies link function
NOINT suppresses intercept
NOFIT suppresses model fitting
OFFSET= specifies offset variable
SELECTION= specifies effect selection method

Effect Selection Options
BEST= controls the number of models displayed for SCORE selection
DETAILS requests detailed results at each step
FAST uses fast elimination method
HIERARCHY= specifies whether and how hierarchy is maintained and whether a single

effect or multiple effects are allowed to enter or leave the model per step
INCLUDE= specifies number of effects included in every model
MAXSTEP= specifies maximum number of steps for STEPWISE selection
SEQUENTIAL adds or deletes effects in sequential order
SLENTRY= specifies significance level for entering effects
SLSTAY= specifies significance level for removing effects
START= specifies number of variables in first model
STOP= specifies number of variables in final model
STOPRES adds or deletes variables by residual chi-square criterion

Model-Fitting Specification Options
ABSFCONV= specifies absolute function convergence criterion
FCONV= specifies relative function convergence criterion
GCONV= specifies relative gradient convergence criterion
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Table 42.1. (continued)

Option Description
XCONV= specifies relative parameter convergence criterion
MAXFUNCTION= specifies maximum number of function calls for the conditional analysis
MAXITER= specifies maximum number of iterations
NOCHECK suppresses checking for infinite parameters
RIDGING= specifies the technique used to improve the log-likelihood function when

its value is worse than that of the previous step
SINGULAR= specifies tolerance for testing singularity
TECHNIQUE= specifies iterative algorithm for maximization

Options for Confidence Intervals
ALPHA= specifiesα for the100(1− α)% confidence intervals
CLPARM= computes confidence intervals for parameters
CLODDS= computes confidence intervals for odds ratios
PLCONV= specifies profile likelihood convergence criterion

Options for Classifying Observations
CTABLE displays classification table
PEVENT= specifies prior event probabilities
PPROB= specifies probability cutpoints for classification

Options for Overdispersion and Goodness-of-Fit Tests
AGGREGATE= determines subpopulations for Pearson chi-square and deviance
SCALE= specifies method to correct overdispersion
LACKFIT requests Hosmer and Lemeshow goodness-of-fit test

Options for ROC Curves
OUTROC= names the output data set
ROCEPS= specifies probability grouping criterion

Options for Regression Diagnostics
INFLUENCE displays influence statistics
IPLOTS requests index plots

Options for Display of Details
CORRB displays correlation matrix
COVB displays covariance matrix
EXPB displays exponentiated values of estimates
ITPRINT displays iteration history
NODUMMYPRINT suppresses “Class Level Information” table
PARMLABEL displays parameter labels
RSQUARE displays generalizedR2

STB displays standardized estimates
Computational Options
NOLOGSCALE performs calculations using normal scaling

The following list describes these options.
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ABSFCONV=value
specifies the absolute function convergence criterion. Convergence requires a small
change in the log-likelihood function in subsequent iterations,

|li − li−1| < value

where li is the value of the log-likelihood function at iterationi. See the section
“Convergence Criteria”on page 2338.

AGGREGATE
AGGREGATE= (variable-list)

specifies the subpopulations on which the Pearson chi-square test statistic and the
likelihood ratio chi-square test statistic (deviance) are calculated. Observations with
common values in the given list of variables are regarded as coming from the same
subpopulation. Variables in the list can be any variables in the input data set.
Specifying the AGGREGATE option is equivalent to specifying the AGGREGATE=
option with a variable list that includes all explanatory variables in the MODEL state-
ment. The deviance and Pearson goodness-of-fit statistics are calculated only when
the SCALE= option is specified. Thus, the AGGREGATE (or AGGREGATE=) op-
tion has no effect if theSCALE= option is not specified. See the section“Rescaling
the Covariance Matrix”on page 2354 for more detail.

ALPHA= α
sets the level of significanceα for 100(1 − α)% confidence intervals for regression
parameters or odds ratios. The valueα must be between 0 and 1. By default,α is
equal to the value of theALPHA= option in the PROC LOGISTIC statement, or 0.05
if the option is not specified. This option has no effect unless confidence limits for
the parameters or odds ratios are requested.

BEST=n
specifies thatnmodels with the highest score chi-square statistics are to be displayed
for each model size. It is used exclusively with the SCORE model selection method.
If the BEST= option is omitted and there are no more than ten explanatory variables,
then all possible models are listed for each model size. If the option is omitted and
there are more than ten explanatory variables, then the number of models selected for
each model size is, at most, equal to the number of explanatory variables listed in the
MODEL statement.

CLODDS=PL | WALD | BOTH
requests confidence intervals for the odds ratios. Computation of these confidence in-
tervals is based on the profile likelihood (CLODDS=PL) or based on individual Wald
tests (CLODDS=WALD). By specifying CLODDS=BOTH, the procedure computes
two sets of confidence intervals for the odds ratios, one based on the profile likelihood
and the other based on the Wald tests. The confidence coefficient can be specified
with theALPHA= option.
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CLPARM=PL | WALD | BOTH
requests confidence intervals for the parameters. Computation of these confidence
intervals is based on the profile likelihood (CLPARM=PL) or individual Wald tests
(CLPARM=WALD). By specifying CLPARM=BOTH, the procedure computes two
sets of confidence intervals for the parameters, one based on the profile likelihood and
the other based on individual Wald tests. The confidence coefficient can be specified
with theALPHA= option. See the“Confidence Intervals for Parameters”section on
page 2345 for more information.

CORRB
displays the correlation matrix of the parameter estimates.

COVB
displays the covariance matrix of the parameter estimates.

CTABLE
classifies the input binary response observations according to whether the predicted
event probabilities are above or below some cutpoint valuez in the range(0, 1). An
observation is predicted as an event if the predicted event probability exceedsz. You
can supply a list of cutpoints other than the default list by using thePPROB= option
(page 2315). The CTABLE option is ignored if the data have more than two response
levels. Also, false positive and negative rates can be computed as posterior proba-
bilities using Bayes’ theorem. You can use thePEVENT= option to specify prior
probabilities for computing these rates. For more information, see the“Classification
Table” section on page 2352.

DETAILS
produces a summary of computational details for each step of the effect selection pro-
cess. It produces the “Analysis of Effects Not in the Model” table before displaying
the effect selected for entry for FORWARD or STEPWISE selection. For each model
fitted, it produces the “Type 3 Analysis of Effects” table if the fitted model involves
CLASS variables, the “Analysis of Maximum Likelihood Estimates” table, and mea-
sures of association between predicted probabilities and observed responses. For the
statistics included in these tables, see the“Displayed Output”section on page 2381.
The DETAILS option has no effect when SELECTION=NONE.

EXPB
EXPEST

displays the exponentiated values (eβ̂i) of the parameter estimateŝβi in the “Analysis
of Maximum Likelihood Estimates” table for the logit model. These exponentiated
values are the estimated odds ratios for the parameters corresponding to the continu-
ous explanatory variables.

FAST
uses a computational algorithm of Lawless and Singhal (1978) to compute a first-
order approximation to the remaining slope estimates for each subsequent elim-
ination of a variable from the model. Variables are removed from the model
based on these approximate estimates. The FAST option is extremely efficient
because the model is not refitted for every variable removed. The FAST op-
tion is used when SELECTION=BACKWARD and in the backward elimina-
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tion steps when SELECTION=STEPWISE. The FAST option is ignored when
SELECTION=FORWARD or SELECTION=NONE.

FCONV=value
specifies the relative function convergence criterion. Convergence requires a small
relative change in the log-likelihood function in subsequent iterations,

|li − li−1|
|li−1|+ 1E−6

< value

whereli is the value of the log likelihood at iterationi. See the section“Convergence
Criteria” on page 2338.

GCONV=value
specifies the relative gradient convergence criterion. Convergence requires that the
normalized prediction function reduction is small,

g′iIigi

|li|+ 1E−6
< value

whereli is the value of the log-likelihood function,gi is the gradient vector, andIi is
the (expected) information matrix, all at iterationi. This is the default convergence
criterion, and the default value is 1E−8. See the section“Convergence Criteria”on
page 2338.

HIERARCHY=keyword
HIER=keyword

specifies whether and how the model hierarchy requirement is applied and whether
a single effect or multiple effects are allowed to enter or leave the model in one
step. You can specify that only CLASS effects, or both CLASS and interval ef-
fects, be subject to the hierarchy requirement. The HIERARCHY= option is ignored
unless you also specify one of the following options: SELECTION=FORWARD,
SELECTION=BACKWARD, or SELECTION=STEPWISE.

Model hierarchy refers to the requirement that, for any term to be in the model, all
effects contained in the term must be present in the model. For example, in order
for the interaction A*B to enter the model, the main effects A and B must be in the
model. Likewise, neither effect A nor B can leave the model while the interaction
A*B is in the model.

The keywords you can specify in the HIERARCHY= option are as follows:

NONE Model hierarchy is not maintained. Any single effect can enter or
leave the model at any given step of the selection process.

SINGLE Only one effect can enter or leave the model at one time, subject to
the model hierarchy requirement. For example, suppose that you
specify the main effects A and B and the interaction A*B in the
model. In the first step of the selection process, either A or B can
enter the model. In the second step, the other main effect can enter
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the model. The interaction effect can enter the model only when
both main effects have already been entered. Also, before A or
B can be removed from the model, the A*B interaction must first
be removed. All effects (CLASS and interval) are subject to the
hierarchy requirement.

SINGLECLASS This is the same as HIERARCHY=SINGLE except that only
CLASS effects are subject to the hierarchy requirement.

MULTIPLE More than one effect can enter or leave the model at one time,
subject to the model hierarchy requirement. In a forward selection
step, a single main effect can enter the model, or an interaction can
enter the model together with all the effects that are contained in the
interaction. In a backward elimination step, an interaction itself,
or the interaction together with all the effects that the interaction
contains, can be removed. All effects (CLASS and interval) are
subject to the hierarchy requirement.

MULTIPLECLASS This is the same as HIERARCHY=MULTIPLE except that only
CLASS effects are subject to the hierarchy requirement.

The default value is HIERARCHY=SINGLE, which means that model hierarchy is
to be maintained for all effects (that is, both CLASS and interval effects) and that
only a single effect can enter or leave the model at each step.

INCLUDE=n
includes the first n effects in the MODEL statement in every model.
By default, INCLUDE=0. The INCLUDE= option has no effect when
SELECTION=NONE.

Note that the INCLUDE= andSTART= options perform different tasks: the
INCLUDE= option includes the firstn effects variables in every model, whereas the
START= option only requires that the firstn effects appear in the first model.

INFLUENCE
displays diagnostic measures for identifying influential observations in the case of
a binary response model. It has no effect otherwise. For each observation, the
INFLUENCE option displays the case number (which is the sequence number of
the observation), the values of the explanatory variables included in the final model,
and the regression diagnostic measures developed by Pregibon (1981). For a discus-
sion of these diagnostic measures, see the“Regression Diagnostics”section on page
2359. When aSTRATA statement is specified, the diagnostics are computed follow-
ing Storer and Crowley (1985); see the“Regression Diagnostic Details”section on
page 2367 for details.

IPLOTS
produces an index plot for each regression diagnostic statistic. An index plot is a
scatterplot with the regression diagnostic statistic represented on the y-axis and the
case number on the x-axis. SeeExample 42.6on page 2422 for an illustration.
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ITPRINT
displays the iteration history of the maximum-likelihood model fitting. The ITPRINT
option also displays the last evaluation of the gradient vector and the final change in
the−2 Log Likelihood.

LACKFIT
LACKFIT<(n)>

performs the Hosmer and Lemeshow goodness-of-fit test (Hosmer and Lemeshow
2000) for the case of a binary response model. The subjects are divided into approx-
imately ten groups of roughly the same size based on the percentiles of the estimated
probabilities. The discrepancies between the observed and expected number of ob-
servations in these groups are summarized by the Pearson chi-square statistic, which
is then compared to a chi-square distribution witht degrees of freedom, wheret is the
number of groups minusn. By default,n=2. A smallp-value suggests that the fitted
model is not an adequate model. See the“The Hosmer-Lemeshow Goodness-of-Fit
Test” section on page 2356 for more information.

LINK=keyword
L=keyword

specifies the link function linking the response probabilities to the linear predictors.
You can specify one of the following keywords. The default is LINK=LOGIT.

CLOGLOG the complementary log-log function. PROC LOGISTIC fits the bi-
nary complementary log-log model when there are two response
categories and fits the cumulative complementary log-log model
when there are more than two response categories. Aliases:
CCLOGLOG, CCLL, CUMCLOGLOG.

GLOGIT the generalized logit function. PROC LOGISTIC fits the general-
ized logit model where each nonreference category is contrasted
with the reference category. You can use the response variable op-
tion REF=to specify the reference category.

LOGIT the log odds function. PROC LOGISTIC fits the binary logit model
when there are two response categories and fits the cumulative logit
model when there are more than two response categories. Aliases:
CLOGIT, CUMLOGIT.

PROBIT the inverse standard normal distribution function. PROC
LOGISTIC fits the binary probit model when there are two
response categories and fits the cumulative probit model when
there are more than two response categories. Aliases: NORMIT,
CPROBIT, CUMPROBIT.

See the section“Link Functions and the Corresponding Distributions”on page 2334
for details.
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MAXFUNCTION=n
specifies the maximum number of function calls to perform when maximizing the
conditional likelihood. This option is only valid when aSTRATA statement is speci-
fied. The default values are

• 125 when the number of parametersp < 40

• 500 when40 ≤ p < 400

• 1000 whenp ≥ 400

Since the optimization is terminated only after completing a full iteration, the number
of function calls that are actually performed can exceedn. If convergence is not
attained, the displayed output and all output data sets created by the procedure contain
results based on the last maximum likelihood iteration.

MAXITER=n
specifies the maximum number of iterations to perform. By default, MAXITER=25.
If convergence is not attained inn iterations, the displayed output and all output data
sets created by the procedure contain results that are based on the last maximum
likelihood iteration.

MAXSTEP=n
specifies the maximum number of times any explanatory variable is added to or
removed from the model when SELECTION=STEPWISE. The default number is
twice the number of explanatory variables in the MODEL statement. When the
MAXSTEP= limit is reached, the stepwise selection process is terminated. All statis-
tics displayed by the procedure (and included in output data sets) are based on the
last model fitted. The MAXSTEP= option has no effect when SELECTION=NONE,
FORWARD, or BACKWARD.

NOCHECK
disables the checking process to determine whether maximum likelihood estimates of
the regression parameters exist. If you are sure that the estimates are finite, this option
can reduce the execution time if the estimation takes more than eight iterations. For
more information, see the“Existence of Maximum Likelihood Estimates”section on
page 2338.

NODUMMYPRINT
NODESIGNPRINT
NODP

suppresses the “Class Level Information” table, which shows how the design matrix
columns for the CLASS variables are coded.

NOINT
suppresses the intercept for the binary response model, the first intercept for the or-
dinal response model (which forces all intercepts to be nonnegative), or all intercepts
for the generalized logit model. This can be particularly useful in conditional logistic
analysis; seeExample 42.10on page 2443.
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NOFIT
performs the global score test without fitting the model. The global score test evalu-
ates the joint significance of the effects in the MODEL statement. No further analyses
are performed. If the NOFIT option is specified along with other MODEL statement
options, NOFIT takes effect and all other options except LINK=, TECHNIQUE=,
and OFFSET= are ignored.

NOLOGSCALE
specifies that computations for the conditional and exact conditional logistic model
should be computed using normal scaling. Log-scaling can handle numerically larger
problems than normal scaling; however, computations in the log-scale are slower than
computations in normal-scale.

OFFSET= name
names the offset variable. The regression coefficient for this variable will be fixed
at 1.

OUTROC=SAS-data-set
OUTR=SAS-data-set

creates, for binary response models, an output SAS data set that contains the data
necessary to produce the receiver operating characteristic (ROC) curve. See the sec-
tion “OUTROC= Output Data Set”on page 2378 for the list of variables in this data
set.

PARMLABEL
displays the labels of the parameters in the “Analysis of Maximum Likelihood
Estimates” table.

PEVENT= value
PEVENT= (list )

specifies one prior probability or a list of prior probabilities for the event of interest.
The false positive and false negative rates are then computed as posterior probabili-
ties by Bayes’ theorem. The prior probability is also used in computing the rate of
correct prediction. For each prior probability in the given list, a classification table
of all observations is computed. By default, the prior probability is the total sample
proportion of events. The PEVENT= option is useful for stratified samples. It has no
effect if the CTABLE option is not specified. For more information, see the section
“False Positive and Negative Rates Using Bayes’ Theorem”on page 2353. Also see
thePPROB= optionfor information on how thelist is specified.

PLCL
is the same as specifyingCLPARM=PL.

PLCONV= value
controls the convergence criterion for confidence intervals based on the profile likeli-
hood function. The quantityvaluemust be a positive number, with a default value of
1E−4. The PLCONV= option has no effect if profile likelihood confidence intervals
(CLPARM=PL) are not requested.
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PLRL
is the same as specifyingCLODDS=PL.

PPROB=value
PPROB= (list )

specifies one critical probability value (or cutpoint) or a list of critical probability
values for classifying observations with theCTABLE option. Eachvaluemust be
between 0 and 1. A response that has a cross validated predicted probability greater
than or equal to the current PPROB= value is classified as an event response. The
PPROB= option is ignored if the CTABLE option is not specified.

A classification table for each of several cutpoints can be requested by specifying a
list. For example,

pprob= (0.3, 0.5 to 0.8 by 0.1)

requests a classification of the observations for each of the cutpoints 0.3, 0.5, 0.6, 0.7,
and 0.8. If the PPROB= option is not specified, the default is to display the classi-
fication for a range of probabilities from the smallest estimated probability (rounded
down to the nearest 0.02) to the highest estimated probability (rounded up to the
nearest 0.02) with 0.02 increments.

RIDGING=ABSOLUTE | RELATIVE | NONE
specifies the technique used to improve the log-likelihood function when its value
in the current iteration is less than that in the previous iteration. If you spec-
ify the RIDGING=ABSOLUTE option, the diagonal elements of the negative
(expected) Hessian are inflated by adding the ridge value. If you specify the
RIDGING=RELATIVE option, the diagonal elements are inflated by a factor of
1 plus the ridge value. If you specify the RIDGING=NONE option, the crude
line search method of taking half a step is used instead of ridging. By default,
RIDGING=RELATIVE.

RISKLIMITS
RL
WALDRL

is the same as specifyingCLODDS=WALD.

ROCEPS= number
specifies the criterion for grouping estimated event probabilities that are close to each
other for the ROC curve. In each group, the difference between the largest and the
smallest estimated event probabilities does not exceed the given value. The value for
number must be between 0 and 1; the default value is 1E−4. The smallest estimated
probability in each group serves as a cutpoint for predicting an event response. The
ROCEPS= option has no effect if theOUTROC=option is not specified.

RSQUARE
RSQ

requests a generalizedR2 measure for the fitted model. For more information, see
the“Generalized Coefficient of Determination”section on page 2342.
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SCALE= scale
enables you to supply the value of the dispersion parameter or to specify the method
for estimating the dispersion parameter. It also enables you to display the “Deviance
and Pearson Goodness-of-Fit Statistics” table. To correct for overdispersion or un-
derdispersion, the covariance matrix is multiplied by the estimate of the dispersion
parameter. Valid values forscaleare as follows:

D | DEVIANCE specifies that the dispersion parameter be estimated by
the deviance divided by its degrees of freedom.

P | PEARSON specifies that the dispersion parameter be estimated by
the Pearson chi-square statistic divided by its degrees of
freedom.

WILLIAMS <( constant)> specifies that Williams’ method be used to model
overdispersion. This option can be used only with
the events/trialssyntax. An optionalconstantcan be
specified as the scale parameter; otherwise, a scale
parameter is estimated under the full model. A set
of weights is created based on this scale parameter
estimate. These weights can then be used in fitting
subsequent models of fewer terms than the full model.
When fitting these submodels, specify the computed
scale parameter asconstant. SeeExample 42.9on page
2438 for an illustration.

N | NONE specifies that no correction is needed for the dispersion
parameter; that is, the dispersion parameter remains as
1. This specification is used for requesting the deviance
and the Pearson chi-square statistic without adjusting for
overdispersion.

constant sets the estimate of the dispersion parameter to be the
square of the givenconstant. For example, SCALE=2
sets the dispersion parameter to 4. The valueconstant
must be a positive number.

You can use theAGGREGATE (or AGGREGATE=) option to define the subpop-
ulations for calculating the Pearson chi-square statistic and the deviance. In the
absence of the AGGREGATE (or AGGREGATE=) option, each observation is re-
garded as coming from a different subpopulation. For theevents/trialssyntax, each
observation consists ofn Bernoulli trials, wheren is the value of thetrials vari-
able. Forsingle-trial syntax, each observation consists of a single response, and for
this setting it is not appropriate to carry out the Pearson or deviance goodness-of-
fit analysis. Thus, PROC LOGISTIC ignores specifications SCALE=P, SCALE=D,
and SCALE=N whensingle-trial syntax is specified without the AGGREGATE (or
AGGREGATE=) option.

The “Deviance and Pearson Goodness-of-Fit Statistics” table includes the Pearson
chi-square statistic, the deviance, their degrees of freedom, the ratio of each statistic
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divided by its degrees of freedom, and the correspondingp-value. For more informa-
tion, see the“Overdispersion”section on page 2354.

SELECTION=BACKWARD | B
| FORWARD | F
| NONE | N
| STEPWISE | S
| SCORE

specifies the method used to select the variables in the model. BACKWARD requests
backward elimination, FORWARD requests forward selection, NONE fits the com-
plete model specified in the MODEL statement, and STEPWISE requests stepwise
selection. SCORE requests best subset selection. By default, SELECTION=NONE.
For more information, see the“Effect Selection Methods”section on page 2340.

SEQUENTIAL
SEQ

forces effects to be added to the model in the order specified in the MODEL state-
ment or eliminated from the model in the reverse order specified in the MODEL
statement. The model-building process continues until the next effect to be added has
an insignificant adjusted chi-square statistic or until the next effect to be deleted has
a significant Wald chi-square statistic. The SEQUENTIAL option has no effect when
SELECTION=NONE.

SINGULAR=value
specifies the tolerance for testing the singularity of the Hessian matrix (Newton-
Raphson algorithm) or the expected value of the Hessian matrix (Fisher-scoring al-
gorithm). The Hessian matrix is the matrix of second partial derivatives of the log-
likelihood function. The test requires that a pivot for sweeping this matrix be at least
this number times a norm of the matrix. Values of the SINGULAR= option must be
numeric. By default,valueis the machine epsilon times107, which is approximately
10−9 on most machines.

SLENTRY=value
SLE=value

specifies the significance level of the score chi-square for entering an effect into the
model in the FORWARD or STEPWISE method. Values of the SLENTRY= option
should be between 0 and 1, inclusive. By default, SLENTRY=0.05. The SLENTRY=
option has no effect when SELECTION=NONE, SELECTION=BACKWARD, or
SELECTION=SCORE.

SLSTAY=value
SLS=value

specifies the significance level of the Wald chi-square for an effect to stay in the model
in a backward elimination step. Values of the SLSTAY= option should be between
0 and 1, inclusive. By default, SLSTAY=0.05. The SLSTAY= option has no effect
when SELECTION=NONE, SELECTION=FORWARD, or SELECTION=SCORE.
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START=n
begins the FORWARD, BACKWARD, or STEPWISE effect selection process with
the firstn effects listed in the MODEL statement. The value ofn ranges from 0 to
s, wheres is the total number of effects in the MODEL statement. The default value
of n is s for the BACKWARD method and 0 for the FORWARD and STEPWISE
methods. Note that START=n specifies only that the firstn effects appear in the
first model, whileINCLUDE=n requires that the firstn effects be included in every
model. For the SCORE method, START=n specifies that the smallest models contain
n effects, wheren ranges from 1 tos; the default value is 1. The START= option has
no effect when SELECTION=NONE.

STB
displays the standardized estimates for the parameters for the continuous explana-
tory variables in the “Analysis of Maximum Likelihood Estimates” table. The stan-
dardized estimate ofβi is given byβ̂i/(s/si), wheresi is the total sample standard
deviation for theith explanatory variable and

s =


π/
√

3 Logistic
1 Normal
π/
√

6 Extreme-value

For the intercept parameters and parameters associated with a CLASS variable, the
standardized estimates are set to missing.

STOP=n
specifies the maximum (FORWARD method) or minimum (BACKWARD method)
number of effects to be included in the final model. The effect selection process is
stopped whenn effects are found. The value ofn ranges from 0 tos, wheres is
the total number of effects in the MODEL statement. The default value ofn is s
for the FORWARD method and 0 for the BACKWARD method. For the SCORE
method, STOP=n specifies that the largest models containn effects, wheren ranges
from 1 to s; the default value ofn is s. The STOP= option has no effect when
SELECTION=NONE or STEPWISE.

STOPRES
SR

specifies that the removal or entry of effects be based on the value of the residual
chi-square. If SELECTION=FORWARD, then the STOPRES option adds the ef-
fects into the model one at a time until the residual chi-square becomes insignif-
icant (until thep-value of the residual chi-square exceeds the SLENTRY=value).
If SELECTION=BACKWARD, then the STOPRES option removes effects from the
model one at a time until the residual chi-square becomes significant (until thep-value
of the residual chi-square becomes less than theSLSTAY= value). The STOPRES
option has no effect when SELECTION=NONE or SELECTION=STEPWISE.

TECHNIQUE=FISHER | NEWTON
TECH=FISHER | NEWTON

specifies the optimization technique for estimating the regression parameters.
NEWTON (or NR) is the Newton-Raphson algorithm and FISHER (or FS) is the
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Fisher-scoring algorithm. Both techniques yield the same estimates, but the esti-
mated covariance matrices are slightly different except for the case when the LOGIT
link is specified for binary response data. The default is TECHNIQUE=FISHER.
See the section“Iterative Algorithms for Model-Fitting”on page 2336 for details.

WALDCL
CL

is the same as specifyingCLPARM=WALD.

XCONV=value
specifies the relative parameter convergence criterion. Convergence requires a small
relative parameter change in subsequent iterations,

max
j

|δ(i)j | < value

where

δ
(i)
j =

 θ
(i)
j − θ

(i−1)
j |θ(i−1)

j | < 0.01
θ
(i)
j −θ

(i−1)
j

θ
(i−1)
j

otherwise

and θ(i)
j is the estimate of thejth parameter at iterationi. See the section

“Convergence Criteria”on page 2338.

OUTPUT Statement

OUTPUT < OUT=SAS-data-set >< options > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in
the input data set and, optionally, the estimated linear predictors and their standard er-
ror estimates, the estimates of the cumulative or individual response probabilities, and
the confidence limits for the cumulative probabilities. Regression diagnostic statis-
tics and estimates of cross validated response probabilities are also available for bi-
nary response models. Formulas for the statistics are given in the“Linear Predictor,
Predicted Probability, and Confidence Limits”section on page 2350, the“Regression
Diagnostics”section on page 2359, and, for conditional logistic regression, in the
“Conditional Logistic Regression”section on page 2365.

If you use thesingle-trial syntax, the data set also contains a variable named

–LEVEL– , which indicates the level of the response that the given row of output is
referring to. For instance, the value of the cumulative probability variable is the prob-
ability that the response variable is as large as the corresponding value of–LEVEL– .
For details, see the section“OUT= Output Data Set in the OUTPUT Statement”on
page 2376.

The estimated linear predictor, its standard error estimate, all predicted probabili-
ties, and the confidence limits for the cumulative probabilities are computed for all
observations in which the explanatory variables have no missing values, even if the
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response is missing. By adding observations with missing response values to the in-
put data set, you can compute these statistics for new observations or for settings of
the explanatory variables not present in the data without affecting the model fit.

OUT= SAS-data-set
names the output data set. If you omit the OUT= option, the output data set is created
and given a default name using the DATAn convention.

The following sections explain options in the OUTPUT statement, divided intostatis-
tic options for any type of categorical responses, statistic options only for binary re-
sponse, andother options. The statistic options specify the statistics to be included
in the output data set and name the new variables that contain the statistics. If a
STRATA statement is specified, only thePREDICTED=, DFBETAS=, andH= op-
tions are available; see the“Regression Diagnostic Details”section on page 2367 for
details.

Statistic Options for Any Type of Categorical Response

LOWER=name
L=name

names the variable containing the lower confidence limits forπ, whereπ is the prob-
ability of the event response ifevents/trialssyntax orsingle-trial syntax with binary
response is specified; for a cumulative model,π is cumulative probability (that is, the
probability that the response is less than or equal to the value of–LEVEL–); for the
generalized logit model, it is the individual probability (that is, the probability that
the response category is represented by the value of–LEVEL–). See theALPHA=
option to set the confidence level.

PREDICTED=name
PRED=name
PROB=name
P=name

names the variable containing the predicted probabilities. For theevents/trialssyntax
or single-trial syntax with binary response, it is the predicted event probability. For
a cumulative model, it is the predicted cumulative probability (that is, the probability
that the response variable is less than or equal to the value of–LEVEL–); and for
the generalized logit model, it is the predicted individual probability (that is, the
probability of the response category represented by the value of–LEVEL–).

PREDPROBS=(keywords)
requests individual, cumulative, or cross validated predicted probabilities.
Descriptions of thekeywordsare as follows.

INDIVIDUAL | I requests the predicted probability of each response level. For a
response variableY with three levels, 1, 2, and 3, the individual
probabilities are Pr(Y=1), Pr(Y=2), and Pr(Y=3).

CUMULATIVE | C requests the cumulative predicted probability of each response
level. For a response variableY with three levels, 1,2, and 3, the
cumulative probabilities are Pr(Y≤1), Pr(Y≤2), and Pr(Y≤3). The
cumulative probability for the last response level always has the
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constant value of 1. For generalized logit models, the cumulative
predicted probabilities are not computed and are set to missing.

CROSSVALIDATE | XVALIDATE | X requests the cross validated individual pre-
dicted probability of each response level. These probabilities are
derived from the leave-one-out principle; that is, dropping the data
of one subject and reestimating the parameter estimates. PROC
LOGISTIC uses a less expensive one-step approximation to com-
pute the parameter estimates. This option is only valid for binary
response models; for nominal and ordinal models, the cross vali-
dated probabilities are not computed and are set to missing.

See the“Details of the PREDPROBS= Option”section on page 2322 at the end of
this section for further details.

STDXBETA=name
names the variable containing the standard error estimates ofXBETA (the definition
of which follows).

UPPER=name
U=name

names the variable containing the upper confidence limits forπ, whereπ is the prob-
ability of the event response ifevents/trialssyntax orsingle-trial syntax with binary
response is specified; for a cumulative model,π is cumulative probability (that is, the
probability that the response is less than or equal to the value of–LEVEL–); for the
generalized logit model, it is the individual probability (that is, the probability that
the response category is represented by the value of–LEVEL–). See theALPHA=
option to set the confidence level.

XBETA=name
names the variable containing the estimates of the linear predictorαi + β′x, wherei
is the corresponding ordered value of–LEVEL– .

Statistic Options Only for Binary Response

C=name
specifies the confidence interval displacement diagnostic that measures the influence
of individual observations on the regression estimates.

CBAR=name
specifies the another confidence interval displacement diagnostic, which measures
the overall change in the global regression estimates due to deleting an individual
observation.

DFBETAS= –ALL –
DFBETAS=var-list

specifies the standardized differences in the regression estimates for assessing the ef-
fects of individual observations on the estimated regression parameters in the fitted
model. You can specify a list of up tos + 1 variable names, wheres is the num-
ber of explanatory variables in the MODEL statement, or you can specify just the
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keyword –ALL –. In the former specification, the first variable contains the stan-
dardized differences in the intercept estimate, the second variable contains the stan-
dardized differences in the parameter estimate for the first explanatory variable in
the MODEL statement, and so on. In the latter specification, the DFBETAS statis-
tics are named DFBETA–xxx , wherexxx is the name of the regression parame-
ter. For example, if the model contains two variables X1 and X2, the specifica-
tion DFBETAS=–ALL – produces three DFBETAS statistics: DFBETA–Intercept,
DFBETA–X1, and DFBETA–X2. If an explanatory variable is not included in the
final model, the corresponding output variable named in DFBETAS=var-list contains
missing values.

DIFCHISQ=name
specifies the change in the chi-square goodness-of-fit statistic attributable to deleting
the individual observation.

DIFDEV=name
specifies the change in the deviance attributable to deleting the individual observation.

H=name
specifies the diagonal element of the hat matrix for detecting extreme points in the
design space.

RESCHI=name
specifies the Pearson (Chi) residual for identifying observations that are poorly ac-
counted for by the model.

RESDEV=name
specifies the deviance residual for identifying poorly fitted observations.

Other Options

You can specify the following option after a slash.

ALPHA= α
sets the level of significanceα for 100(1−α)% confidence limits for the appropriate
response probabilities. The valueα must be between 0 and 1. By default,α is equal
to the value of theALPHA= option in the PROC LOGISTIC statement, or 0.05 if that
option is not specified.

Details of the PREDPROBS= Option

You can request any of the three given types of predicted probabilities. For example,
you can request both the individual predicted probabilities and the cross validated
probabilities by specifying PREDPROBS=(I X).

When you specify the PREDPROBS= option, two automatic variables–FROM– and

–INTO– are included for thesingle-trial syntax and only one variable,–INTO– , is
included for theevents/trialssyntax. The–FROM– variable contains the formatted
value of the observed response. The variable–INTO– contains the formatted value
of the response level with the largest individual predicted probability.

If you specify PREDPROBS=INDIVIDUAL, the OUTPUT data set containsk addi-
tional variables representing the individual probabilities, one for each response level,
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wherek is the maximum number of response levels across all BY-groups. The names
of these variables have the formIP–xxx, wherexxx represents the particular level.
The representation depends on the following situations.

• If you specifyevents/trialssyntax,xxx is either ‘Event’ or ‘Nonevent’. Thus,
the variable containing the event probabilities is namedIP–Event and the vari-
able containing the nonevent probabilities is namedIP–Nonevent.

• If you specify thesingle-trial syntax with more than one BY group,xxx is
1 for the first ordered level of the response, 2 for the second ordered level
of the response,. . ., and so forth, as given in the “Response Profile” table.
The variable containing the predicted probabilities Pr(Y=1) is namedIP–1,
whereY is the response variable. Similarly,IP–2 is the name of the variable
containing the predicted probabilities Pr(Y=2), and so on.

• If you specify thesingle-trial syntax with no BY-group processing,xxx is the
left-justified formatted value of the response level (the value may be truncated
so thatIP–xxx does not exceed 32 characters.) For example, ifY is the re-
sponse variable with response levels ‘None’, ‘Mild’, and ‘Severe’, the vari-
ables representing individual probabilities Pr(Y=’None’), P(Y=’Mild’), and
P(Y=’Severe’) are namedIP–None, IP–Mild, andIP–Severe, respectively.

If you specify PREDPROBS=CUMULATIVE, the OUTPUT data set containsk ad-
ditional variables representing the cumulative probabilities, one for each response
level, wherek is the maximum number of response levels across all BY-groups.
The names of these variables have the formCP–xxx, where xxx represents the
particular response level. The naming convention is similar to that given by
PREDPROBS=INDIVIDUAL. The PREDPROBS=CUMULATIVE values are the
same as those output by the PREDICT=keyword, but are arranged in variables on
each output observation rather than in multiple output observations.

If you specify PREDPROBS=CROSSVALIDATE, the OUTPUT data set contains
k additional variables representing the cross validated predicted probabilities of
the k response levels, wherek is the maximum number of response levels across
all BY-groups. The names of these variables have the formXP–xxx, wherexxx
represents the particular level. The representation is the same as that given by
PREDPROBS=INDIVIDUAL except that for theevents/trialssyntax there are four
variables for the cross validated predicted probabilities instead of two:

XP–EVENT–R1E is the cross validated predicted probability of an event when a
current event trial is removed.

XP–NONEVENT–R1E is the cross validated predicted probability of a nonevent
when a current event trial is removed.

XP–EVENT–R1N is the cross validated predicted probability of an event when a
current nonevent trial is removed.

XP–NONEVENT–R1N is the cross validated predicted probability of a nonevent
when a current nonevent trial is removed.
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The cross validated predicted probabilities are precisely those used in the CTABLE
option. See the“Predicted Probability of an Event for Classification”section on page
2352 for details of the computation.

SCORE Statement

SCORE < options > ;

The SCORE statement creates a data set that contains all the data in theDATA=
data set together with posterior probabilities and, optionally, prediction confidence
intervals. Fit statistics are displayed on request. If you have binary response data, the
SCORE statement can be used to create the OUTROC= data set containing data for
the ROC curve. You can specify several SCORE statements. FREQ, WEIGHT, and
BY statements can be used with the SCORE statements.

See the“Scoring Data Sets”section on page 2362 for more information, and see
Example 42.13on page 2462 for an illustration of how to use this statement.

You can specify the following options:

ALPHA= α
specifies the significance levelα for 100(1 − α)% confidence intervals. By default,
α is equal to the value of theALPHA= option in the PROC LOGISTIC statement, or
0.05 if that option is not specified. This option has no effect unless the CLM option
in the SCORE statement is requested.

CLM
outputs the Wald-test-based confidence limits for the predicted probabilities. This
option is not available when theINMODEL= data set is created with theNOCOV
option.

DATA=SAS-data-set
names the SAS data set that you want to score. If you omit the DATA= option in
the SCORE statement, then scoring is performed on theDATA= input data set in the
PROC LOGISTIC statement, if specified; otherwise, the DATA=–LAST– data set is
used.

It is not necessary for the DATA= data set in the SCORE statement to contain the
response variable unless you are specifying theFITSTAT or OUTROC=option.

Only those variables involved in the fitted model effects are required in the DATA=
data set in the SCORE statement. For example, the following code uses forward
selection to select effects.

proc logistic data=Neuralgia outmodel=sasuser.Model;
class Treatment Sex;
model Pain(event=’Yes’)= Treatment|Sex Age

/ selection=forward sle=.01;
run;
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SupposeTreatment andAge are the effects selected for the final model. You can
score a data set which does not contain the variableSex since the effectSex is not
in the model that the scoring is based on.

proc logistic inmodel=sasuser.Model;
score data=Neuralgia(drop=Sex);

run;

FITSTAT
displays a table of fit statistics. Four statistics are computed: total frequency, total
weight, log likelihood, and misclassification rate.

OUT=SAS-data-set
names the SAS data set that contains the predicted information. If you omit the OUT=
option, the output data set is created and given a default name using the DATAn
convention.

OUTROC=SAS-data-set
names the SAS data set that contains the ROC curve for theDATA= data set. The
ROC curve is computed only for binary response data. See the section“OUTROC=
Output Data Set”on page 2378 for the list of variables in this data set.

PRIOR=SAS-data-set
names the SAS data set that contains the priors of the response categories. The priors
may be values proportional to the prior probabilities; thus, they do not necessarily
sum to one. This data set should include a variable named–PRIOR– that contains the
prior probabilities. For events/trials MODEL syntax, this data set should also include
an –OUTCOME– variable that contains the values EVENT and NONEVENT; for
single-trial MODEL syntax, this data set should include the response variable that
contains the unformatted response categories. SeeExample 42.13on page 2462 for
an example.

PRIOREVENT=value
specifies the prior event probability for a binary response model. If both PRIOR= and
PRIOREVENT= options are specified, the PRIOR= option takes precedence.

ROCEPS=value
specifies the criterion for grouping estimated event probabilities that are close to each
other for the ROC curve. In each group, the difference between the largest and the
smallest estimated event probability does not exceed the given value. Thevaluemust
be between 0 and 1; the default value is 1E−4. The smallest estimated probability
in each group serves as a cutpoint for predicting an event response. The ROCEPS=
option has no effect if theOUTROC=option is not specified.
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STRATA Statement

STRATA variable <(option)>< variable <(option)>...>< / options > ;

The STRATA statement names thevariablesthat definestrataor matched setsto use
in a stratified conditional logistic regressionof binary response data. Observations
having the same variable levels are in the same matched set. At least one variable
must be specified to invoke the stratified analysis, and the usual unconditional asymp-
totic analysis is not performed. The stratified logistic model has the form

logit(πhi) = αh + x′hiβ

whereπhi is the event probability for theith observation in stratumh having covari-
atesxhi, and where the stratum-specific interceptsαh are the nuisance parameters
which are to be conditioned out.

STRATA variables can also be specified in the MODEL statement as classification or
continuous covariates; however, the effects are nondegenerate only when crossed with
a non-stratification variable. Specifying several STRATA statements is the same as
specifying one STRATA statement containing all the strata variables. The STRATA
variables can be either character or numeric, and the formatted values of the STRATA
variables determine the levels. Thus, you can use also use formats to group values
into levels. See the discussion of the FORMAT procedure in theSAS Procedures
Guide.

If an EXACT statement is also specified, then a stratifiedexactconditional logistic
regression is performed.

The SCORE and WEIGHT statements are not available with a STRATA state-
ment. The following MODEL options are also not supported with a STRATA
statement: CLPARM=PL, CLODDS=PL, CTABLE, LACKFIT, LINK=, NOFIT,
OUTMODEL=, OUTROC=, and SCALE=.

The “Strata Summary” table is displayed by default; it displays the number of strata
which have a specific number of events and nonevents. For example, if you are
analyzing a 1:5 matched study, this table enables you to verify that every stratum in
the analysis has exactly one event and five non-events. Strata containing only events
or only non-events are reported in this table, but such strata are uninformative and are
not used in the analysis. (Note that you can use the response variable optionEVENT=
to identify the events; otherwise, the first ordered response category is the event.)

The following option can be specified for a stratification variable by enclosing the
option in parentheses after the variable name, or it can be specified globally for all
STRATA variables after a slash (/).

MISSING
treats missing values (‘.’, ‘.A’,...,‘.Z’ for numeric variables and blanks for character
variables) as valid STRATA variable values.

The following strata options are also available after the slash.
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NOSUMMARY
suppresses the display of the “Strata Summary” table.

INFO
displays the “Strata Information” table, which includes the stratum number, levels of
the STRATA variables that define the stratum, the number of events, the number of
nonevents, and the total frequency for each stratum. Since the number of strata can
be very large, this table is only displayed on request.

TEST Statement

< label: > TEST equation1 < , . . . , < equationk >>< / option > ;

The TEST statement tests linear hypotheses about the regression coefficients. The
Wald test is used to test jointly the null hypotheses (H0:Lθ = c) specified in a single
TEST statement. Whenc = 0 you should specify aCONTRASTstatement instead.

Eachequationspecifies a linear hypothesis (a row of theL matrix and the corre-
sponding element of thec vector); multipleequationsare separated by commas. The
label, which must be a valid SAS name, is used to identify the resulting output and
should always be included. You can submit multiple TEST statements.

The form of anequationis as follows:

term < ±term . . . > < = ±term < ±term . . . >>

whereterm is a parameter of the model, or a constant, or a constant times a param-
eter. For a binary response model, the intercept parameter is named INTERCEPT;
for an ordinal response model, the intercept parameters are named INTERCEPT,
INTERCEPT2, INTERCEPT3, and so on. See the“Parameter Names in the
OUTEST= Data Set”section on page 2375 for details on parameter naming con-
ventions. When no equal sign appears, the expression is set to 0. The following code
illustrates possible uses of the TEST statement:

proc logistic;
model y= a1 a2 a3 a4;
test1: test intercept + .5 * a2 = 0;
test2: test intercept + .5 * a2;
test3: test a1=a2=a3;
test4: test a1=a2, a2=a3;

run;

Note that the first and second TEST statements are equivalent, as are the third and
fourth TEST statements.

You can specify the following option in the TEST statement after a slash(/).

PRINT
displays intermediate calculations in the testing of the null hypothesisH0:Lθ =
c. This includesLV̂(θ̂)L′ bordered by(Lθ̂ − c) and [LV̂(θ̂)L′]−1 bordered by
[LV̂(θ̂)L′]−1(Lθ̂−c), whereθ̂ is the maximum likelihood estimator ofθ andV̂(θ̂)
is the estimated covariance matrix ofθ̂.
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For more information, see the“Testing Linear Hypotheses about the Regression
Coefficients”section on page 2358.

UNITS Statement

UNITS independent1 = list1 < . . . independentk = listk >< / option > ;

The UNITS statement enables you to specify units of change for the continuous ex-
planatory variables so that customized odds ratios can be estimated. An estimate
of the corresponding odds ratio is produced for each unit of change specified for an
explanatory variable. The UNITS statement is ignored for CLASS variables. If the
CLODDS= option is specified in the MODEL statement, the corresponding confi-
dence limits for the odds ratios are also displayed.

The termindependentis the name of an explanatory variable andlist represents a list
of units of change, separated by spaces, that are of interest for that variable. Each
unit of change in a list has one of the following forms:

• number

• SD or−SD

• number* SD

wherenumberis any nonzero number, and SD is the sample standard deviation of the
corresponding independent variable. For example,X = −2 requests an odds ratio
that represents the change in the odds when the variableX is decreased by two units.
X = 2∗SD requests an estimate of the change in the odds whenX is increased by
two sample standard deviations.

You can specify the following option in the UNITS statement after a slash(/).

DEFAULT= list
gives a list of units of change for all explanatory variables that are not specified in
the UNITS statement. Each unit of change can be in any of the forms described
previously. If the DEFAULT= option is not specified, PROC LOGISTIC does not
produce customized odds ratio estimates for any explanatory variable that is not listed
in the UNITS statement.

For more information, see the“Odds Ratio Estimation”section on page 2347.

WEIGHT Statement

WEIGHT variable < / option > ;

When a WEIGHT statement appears, each observation in the input data set is
weighted by the value of the WEIGHT variable. The values of the WEIGHT vari-
able can be nonintegral and are not truncated. Observations with negative, zero, or
missing values for the WEIGHT variable are not used in the model fitting. When the
WEIGHT statement is not specified, each observation is assigned a weight of 1.

If a SCOREstatement is specified, then the WEIGHT variable is used for computing
fit statistics and the ROC curve, but it is not required for scoring. If theDATA= data
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set in the SCORE statement does not contain the WEIGHT variable, the weights are
assumed to be 1 and a warning message is issued in the LOG. If you fit a model and
perform the scoring in the same run, the same WEIGHT variable is used for fitting
and scoring. If you fit a model in a previous run and input it with theINMODEL=
option in the current run, then the WEIGHT variable can be different from the one
used in the previous run; however, if a WEIGHT variable was not specified in the
previous run you can still specify a WEIGHT variable in the current run.

The following option can be added to the WEIGHT statement after a slash (/).

NORMALIZE
NORM

causes the weights specified by the WEIGHT variable to be normalized so that they
add up to the actual sample size. With this option, the estimated covariance matrix of
the parameter estimators is invariant to the scale of the WEIGHT variable.

Details

Missing Values
Any observation with missing values for the response, offset, strata, or explanatory
variables is excluded from the analysis; however, missing values are valid for vari-
ables specified with the MISSING option in theCLASSor STRATA statements. The
estimated linear predictor and its standard error estimate, the fitted probabilities and
confidence limits, and the regression diagnostic statistics are not computed for any
observation with missing offset or explanatory variable values. However, if only the
response value is missing, the linear predictor, its standard error, the fitted individual
and cumulative probabilities, and confidence limits for the cumulative probabilities
can be computed and output to a data set using the OUTPUT statement.

Response Level Ordering
Response level ordering is important because, by default, PROC LOGISTIC models
the probability of response levels withlower Ordered Value. Ordered Values are
assigned to response levels in ascending sorted order (that is, the lowest response
level is assigned Ordered Value 1, the next lowest is assigned Ordered Value 2, and
so on) and are displayed in the “Response Profiles” table. If your response variable
Y takes values in{1, . . . , k + 1}, then, by default, the functions modeled with the
cumulative model are

logit(Pr(Y ≤ i|x)), i = 1, . . . , k

and for the generalized logit model the functions modeled are

log
(

Pr(Y = i|x)
Pr(Y = k + 1|x)

)
, i = 1, . . . , k

where the highest Ordered ValueY = k + 1 is the reference level. You can change
which probabilities are modeled by specifying theEVENT=, REF=, DESCENDING,
or ORDER=response variable options in the MODEL statement.
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For binary response data with event and nonevent categories, if your event category
has a higher Ordered Value, then the nonevent is modeled and, since the default
response function modeled is

logit(π) = log
(

π

1− π

)
whereπ is the probability of the response level assigned Ordered Value 1, and since

logit(π) = −logit(1− π)

the effect of reversing the order of the two response values is to change the signs of
α andβ in the model logit(π) = α+ β′x.

For example, suppose the binary response variableY takes the values 1 and 0 for event
and nonevent, respectively, andExposure is the explanatory variable. By default,
PROC LOGISTIC assigns Ordered Value 1 to response levelY=0, and Ordered Value
2 to response levelY=1. As a result, PROC LOGISTIC models the probability of
the nonevent (Ordered Value=1) category. To model the event without changing the
values of the variableY, you can do the following:

• Explicitly state which response level is to be modeled using the response vari-
able optionEVENT= in the MODEL statement,

model Y(event=’1’) = Exposure;

• Specify the response variable optionREF= in the MODEL statement as the
nonevent category for the response variable. This option is most useful for
generalized logit models.

model Y(ref=’0’) = Exposure;

• Specify the response variable optionDESCENDINGin the MODEL statement,

model Y(descending)=Exposure;

• Assign a format toY such that the first formatted value (when the formatted
values are put in sorted order) corresponds to the event. For this example,Y=1
is assigned formatted value ‘event’ andY=0 is assigned formatted value ‘non-
event’. SinceORDER=FORMATTED by default, Ordered Value 1 is assigned
to response levelY=1 so the procedure models the event.

proc format;
value Disease 1=’event’ 0=’nonevent’;

run;
proc logistic;

format Y Disease.;
model Y=Exposure;

run;
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CLASS Variable Parameterization

Consider a model with one CLASS variableA with four levels, 1, 2, 5, and 7. Details
of the possible choices for the PARAM= option follow.

EFFECT Three columns are created to indicate group membership of the
nonreference levels. For the reference level, all three design vari-
ables have a value of−1. For instance, if the reference level is 7
(REF=’7’), the design matrix columns forA are as follows.

Effect Coding
Design Matrix

A A1 A2 A5
1 1 0 0
2 0 1 0
5 0 0 1
7 −1 −1 −1

Parameter estimates of CLASS main effects using the effect coding
scheme estimate the difference in the effect of each nonreference
level compared to the average effect over all 4 levels.

Caution: PROC LOGISTIC initially parameterizes the CLASS
variables by looking at the levels of the variables across the com-
plete data set. If you have anunbalancedreplication of levels
across variables, then the design matrix and the parameter interpre-
tation may be different from what you expect. For instance, sup-
pose that in addition to the four-level variableA discussed above,
you have another variableB with two levels, where the fourth level
of A only occurs with the first level ofB. If your model contains
the effectA(B), then the design forA within the second level ofB
will not be a differential effect. In particular, the design will look
like the following.

Effect Coding
Design Matrix

A(B=1) A(B=2)
B A A1 A2 A5 A1 A2 A5
1 1 1 0 0 0 0 0
1 2 0 1 0 0 0 0
1 5 0 0 1 0 0 0
1 7 −1 −1 −1 0 0 0
2 1 0 0 0 1 0 0
2 2 0 0 0 0 1 0
2 5 0 0 0 0 0 1
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PROC LOGISTIC will then detect linear dependency among the
last three design variables and set the parameter for A5(B=2) to
zero, resulting in an interpretation of these parameters as if they
were reference- or dummy-coded. The GLM or REFERENCE pa-
rameterization may be more appropriate for such problems.

GLM As in PROC GLM, four columns are created to indicate group
membership. The design matrix columns forA are as follows.

GLM Coding
Design Matrix

A A1 A2 A5 A7
1 1 0 0 0
2 0 1 0 0
5 0 0 1 0
7 0 0 0 1

Parameter estimates of CLASS main effects using the GLM cod-
ing scheme estimate the difference in the effects of each level com-
pared to the last level.

ORDINAL Three columns are created to indicate group membership of the
higher levels of the effect. For the first level of the effect (which
for A is 1), all three design variables have a value of 0. The design
matrix columns forA are as follows.

Ordinal Coding
Design Matrix

A A2 A5 A7
1 0 0 0
2 1 0 0
5 1 1 0
7 1 1 1

The first level of the effect is a control or baseline level. Parameter
estimates of CLASS main effects using the ORDINAL coding
scheme estimate the effect on the response as the ordinal factor
is set to each succeeding level. When the parameters for an ordinal
main effect have the same sign, the response effect is monotonic
across the levels.
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POLYNOMIAL

POLY Three columns are created. The first represents the linear term (x),
the second represents the quadratic term (x2), and the third repre-
sents the cubic term (x3), wherex is the level value. If the CLASS
levels are not numeric, they are translated into 1, 2, 3,. . . accord-
ing to their sorting order. The design matrix columns forA are as
follows.

Polynomial Coding
Design Matrix

A APOLY1 APOLY2 APOLY3
1 1 1 1
2 2 4 8
5 5 25 125
7 7 49 343

REFERENCE

REF Three columns are created to indicate group membership of the
nonreference levels. For the reference level, all three design vari-
ables have a value of 0. For instance, if the reference level is 7
(REF=’7’), the design matrix columns forA are as follows.

Reference Coding
Design Matrix

A A1 A2 A5
1 1 0 0
2 0 1 0
5 0 0 1
7 0 0 0

Parameter estimates of CLASS main effects using the reference
coding scheme estimate the difference in the effect of each nonref-
erence level compared to the effect of the reference level.

ORTHEFFECT The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=EFFECT. The design ma-
trix columns forA are as follows.

Orthogonal Effect Coding
Design Matrix

A AOEFF1 AOEFF2 AOEFF3
1 1.41421 −0.81650 −0.57735
2 0.00000 1.63299 −0.57735
5 0.00000 0.00000 1.73205
7 −1.41421 −0.81649 −0.57735
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ORTHORDINAL The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=ORDINAL. The design
matrix columns forA are as follows.

Orthogonal Ordinal Coding
Design Matrix

A AOORD1 AOORD2 AOORD3
1 −1.73205 0.00000 0.00000
2 0.57735 −1.63299 0.00000
5 0.57735 0.81650 −1.41421
7 0.57735 0.81650 1.41421

ORTHPOLY The columns are obtained by applying the Gram-Schmidt orthog-
onalization to the columns for PARAM=POLY. The design matrix
columns forA are as follows.

Orthogonal Polynomial Coding
Design Matrix

A AOPOLY1 AOPOLY2 AOPOLY5
1 −1.153 0.907 −0.921
2 −0.734 −0.540 1.473
5 0.524 −1.370 −0.921
7 1.363 1.004 0.368

ORTHREF The columns are obtained by applying the Gram-Schmidt orthogo-
nalization to the columns for PARAM=REFERENCE. The design
matrix columns forA are as follows.

Orthogonal Reference Coding
Design Matrix

A AOREF1 AOREF2 AOREF3
1 1.73205 0.00000 0.00000
2 −0.57735 1.63299 0.00000
5 −0.57735 −0.81650 1.41421
7 −0.57735 −0.81650 −1.41421

Link Functions and the Corresponding Distributions

Four link functions are available in the LOGISTIC procedure. The logit function is
the default. To specify a different link function, use theLINK= option in the MODEL
statement. The link functions and the corresponding distributions are as follows:
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• The logit function

g(p) = log(p/(1− p))

is the inverse of the cumulative logistic distribution function, which is

F (x) = 1/(1 + exp(−x)) = exp(x)/(1 + exp(x))

• The probit (or normit) function

g(p) = Φ−1(p)

is the inverse of the cumulative standard normal distribution function, which is

F (x) = Φ(x) = (2π)−1/2

∫ x

−∞
exp(−z2/2)dz

Traditionally, the probit function contains the additive constant 5, but through-
out PROC LOGISTIC, the terms probit and normit are used interchangeably.

• The complementary log-log function

g(p) = log(− log(1− p))

is the inverse of the cumulative extreme-value function (also called the
Gompertz distribution), which is

F (x) = 1− exp(− exp(x))

• The generalized logit function extends the binary logit link to a vector of levels
(p1, . . . , pk+1) by contrasting each level with a fixed level

g(pi) = log(pi/pk+1) i = 1, . . . , k

The variances of the normal, logistic, and extreme-value distributions are not the
same. Their respective means and variances are

Distribution Mean Variance
Normal 0 1
Logistic 0 π2/3
Extreme-value −γ π2/6

whereγ is the Euler constant. In comparing parameter estimates using different link
functions, you need to take into account the different scalings of the corresponding
distributions and, for the complementary log-log function, a possible shift in location.
For example, if the fitted probabilities are in the neighborhood of 0.1 to 0.9, then the
parameter estimates using the logit link function should be aboutπ/

√
3 larger than

the estimates from the probit link function.
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Determining Observations for Likelihood Contributions
If you useevents/trialsMODEL syntax, each observation is split into two obser-
vations. One has response value 1 with a frequency equal to the frequency of the
original observation (which is 1 if the FREQ statement is not used) times the value
of the eventsvariable. The other observation has response value 2 and a frequency
equal to the frequency of the original observation times the value of (trials − events).
These two observations will have the same explanatory variable values and the same
FREQ and WEIGHT values as the original observation.

For eithersingle-trial or events/trialssyntax, letj index all observations. In other
words, forsingle-trialsyntax,j indexes the actual observations. And, forevents/trials
syntax,j indexes the observations after splitting (as described previously). If your
data set has 30 observations and you usesingle-trial syntax,j has values from 1 to
30; if you useevents/trialssyntax,j has values from 1 to 60.

Suppose the response variable in a cumulative response model can take on the ordered
values1, . . . , k, k+1 wherek is an integer≥ 1. The likelihood for thejth observation
with ordered response valueyj and explanatory variables vectorxj is given by

Lj =


F (α1 + β′xj) yj = 1
F (αi + β′xj)− F (αi−1 + β′xj) 1 < yj = i ≤ k
1− F (αk + β′xj) yj = k + 1

whereF (·) is the logistic, normal, or extreme-value distribution function,α1, . . . , αk

are ordered intercept parameters, andβ is the slope parameter vector.

For the generalized logit model, letting thek + 1st level be the reference level, the
interceptsα1, . . . , αk are unordered and the slope vectorβi varies with each logit.
The likelihood for thejth observation with ordered response valueyj and explanatory
variables vectorxj is given by

Lj = Pr(Y = yj |xj) =


eαi+x′jβi

1 +
∑k

m=1 e
αm+x′jβm

1 ≤ yj = i ≤ k

1

1 +
∑k

m=1 e
αm+x′jβm

yj = k + 1

Iterative Algorithms for Model-Fitting
Two iterative maximum likelihood algorithms are available in PROC LOGISTIC.
The default is the Fisher-scoring method, which is equivalent to fitting by iteratively
reweighted least squares. The alternative algorithm is the Newton-Raphson method.
Both algorithms give the same parameter estimates; however, the estimated covari-
ance matrix of the parameter estimators may differ slightly. This is due to the fact
that the Fisher-scoring method is based on the expected information matrix while the
Newton-Raphson method is based on the observed information matrix. In the case of
a binary logit model, the observed and expected information matrices are identical,
resulting in identical estimated covariance matrices for both algorithms. For a gener-
alized logit model, only the Newton-Raphson technique is available. You can use the
TECHNIQUE=option to select a fitting algorithm.



Iterative Algorithms for Model-Fitting � 2337

Iteratively Reweighted Least-Squares Algorithm (Fisher Scoring)

Consider the multinomial variableZj = (Z1j , . . . , Zkj)′ such that

Zij =
{

1 if Yj = i
0 otherwise

With πij denoting the probability that thejth observation has response valuei, the
expected value ofZj is πj = (π1j , . . . , πkj)′, andπ(k+1)j = 1 −

∑k
i=1 πij . The

covariance matrix ofZj is Vj , which is the covariance matrix of a multinomial ran-
dom variable for one trial with parameter vectorπj . Letθ be the vector of regression
parameters; in other words,θ = (α1, . . . , αk,β

′)′. Let Dj be the matrix of par-
tial derivatives ofπj with respect toθ. The estimating equation for the regression
parameters is

∑
j

D′
jWj(Zj − πj) = 0

whereWj = wjfjV−
j , wj andfj are the WEIGHT and FREQ values of thejth

observation, andV−
j is a generalized inverse ofVj . PROC LOGISTIC choosesV−

j

as the inverse of the diagonal matrix withπj as the diagonal.

With a starting value ofθ0, the maximum likelihood estimate ofθ is obtained itera-
tively as

θm+1 = θm + (
∑

j

D′
jWjDj)−1

∑
j

D′
jWj(Zj − πj)

whereDj , Wj , andπj are evaluated atθm. The expression after the plus sign is
the step size. If the likelihood evaluated atθm+1 is less than that evaluated atθm,
thenθm+1 is recomputed by step-halving or ridging. The iterative scheme continues
until convergence is obtained, that is, untilθm+1 is sufficiently close toθm. Then the
maximum likelihood estimate ofθ is θ̂ = θm+1.

The covariance matrix of̂θ is estimated by

ĉov(θ̂) = (
∑

j

D̂′
jŴjD̂j)−1

whereD̂j andŴj are, respectively,Dj andWj evaluated at̂θ.

By default, starting values are zero for the slope parameters, and for the intercept
parameters, starting values are the observed cumulative logits (that is, logits of the
observed cumulative proportions of response). Alternatively, the starting values may
be specified with theINEST=option.
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Newton-Raphson Algorithm

For cumulative models, let the parameter vector beθ = (α1, . . . , αk,β
′)′, and for the

generalized logit model denoteθ = (α1, . . . , αk,β
′
1, . . . ,β

′
k)
′. The gradient vector

and the Hessian matrix are given, respectively, by

g =
∑

j

wjfj
∂lj
∂θ

H =
∑

j

−wjfj
∂2lj

∂θ2

where lj = logLj is the log likelihood for thejth observation. With a starting
value ofθ0, the maximum likelihood estimatêθ of θ is obtained iteratively until
convergence is obtained:

θm+1 = θm + H−1g

whereH andg are evaluated atθm. If the likelihood evaluated atθm+1 is less than
that evaluated atθm, thenθm+1 is recomputed by step-halving or ridging.

The covariance matrix of̂θ is estimated by

ĉov(θ̂) = Ĥ−1

whereĤ is H evaluated at̂θ.

Convergence Criteria

Four convergence criteria are allowed, namely,ABSFCONV=, FCONV=, GCONV=,
andXCONV=. If you specify more than one convergence criterion, the optimization
is terminated as soon as one of the criteria is satisfied. If none of the criteria is
specified, the default is GCONV=1E−8.

If you specify aSTRATA statement, then all unspecified (or non-default) criteria are
also compared to zero. For example, only specifying the criterion XCONV=1e−8
but attaining FCONV=0 terminates the optimization even if the XCONV= criterion
is not satisfied, because the log likelihood has reached its maximum.

Existence of Maximum Likelihood Estimates

The likelihood equation for a logistic regression model does not always have a finite
solution. Sometimes there is a nonunique maximum on the boundary of the parameter
space, at infinity. The existence, finiteness, and uniqueness of maximum likelihood
estimates for the logistic regression model depend on the patterns of data points in
the observation space (Albert and Anderson 1984; Santner and Duffy 1986). The
existence checks are not performed for conditional logistic regression.
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Consider a binary response model. LetYj be the response of theith subject and
let xj be the vector of explanatory variables (including the constant 1 associated
with the intercept). There are three mutually exclusive and exhaustive types of data
configurations: complete separation, quasi-complete separation, and overlap.

Complete Separation There is a complete separation of data points if there
exists a vectorb that correctly allocates all observa-
tions to their response groups; that is,{

b′xj > 0 Yj = 1
b′xj < 0 Yj = 2

This configuration gives nonunique infinite estimates.
If the iterative process of maximizing the likelihood
function is allowed to continue, the log likelihood di-
minishes to zero, and the dispersion matrix becomes
unbounded.

Quasi-Complete Separation The data are not completely separable but there is a
vectorb such that{

b′xj ≥ 0 Yj = 1
b′xj ≤ 0 Yj = 2

and equality holds for at least one subject in each
response group. This configuration also yields non-
unique infinite estimates. If the iterative process of
maximizing the likelihood function is allowed to con-
tinue, the dispersion matrix becomes unbounded and
the log likelihood diminishes to a nonzero constant.

Overlap If neither complete nor quasi-complete separation ex-
ists in the sample points, there is an overlap of sample
points. In this configuration, the maximum likelihood
estimates exist and are unique.

Complete separation and quasi-complete separation are problems typically encoun-
tered with small data sets. Although complete separation can occur with any type of
data, quasi-complete separation is not likely with truly continuous explanatory vari-
ables.

The LOGISTIC procedure uses a simple empirical approach to recognize the data
configurations that lead to infinite parameter estimates. The basis of this approach is
that any convergence method of maximizing the log likelihood must yield a solution
giving complete separation, if such a solution exists. In maximizing the log likeli-
hood, there is no checking for complete or quasi-complete separation if convergence
is attained in eight or fewer iterations. Subsequent to the eighth iteration, the proba-
bility of the observed response is computed for each observation. If the probability
of the observed response is one for all observations, there is a complete separation
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of data points and the iteration process is stopped. If the complete separation of data
has not been determined and an observation is identified to have an extremely large
probability (≥0.95) of the observed response, there are two possible situations. First,
there is overlap in the data set, and the observation is an atypical observation of its
own group. The iterative process, if allowed to continue, will stop when a maxi-
mum is reached. Second, there is quasi-complete separation in the data set, and the
asymptotic dispersion matrix is unbounded. If any of the diagonal elements of the
dispersion matrix for the standardized observations vectors (all explanatory variables
standardized to zero mean and unit variance) exceeds 5000, quasi-complete separa-
tion is declared and the iterative process is stopped. If either complete separation or
quasi-complete separation is detected, a warning message is displayed in the proce-
dure output.

Checking for quasi-complete separation is less foolproof than checking for complete
separation. TheNOCHECK option in the MODEL statement turns off the process
of checking for infinite parameter estimates. In cases of complete or quasi-complete
separation, turning off the checking process typically results in the procedure fail-
ing to converge. The presence of a WEIGHT statement also turns off the checking
process.

Effect Selection Methods

Five effect-selectionmethods are available. The simplest method (and the default)
is SELECTION=NONE, for which PROC LOGISTIC fits the complete model as
specified in the MODEL statement. The other four methods are FORWARD for
forward selection, BACKWARD for backward elimination, STEPWISE for stepwise
selection, and SCORE for best subsets selection. These methods are specified with
the SELECTION= option in the MODEL statement. Intercept parameters are forced
to stay in the model unless theNOINT option is specified.

When SELECTION=FORWARD, PROC LOGISTIC first estimates parameters for
effects forced into the model. These effects are the intercepts and the firstn ex-
planatory effects in the MODEL statement, wheren is the number specified by the
START=or INCLUDE= option in the MODEL statement (n is zero by default). Next,
the procedure computes the score chi-square statistic for each effect not in the model
and examines the largest of these statistics. If it is significant at theSLENTRY=
level, the corresponding effect is added to the model. Once an effect is entered in
the model, it is never removed from the model. The process is repeated until none of
the remaining effects meet the specified level for entry or until theSTOP=value is
reached.

When SELECTION=BACKWARD, parameters for the complete model as specified
in the MODEL statement are estimated unless theSTART=option is specified. In that
case, only the parameters for the intercepts and the firstn explanatory effects in the
MODEL statement are estimated, wheren is the number specified by the START=
option. Results of the Wald test for individual parameters are examined. The least
significant effect that does not meet theSLSTAY= level for staying in the model is re-
moved. Once an effect is removed from the model, it remains excluded. The process
is repeated until no other effect in the model meets the specified level for removal or
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until the STOP=value is reached. Backward selection is often less successful than
forward or stepwise selection because the full model fit in the first step is the model
most likely to result in a complete or quasi-complete separation of response values as
described in the previous section.

The SELECTION=STEPWISE option is similar to the SELECTION=FORWARD
option except that effects already in the model do not necessarily remain. Effects
are entered into and removed from the model in such a way that each forward selec-
tion step may be followed by one or more backward elimination steps. The stepwise
selection process terminates if no further effect can be added to the model or if the ef-
fect just entered into the model is the only effect removed in the subsequent backward
elimination.

For SELECTION=SCORE, PROC LOGISTIC uses the branch and bound algorithm
of Furnival and Wilson (1974) to find a specified number of models with the highest
likelihood score (chi-square) statistic for all possible model sizes, from 1, 2, 3 effect
models, and so on, up to the single model containing all of the explanatory effects.
The number of models displayed for each model size is controlled by theBEST=
option. You can use theSTART= option to impose a minimum model size, and you
can use theSTOP=option to impose a maximum model size. For instance, with
BEST=3, START=2, and STOP=5, the SCORE selection method displays the best
three models (that is, the three models with the highest score chi-squares) containing
2, 3, 4, and 5 effects. The SELECTION=SCORE option is not available for models
with CLASS variables.

The optionsFAST, SEQUENTIAL, andSTOPREScan alter the default criteria for
entering or removing effects from the model when they are used with the FORWARD,
BACKWARD, or STEPWISE selection methods.

Model Fitting Information

Suppose the model containss explanatory effects. For thejth observation, let̂πj be
the estimated probability of the observed response. The three criteria displayed by
the LOGISTIC procedure are calculated as follows:

• −2 Log Likelihood:

−2 Log L = −2
∑

j

wjfj log(π̂j)

wherewj andfj are the weight and frequency values of thejth observation.
For binary response models usingevents/trialsMODEL syntax, this is equiva-
lent to

−2 Log L = −2
∑

j

wjfj{rj log(π̂j) + (nj − rj) log(1− π̂j)}

whererj is the number of events,nj is the number of trials, and̂πj is the
estimated event probability.
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• Akaike Information Criterion:

AIC = −2 Log L + 2p

wherep is the number of parameters in the model. For cumulative response
models,p = k + s wherek is the total number of response levels minus one,
ands is the number of explanatory effects. For the generalized logit model,
p = k(s+ 1).

• Schwarz Criterion:

SC= −2 Log L + p log(
∑

j

fj)

wherep is as defined previously.

The−2 Log Likelihood statistic has a chi-square distribution under the null hypothe-
sis (that all the explanatory effects in the model are zero) and the procedure produces
a p-value for this statistic. The AIC and SC statistics give two different ways of ad-
justing the−2 Log Likelihood statistic for the number of terms in the model and the
number of observations used. These statistics should be used when comparing differ-
ent models for the same data (for example, when you use the METHOD=STEPWISE
option in the MODEL statement); lower values of the statistic indicate a more desir-
able model.

Generalized Coefficient of Determination

Cox and Snell (1989, pp. 208–209) propose the following generalization of the coef-
ficient of determination to a more general linear model:

R2 = 1−
{
L(0)

L(θ̂)

} 2
n

whereL(0) is the likelihood of the intercept-only model,L(θ̂) is the likelihood of
the specified model, andn is the sample size. The quantityR2 achieves a maximum
of less than one for discrete models, where the maximum is given by

R2
max = 1− {L(0)}

2
n

Nagelkerke (1991) proposes the following adjusted coefficient, which can achieve a
maximum value of one:

R̃2 =
R2

R2
max

Properties and interpretation ofR2 andR̃2 are provided in Nagelkerke (1991). In the
“Testing Global Null Hypothesis: BETA=0” table,R2 is labeled as “RSquare” and
R̃2 is labeled as “Max-rescaled RSquare.” Use theRSQUAREoption to requestR2

andR̃2.
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Score Statistics and Tests

To understand the general form of the score statistics, letU(θ) be the vector of first
partial derivatives of the log likelihood with respect to the parameter vectorθ, and let
H(θ) be the matrix of second partial derivatives of the log likelihood with respect to
θ. That is,U(θ) is the gradient vector, andH(θ) is the Hessian matrix. LetI(θ) be
either−H(θ) or the expected value of−H(θ). Consider a null hypothesisH0. Let
θ̂0 be the MLE ofθ underH0. The chi-square score statistic for testingH0 is defined
by

U′(θ̂0)I−1(θ̂0)U(θ̂0)

and it has an asymptoticχ2 distribution withr degrees of freedom underH0, where
r is the number of restrictions imposed onθ byH0.

Residual Chi-Square

When you use SELECTION=FORWARD, BACKWARD, or STEPWISE, the pro-
cedure calculates a residual score chi-square score statistic and reports the statistic,
its degrees of freedom, and thep-value. This section describes how the statistic is
calculated.

Suppose there ares explanatory effects of interest. The full cumulative response
model has a parameter vector

θ = (α1, . . . , αk, β1, . . . , βs)′

whereα1, . . . , αk are intercept parameters, andβ1, . . . , βs are the common slope
parameters for the explanatory effects, and the full generalized logit model has a
parameter vector

θ = (α1, . . . , αk,β
′
1, . . . ,β

′
k)
′ with

β′i = (βi1, . . . , βis), i = 1, . . . , k

whereβij is the slope parameter for thejth effect in theith logit.

Consider the null hypothesisH0:βt+1 = . . . = βs = 0 wheret < s for the cu-
mulative response model, andH0:βi,t+1 = . . . = βis = 0, t < s, i = 1, . . . , k for
the generalized logit model. For the reduced model witht explanatory effects, let
α̂1, . . . , α̂k be the MLEs of the unknown intercept parameters, letβ̂1, . . . , β̂t be the

MLEs of the unknown slope parameters, and letβ̂
′
i(t) = (β̂i1, . . . , β̂it), i = 1, . . . , k

be those for the generalized logit model. The residual chi-square is the chi-square
score statistic testing the null hypothesisH0; that is, the residual chi-square is

U′(θ̂0)I−1(θ̂0)U(θ̂0)
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where for the cumulative response modelθ̂0 = (α̂1, . . . , α̂k, β̂1, . . . , β̂t, 0, . . . , 0)′,
and for the generalized logit modelθ̂0 = (α̂1, . . . , α̂k, β̂

′
1(t),0

′
(s−t), . . . β̂

′
k(t),0

′
(s−t))

′.
where0(s−t) denote a vector ofs− t zeros.

The residual chi-square has an asymptotic chi-square distribution withs−t degrees of
freedom (k(s− t) for the generalized logit model). A special case is the global score
chi-square, where the reduced model consists of thek intercepts and no explanatory
effects. The global score statistic is displayed in the “Testing Global Null Hypothesis:
BETA=0” table. The table is not produced when theNOFIT option is used, but the
global score statistic is displayed.

Testing Individual Effects Not in the Model

These tests are performed in the FORWARD or STEPWISE method, and are dis-
played when theDETAILS option is specified. In the displayed output, the tests are
labeled “Score Chi-Square” in the “Analysis of Effects Not in the Model” table and
in the “Summary of Stepwise (Forward) Selection” table. This section describes how
the tests are calculated.

Suppose thatk intercepts andt explanatory variables (sayv1, . . . , vt) have been fitted
to a model and thatvt+1 is another explanatory variable of interest. Consider a full
model with thek intercepts andt+1 explanatory variables (v1, . . . , vt, vt+1) and a re-
duced model withvt+1 excluded. The significance ofvt+1 adjusted forv1, . . . , vt can
be determined by comparing the corresponding residual chi-square with a chi-square
distribution with one degree of freedom (k degrees of freedom for the generalized
logit model).

Testing the Parallel Lines Assumption

For an ordinal response, PROC LOGISTIC performs a test of the parallel lines
assumption. In the displayed output, this test is labeled “Score Test for the
Equal Slopes Assumption” when theLINK= option is NORMIT or CLOGLOG.
When LINK=LOGIT, the test is labeled as “Score Test for the Proportional Odds
Assumption” in the output. For small sample sizes, this test may be too liberal
(Stokes, Davis, and Koch 2000). This section describes the methods used to calculate
the test.

For this test the number of response levels,k + 1, is assumed to be strictly greater
than 2. LetY be the response variable taking values1, . . . , k, k + 1. Suppose there
ares explanatory variables. Consider the general cumulative model without making
the parallel lines assumption

g(Pr(Y ≤ i | x)) = (1,x′)θi, 1 ≤ i ≤ k

whereg(·) is the link function, andθi = (αi, βi1, . . . , βis)′ is a vector of unknown
parameters consisting of an interceptαi ands slope parametersβi1, . . . , βis. The
parameter vector for this general cumulative model is

θ = (θ′1, . . . ,θ
′
k)
′
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Under the null hypothesis of parallelismH0:β1m = β2m = · · · = βkm, 1 ≤ m ≤ s,
there is a single common slope parameter for each of thes explanatory variables. Let
β1, . . . , βs be the common slope parameters. Letα̂1, . . . , α̂k and β̂1, . . . , β̂s be the
MLEs of the intercept parameters and the common slope parameters. Then, under
H0, the MLE ofθ is

θ̂0 = (θ̂
′
1, . . . , θ̂

′
k)
′ with θ̂i = (α̂i, β̂1, . . . , β̂s)′ 1 ≤ i ≤ k

and the chi-squared score statisticU′(θ̂0)I−1(θ̂0)U(θ̂0) has an asymptotic chi-
square distribution withs(k − 1) degrees of freedom. This tests the parallel lines
assumption by testing the equality of separate slope parameters simultaneously for
all explanatory variables.

Confidence Intervals for Parameters

There are two methods of computing confidence intervals for the regression param-
eters. One is based on the profile likelihood function, and the other is based on
the asymptotic normality of the parameter estimators. The latter is not as time-
consuming as the former, since it does not involve an iterative scheme; however,
it is not thought to be as accurate as the former, especially with small sample size.
You use theCLPARM= option to request confidence intervals for the parameters.

Likelihood Ratio-Based Confidence Intervals

The likelihood ratio-based confidence interval is also known as the profile likelihood
confidence interval. The construction of this interval is derived from the asymp-
totic χ2 distribution of the generalized likelihood ratio test (Venzon and Moolgavkar
1988). Suppose that the parameter vector isβ = (β0, β1, . . . , βs)′ and you want to
compute a confidence interval forβj . The profile likelihood function forβj = γ is
defined as

l∗j (γ) = max
β∈Bj(γ)

l(β)

whereBj(γ) is the set of allβ with the jth element fixed atγ, andl(β) is the log-
likelihood function forβ. If lmax = l(β̂) is the log likelihood evaluated at the
maximum likelihood estimatêβ, then2(lmax − l∗j (βj)) has a limiting chi-square
distribution with one degree of freedom ifβj is the true parameter value. Let
l0 = lmax − .5χ2

1(1 − α), whereχ2
1(1 − α) is the100(1 − α) percentile of the chi-

square distribution with one degree of freedom. A100(1 − α)% confidence interval
for βj is

{γ : l∗j (γ) ≥ l0}

The endpoints of the confidence interval are found by solving numerically for values
of βj that satisfy equality in the preceding relation. To obtain an iterative algorithm
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for computing the confidence limits, the log-likelihood function in a neighborhood of
β is approximated by the quadratic function

l̃(β + δ) = l(β) + δ′g +
1
2
δ′Vδ

whereg = g(β) is the gradient vector andV = V(β) is the Hessian matrix. The
incrementδ for the next iteration is obtained by solving the likelihood equations

d

dδ
{l̃(β + δ) + λ(e′jδ − γ)} = 0

whereλ is the Lagrange multiplier,ej is thejth unit vector, andγ is an unknown
constant. The solution is

δ = −V−1(g + λej)

By substituting thisδ into the equatioñl(β + δ) = l0, you can estimateλ as

λ = ±
(

2(l0 − l(β) + 1
2g

′V−1g)
e′jV−1ej

) 1
2

The upper confidence limit forβj is computed by starting at the maximum likelihood
estimate ofβ and iterating with positive values ofλ until convergence is attained.
The process is repeated for the lower confidence limit using negative values ofλ.

Convergence is controlled by valueε specified with the PLCONV= option in the
MODEL statement (the default value ofε is 1E−4). Convergence is declared on the
current iteration if the following two conditions are satisfied:

|l(β)− l0| ≤ ε

and

(g + λej)′V−1(g + λej) ≤ ε

Wald Confidence Intervals

Wald confidence intervals are sometimes called the normal confidence intervals. They
are based on the asymptotic normality of the parameter estimators. The100(1−α)%
Wald confidence interval forβj is given by

β̂j ± z1−α/2σ̂j

wherezp is the100pth percentile of the standard normal distribution,β̂j is the maxi-
mum likelihood estimate ofβj , andσ̂j is the standard error estimate ofβ̂j .
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Odds Ratio Estimation
Consider a dichotomous response variable with outcomesevent and nonevent.
Consider a dichotomous risk factor variable X that takes the value 1 if the risk factor
is present and 0 if the risk factor is absent. According to the logistic model, the log
odds function,g(X), is given by

g(X) ≡ log
(

Pr(event| X)
Pr(nonevent| X)

)
= β0 + β1X

The odds ratioψ is defined as the ratio of the odds for those with the risk factor
(X = 1) to the odds for those without the risk factor (X = 0). The log of the odds
ratio is given by

log(ψ) ≡ log(ψ(X = 1, X = 0)) = g(X = 1)− g(X = 0) = β1

The parameter,β1, associated with X represents the change in the log odds from
X = 0 toX = 1. So, the odds ratio is obtained by simply exponentiating the value
of the parameter associated with the risk factor. The odds ratio indicates how the odds
of eventchange as you changeX from 0 to 1. For instance,ψ = 2 means that the
odds of an event whenX = 1 are twice the odds of an event whenX = 0.

Suppose the values of the dichotomous risk factor are coded as constantsa and b
instead of 0 and 1. The odds whenX = a becomeexp(β0 +aβ1), and the odds when
X = b becomeexp(β0 + bβ1). The odds ratio corresponding to an increase inX
from a to b is

ψ = exp[(b− a)β1] = [exp(β1)]b−a ≡ [exp(β1)]c

Note that for anya and b such thatc = b − a = 1, ψ = exp(β1). So the odds
ratio can be interpreted as the change in the odds for any increase of one unit in the
corresponding risk factor. However, the change in odds for some amount other than
one unit is often of greater interest. For example, a change of one pound in body
weight may be too small to be considered important, while a change of 10 pounds
may be more meaningful. The odds ratio for a change inX from a to b is estimated
by raising the odds ratio estimate for a unit change inX to the power ofc = b− a as
shown previously.

For a polytomous risk factor, the computation of odds ratios depends on how the risk
factor is parameterized. For illustration, suppose thatRace is a risk factor with four
categories: White, Black, Hispanic, and Other.

For the effect parameterization scheme (PARAM=EFFECT) with White as the refer-
ence group, the design variables forRace are as follows.

Design Variables
Race X1 X2 X3

Black 1 0 0
Hispanic 0 1 0

Other 0 0 1
White −1 −1 −1
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The log odds for Black is

g(Black) = β0 + β1(X1 = 1) + β2(X2 = 0) + β3(X3 = 0)
= β0 + β1

The log odds for White is

g(White) = β0 + β1(X1 = −1) + β2(X2 = −1) + β3(X3 = −1))
= β0 − β1 − β2 − β3

Therefore, the log odds ratio of Black versus White becomes

log(ψ(Black,White)) = g(Black)− g(White)
= 2β1 + β2 + β3

For the reference cell parameterization scheme (PARAM=REF) with White as the
reference cell, the design variables for race are as follows.

Design Variables
Race X1 X2 X3

Black 1 0 0
Hispanic 0 1 0

Other 0 0 1
White 0 0 0

The log odds ratio of Black versus White is given by

log(ψ(Black,White))
= g(Black)− g(White)
= (β0 + β1(X1 = 1) + β2(X2 = 0)) + β3(X3 = 0))−

(β0 + β1(X1 = 0) + β2(X2 = 0) + β3(X3 = 0))
= β1

For the GLM parameterization scheme (PARAM=GLM), the design variables are as
follows.

Design Variables
Race X1 X2 X3 X4

Black 1 0 0 0
Hispanic 0 1 0 0

Other 0 0 1 0
White 0 0 0 1
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The log odds ratio of Black versus White is

log(ψ(Black,White))
= g(Black)− g(White)
= (β0 + β1(X1 = 1) + β2(X2 = 0) + β3(X3 = 0) + β4(X4 = 0))−

(β0 + β1(X1 = 0) + β2(X2 = 0) + β3(X3 = 0) + β4(X4 = 1))
= β1 − β4

Consider the hypothetical example of heart disease among race in Hosmer and
Lemeshow (2000, p 56). The entries in the following contingency table represent
counts.

Race
Disease Status White Black Hispanic Other

Present 5 20 15 10
Absent 20 10 10 10

The computation of odds ratio of Black versus White for various parameterization
schemes is tabulated in the following table.

Odds Ratio of Heart Disease Comparing Black to White
Parameter Estimates

PARAM β̂1 β̂2 β̂3 β̂4 Odds Ratio Estimation
EFFECT 0.7651 0.4774 0.0719 exp(2× 0.7651 + 0.4774 + 0.0719) = 8
REF 2.0794 1.7917 1.3863 exp(2.0794) = 8
GLM 2.0794 1.7917 1.3863 0.0000exp(2.0794) = 8

Since the log odds ratio (log(ψ)) is a linear function of the parameters, the Wald
confidence interval forlog(ψ) can be derived from the parameter estimates and the
estimated covariance matrix. Confidence intervals for the odds ratios are obtained
by exponentiating the corresponding confidence intervals for the log odd ratios. In
the displayed output of PROC LOGISTIC, the “Odds Ratio Estimates” table contains
the odds ratio estimates and the corresponding 95% Wald confidence intervals. For
continuous explanatory variables, these odds ratios correspond to a unit increase in
the risk factors.

To customize odds ratios for specific units of change for a continuous risk factor, you
can use theUNITS statement to specify a list of relevant units for each explanatory
variable in the model. Estimates of these customized odds ratios are given in a sepa-
rate table. Let(Lj , Uj) be a confidence interval forlog(ψ). The corresponding lower
and upper confidence limits for the customized odds ratioexp(cβj) are exp(cLj)
andexp(cUj), respectively (forc > 0), or exp(cUj) andexp(cLj), respectively (for
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c < 0). You use theCLODDS= option to request the confidence intervals for the
odds ratios.

For a generalized logit model, odds ratios are computed similarly, exceptk odds
ratios are computed for each effect, corresponding to thek logits in the model.

Rank Correlation of Observed Responses and Predicted
Probabilities

The predicted mean score of an observation is the sum of the Ordered Values (shown
in the Response Profile table) minus one, weighted by the corresponding predicted
probabilities for that observation; that is, the predicted means score=

∑k+1
i=1 (i−1)π̂i,

wherek + 1 is the number of response levels andπ̂i is the predicted probability of
theith (ordered) response.

A pair of observations with different observed responses is said to beconcordantif
the observation with the lower ordered response value has a lower predicted mean
score than the observation with the higher ordered response value. If the observation
with the lower ordered response value has a higher predicted mean score than the
observation with the higher ordered response value, then the pair isdiscordant. If the
pair is neither concordant nor discordant, it is atie. Enumeration of the total numbers
of concordant and discordant pairs is carried out by categorizing the predicted mean
score into intervals of lengthk/500 and accumulating the corresponding frequencies
of observations.

LetN be the sum of observation frequencies in the data. Suppose there is a total oft
pairs with different responses,nc of them are concordant,nd of them are discordant,
andt − nc − nd of them are tied. PROC LOGISTIC computes the following four
indices of rank correlation for assessing the predictive ability of a model:

c = (nc + 0.5(t− nc − nd))/t
Somers’D = (nc − nd)/t
Goodman-Kruskal Gamma= (nc − nd)/(nc + nd)
Kendall’s Tau-a = (nc − nd)/(0.5N(N − 1))

Note thatc also gives an estimate of the area under the receiver operating character-
istic (ROC) curve when the response is binary (Hanley and McNeil 1982).

For binary responses, the predicted mean score is equal to the predicted probability
for Ordered Value 2. As such, the preceding definition of concordance is consistent
with the definition used in previous releases for the binary response model.

Linear Predictor, Predicted Probability, and Confidence
Limits

This section describes how predicted probabilities and confidence limits are
calculated using the maximum likelihood estimates (MLEs) obtained from
PROC LOGISTIC. For a specific example, see the“Getting Started”section on page
2284. Predicted probabilities and confidence limits can be output to a data set with
the OUTPUT statement.
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Cumulative Response Models

For a vector of explanatory variablesx, the linear predictor

ηi = g(Pr(Y ≤ i | x)) = αi + β′x 1 ≤ i ≤ k

is estimated by

η̂i = α̂i + β̂
′
x

whereα̂i andβ̂ are the MLEs ofαi andβ. The estimated standard error ofηi is σ̂(η̂i),
which can be computed as the square root of the quadratic form(1,x′)V̂b(1,x′)′

whereV̂b is the estimated covariance matrix of the parameter estimates. The asymp-
totic 100(1− α)% confidence interval forηi is given by

η̂i ± zα/2σ̂(η̂i)

wherezα/2 is the100(1− α/2) percentile point of a standard normal distribution.

The predicted value and the100(1 − α)% confidence limits for Pr(Y ≤ i | x) are
obtained by back-transforming the corresponding measures for the linear predictor.

Link Predicted Probability 100(1-α) Confidence Limits

LOGIT 1/(1 + e−η̂i) 1/(1 + e−η̂i±zα/2σ̂(η̂i))

PROBIT Φ(η̂i) Φ(η̂i ± zα/2σ̂(η̂i))

CLOGLOG 1− e−eη̂i 1− e−eη̂i±zα/2σ̂(η̂i)

Generalized Logit Model

For a vector of explanatory variablesx, letπi denote the probability of obtaining the
response valuei:

πi =

 πk+1e
αi+x′βi 1 ≤ i ≤ k

1

1 +
∑k

i=1 e
αi+x′βi

i = k + 1

By thedelta method,

σ2(πi) =
(
∂πi

∂θ

)′
V(θ)

∂πi

∂θ

A 100(1−α)% confidence level forπi is given by

π̂i ± zα/2σ̂(π̂i)

whereπ̂i is the estimated expected probability of responsei, andσ̂(π̂i) is obtained
by evaluatingσ(πi) atθ = θ̂.
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Classification Table

For binary response data, the response is either anevent or a nonevent. In
PROC LOGISTIC, the response with Ordered Value 1 is regarded as theevent, and
the response with Ordered Value 2 is thenonevent. PROC LOGISTIC models the
probability of theevent. From the fitted model, a predictedeventprobability can
be computed for each observation. The method to compute a reduced-bias estimate
of the predicted probability is given in the“Predicted Probability of an Event for
Classification”section on page 2352, which follows. If the predictedeventproba-
bility exceeds some cutpoint valuez ∈ [0, 1], the observation is predicted to be an
eventobservation; otherwise, it is predicted as anonevent. A 2 × 2 frequency ta-
ble can be obtained by cross-classifying the observed and predicted responses. The
CTABLE option produces this table, and thePPROB=option selects one or more
cutpoints. Each cutpoint generates a classification table. If thePEVENT=option is
also specified, a classification table is produced for each combination of PEVENT=
and PPROB= values.

The accuracy of the classification is measured by itssensitivity(the ability to pre-
dict aneventcorrectly) and specificity (the ability to predict anoneventcorrectly).
Sensitivityis the proportion ofeventresponses that were predicted to beevents.
Specificityis the proportion ofnoneventresponses that were predicted to benon-
events. PROC LOGISTIC also computes three other conditional probabilities:false
positive rate, false negative rate, andrate of correct classification. The false posi-
tive rate is the proportion of predictedeventresponses that were observed asnon-
events. Thefalse negative rateis the proportion of predictednoneventresponses that
were observed asevents. Given prior probabilities specified with the PEVENT= op-
tion, these conditional probabilities can be computed as posterior probabilities using
Bayes’ theorem.

Predicted Probability of an Event for Classification

When you classify a set of binary data, if the same observations used to fit the model
are also used to estimate the classification error, the resulting error-count estimate
is biased. One way of reducing the bias is to remove the binary observation to be
classified from the data, reestimate the parameters of the model, and then classify the
observation based on the new parameter estimates. However, it would be costly to fit
the model leaving out each observation one at a time. The LOGISTIC procedure pro-
vides a less expensive one-step approximation to the preceding parameter estimates.
Let b be the MLE of the parameter vector(α,β′)′ based on all observations. Letbj

denote the MLE computed without thejth observation. The one-step estimate ofbj

is given by

b1
j = b− wj(yj − π̂j)

1− hjj
V̂b

(
1
xj

)

where

yj is 1 for an event response and 0 otherwise
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wj is the WEIGHT value

π̂j is the predicted event probability based onb

hjj is thehat diagonal element(defined on page 2359) withnj = 1 andrj = yj

V̂b is the estimated covariance matrix ofb

False Positive and Negative Rates Using Bayes’ Theorem

Supposen1 of n individuals experience an event, for example, a disease. Let this
group be denoted byC1, and let the group of the remainingn2 = n− n1 individuals
who do not have the disease be denoted byC2. The jth individual is classified as
giving a positive response if the predicted probability of disease (π̂∗j ) is large. The
probability π̂∗j is the reduced-bias estimate based on a one-step approximation given
in the preceding section. For a given cutpointz, thejth individual is predicted to give
a positive response if̂π∗j ≥ z.

Let B denote the event that a subject has the disease andB̄ denote the event of
not having the disease. LetA denote the event that the subject responds positively,
and letĀ denote the event of responding negatively. Results of the classification are
represented by two conditional probabilities,Pr(A|B) andPr(A|B̄), wherePr(A|B)
is the sensitivity, andPr(A|B̄) is one minus the specificity.

These probabilities are given by

Pr(A|B) =

∑
j∈C1 I(π̂

∗
j ≥ z)

n1

Pr(A|B̄) =

∑
j∈C2 I(π̂

∗
j ≥ z)

n2

whereI(·) is the indicator function.

Bayes’ theorem is used to compute the error rates of the classification. For a given
prior probabilityPr(B) of the disease, the false positive ratePF+ and the false neg-
ative ratePF− are given by Fleiss (1981, pp. 4–5) as follows:

PF+ = Pr(B̄|A) =
Pr(A|B̄)[1− Pr(B)]

Pr(A|B̄) + Pr(B)[Pr(A|B)− Pr(A|B̄)]

PF− = Pr(B|Ā) =
[1− Pr(A|B)]Pr(B)

1− Pr(A|B̄)− Pr(B)[Pr(A|B)− Pr(A|B̄)]

The prior probabilityPr(B) can be specified by thePEVENT= option. If the
PEVENT= option is not specified, the sample proportion of diseased individuals is
used; that is,Pr(B) = n1/n. In such a case, the false positive rate and the false
negative rate reduce to

PF+ =

∑
j∈C2 I(π̂

∗
j ≥ z)∑

j∈C1 I(π̂
∗
j ≥ z) +

∑
j∈C2 I(π̂

∗
j ≥ z)

PF− =

∑
j∈C1 I(π̂

∗
j < z)∑

j∈C1 I(π̂
∗
j < z) +

∑
j∈C2 I(π̂

∗
j < z)
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Note that for a stratified sampling situation in whichn1 andn2 are chosen a priori,
n1/n is not a desirable estimate ofPr(B). For such situations, thePEVENT=option
should be specified.

Overdispersion

For a correctly specified model, the Pearson chi-square statistic and the deviance,
divided by their degrees of freedom, should be approximately equal to one. When
their values are much larger than one, the assumption of binomial variability may
not be valid and the data are said to exhibit overdispersion. Underdispersion, which
results in the ratios being less than one, occurs less often in practice.

When fitting a model, there are several problems that can cause the goodness-of-fit
statistics to exceed their degrees of freedom. Among these are such problems as out-
liers in the data, using the wrong link function, omitting important terms from the
model, and needing to transform some predictors. These problems should be elimi-
nated before proceeding to use the following methods to correct for overdispersion.

Rescaling the Covariance Matrix

One way of correcting overdispersion is to multiply the covariance matrix by a disper-
sion parameter. This method assumes that the sample sizes in each subpopulation are
approximately equal. You can supply the value of the dispersion parameter directly,
or you can estimate the dispersion parameter based on either the Pearson chi-square
statistic or the deviance for the fitted model.

The Pearson chi-square statisticχ2
P and the devianceχ2

D are given by

χ2
P =

m∑
i=1

k+1∑
j=1

(rij − niπ̂ij)2

niπ̂ij

χ2
D = 2

m∑
i=1

k+1∑
j=1

rij log
(

rij
niπ̂ij

)

wherem is the number of subpopulation profiles,k + 1 is the number of response
levels,rij is the total weight (sum of the product of the frequencies and the weights)
associated withjth level responses in theith profile,ni =

∑k+1
j=1 rij , andπ̂ij is the

fitted probability for thejth level at theith profile. Each of these chi-square statistics
hasmk− p degrees of freedom, wherep is the number of parameters estimated. The
dispersion parameter is estimated by

σ̂2 =


χ2

P /(mk − p) SCALE=PEARSON
χ2

D/(mk − p) SCALE=DEVIANCE
(constant)2 SCALE=constant

In order for the Pearson statistic and the deviance to be distributed as chi-square,
there must be sufficient replication within the subpopulations. When this is not true,
the data are sparse, and thep-values for these statistics are not valid and should be
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ignored. Similarly, these statistics, divided by their degrees of freedom, cannot serve
as indicators of overdispersion. A large difference between the Pearson statistic and
the deviance provides some evidence that the data are too sparse to use either statistic.

You can use theAGGREGATE (or AGGREGATE=) option to define the subpop-
ulation profiles. If you do not specify this option, each observation is regarded as
coming from a separate subpopulation. Forevents/trialssyntax, each observation
representsn Bernoulli trials, wheren is the value of thetrials variable; forsingle-
trial syntax, each observation represents a single trial. Without the AGGREGATE
(or AGGREGATE=) option, the Pearson chi-square statistic and the deviance are cal-
culated only forevents/trialssyntax.

Note that the parameter estimates are not changed by this method. However, their
standard errors are adjusted for overdispersion, affecting their significance tests.

Williams’ Method

Suppose that the data consist ofn binomial observations. For theith observation, let
ri/ni be the observed proportion and letxi be the associated vector of explanatory
variables. Suppose that the response probability for theith observation is a random
variablePi with mean and variance

E(Pi) = πi and V (Pi) = φπi(1− πi)

wherepi is the probability of the event, andφ is a nonnegative but otherwise unknown
scale parameter. Then the mean and variance ofri are

E(ri) = niπi and V (ri) = niπi(1− πi)[1 + (ni − 1)φ]

Williams (1982) estimates the unknown parameterφ by equating the value of
Pearson’s chi-square statistic for the full model to its approximate expected value.
Supposew∗i is the weight associated with theith observation. The Pearson chi-square
statistic is given by

χ2 =
n∑

i=1

w∗i (ri − niπ̂i)2

niπ̂i(1− π̂i)

Let g′(·) be the first derivative of the link functiong(·). The approximate expected
value ofχ2 is

Eχ2 =
n∑

i=1

w∗i (1− w∗i vidi)[1 + φ(ni − 1)]

wherevi = ni/(πi(1 − πi)[g′(πi)]2) anddi is the variance of the linear predictor
α̂i + x′iβ̂. The scale parameterφ is estimated by the following iterative procedure.
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At the start, letw∗i = 1 and letπi be approximated byri/ni, i = 1, 2, . . . , n. If you
apply these weights and approximated probabilities toχ2 andEχ2 and then equate
them, an initial estimate ofφ is therefore

φ̂0 =
χ2 − (n− p)∑

i(ni − 1)(1− vidi)

wherep is the total number of parameters. The initial estimates of the weights become
ŵ∗i0 = [1 + (ni − 1)φ̂0]−1. After a weighted fit of the model,̂β is recalculated, and
so isχ2. Then a revised estimate ofφ is given by

φ̂1 =
χ2 −

∑
iw

∗
i (1− w∗i vidi)

w∗i (ni − 1)(1− w∗i vidi)

The iterative procedure is repeated untilχ2 is very close to its degrees of freedom.

Onceφ has been estimated bŷφ under the full model, weights of(1 + (ni − 1)φ̂)−1

can be used in fitting models that have fewer terms than the full model. SeeExample
42.9on page 2438 for an illustration.

The Hosmer-Lemeshow Goodness-of-Fit Test

Sufficient replication within subpopulations is required to make the Pearson and de-
viance goodness-of-fit tests valid. When there are one or more continuous predic-
tors in the model, the data are often too sparse to use these statistics. Hosmer and
Lemeshow (2000) proposed a statistic that they show, through simulation, is dis-
tributed as chi-square when there is no replication in any of the subpopulations. This
test is only available for binary response models.

First, the observations are sorted in increasing order of their estimated event probabil-
ity. The event is the response level specified in the response variable optionEVENT=,
or the response level which is not specified in theREF=option, or, if neither of these
options were specified, then the event is the response level identified in the “Response
Profiles” table as “Ordered Value 1”. The observations are then divided into approx-
imately ten groups according to the following scheme. LetN be the total number of
subjects. LetM be the target number of subjects for each group given by

M = [0.1×N + 0.5]

where[x] represents the integral value ofx. If thesingle-trialsyntax is used, blocks of
subjects are formed of observations with identical values of the explanatory variables.
Blocks of subjects are not divided when being placed into groups.

Suppose there aren1 subjects in the first block andn2 subjects in the second block.
The first block of subjects is placed in the first group. Subjects in the second block
are added to the first group if

n1 < M and n1 + [0.5× n2] ≤M
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Otherwise, they are placed in the second group. In general, suppose subjects of the
(j-1)th block have been placed in thekth group. Letc be the total number of subjects
currently in thekth group. Subjects for thejth block (containingnj subjects) are also
placed in thekth group if

c < M and c+ [0.5× nj ] ≤M

Otherwise, thenj subjects are put into the next group. In addition, if the number of
subjects in the last group does not exceed[0.05×N ] (half the target group size), the
last two groups are collapsed to form only one group.

Note that the number of groups,g, may be smaller than 10 if there are fewer than 10
patterns of explanatory variables. There must be at least three groups in order for the
Hosmer-Lemeshow statistic to be computed.

The Hosmer-Lemeshow goodness-of-fit statistic is obtained by calculating the
Pearson chi-square statistic from the2×g table of observed and expected frequencies,
whereg is the number of groups. The statistic is written

χ2
HL =

g∑
i=1

(Oi −Niπ̄i)2

Niπ̄i(1− π̄i)

whereNi is the total frequency of subjects in theith group,Oi is the total frequency
of event outcomes in theith group, and̄πi is the average estimated predicted proba-
bility of an event outcome for theith group. The Hosmer-Lemeshow statistic is then
compared to a chi-square distribution with(g − n) degrees of freedom, where the
value ofn can be specified in theLACKFIT option in the MODEL statement. The
default isn = 2. Large values ofχ2

HL (and smallp-values) indicate a lack of fit of
the model.

Receiver Operating Characteristic Curves

In a sample ofn individuals, supposen1 individuals are observed to have a certain
condition or event. Let this group be denoted byC1, and let the group of the remain-
ing n2 = n − n1 individuals who do not have the condition be denoted byC2. Risk
factors are identified for the sample, and a logistic regression model is fitted to the
data. For thejth individual, an estimated probabilitŷπj of the event of interest is cal-
culated. Note that thêπj are computed as shown in the“Linear Predictor, Predicted
Probability, and Confidence Limits”section on page 2350 and are not the cross vali-
dated estimates discussed in the“Classification Table”section on page 2352.

Suppose then individuals undergo a test for predicting the event and the test is based
on the estimated probability of the event. Higher values of this estimated probabil-
ity are assumed to be associated with the event. A receiver operating characteristic
(ROC) curve can be constructed by varying the cutpoint that determines which es-
timated event probabilities are considered to predict the event. For each cutpointz,
the following measures can be output to a data set using theOUTROC=option in the
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MODEL statement or theOUTROC=option in the SCORE statement:

–POS–(z) =
∑
i∈C1

I(π̂i ≥ z)

–NEG–(z) =
∑
i∈C2

I(π̂i < z)

–FALPOS–(z) =
∑
i∈C2

I(π̂i ≥ z)

–FALNEG–(z) =
∑
i∈C1

I(π̂i < z)

–SENSIT–(z) = –POS–(z)
n1

–1MSPEC–(z) = –FALPOS–(z)
n2

whereI(·) is the indicator function.

Note that–POS–(z) is the number of correctly predicted event responses,–NEG–(z)
is the number of correctly predicted nonevent responses,–FALPOS–(z) is the num-
ber of falsely predicted event responses,–FALNEG–(z) is the number of falsely
predicted nonevent responses,–SENSIT–(z) is the sensitivity of the test, and

–1MSPEC–(z) is one minus the specificity of the test.

A plot of the ROC curve can be constructed by using the PLOT or GPLOT proce-
dure with the OUTROC= data set and plotting sensitivity (–SENSIT–) against 1-
specificity (–1MSPEC–); seeExample 42.7on page 2429 for an illustration. The
area under the ROC curve, as determined by the trapezoidal rule, is estimated by the
statisticc in the “Association of Predicted Probabilities and Observed Responses”
table.

Testing Linear Hypotheses about the Regression
Coefficients

Linear hypotheses forθ are expressed in matrix form as

H0:Lθ = c

whereL is a matrix of coefficients for the linear hypotheses, andc is a vector of
constants. The vector of regression coefficientsθ includes slope parameters as well
as intercept parameters. The Wald chi-square statistic for testingH0 is computed as

χ2
W = (Lθ̂ − c)′[LV̂(θ̂)L′]−1(Lθ̂ − c)

whereV̂(θ̂) is the estimated covariance matrix. UnderH0, χ2
W has an asymptotic

chi-square distribution withr degrees of freedom, wherer is the rank ofL.
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Regression Diagnostics

For binary response data, regression diagnostics developed by Pregibon (1981) can
be requested by specifying theINFLUENCE option. For diagnostics available with
conditional logistic regression, see the“Regression Diagnostic Details”section on
page 2367.

This section uses the following notation:

rj , nj rj is the number of event responses out ofnj trials for thejth
observation. Ifevents/trialssyntax is used,rj is the value ofevents
andnj is the value oftrials. For single-trial syntax,nj = 1, and
rj = 1 if the ordered response is 1, andrj = 0 if the ordered
response is 2.

wj is the weight of thejth observation.

πj is the probability of an event response for thejth observation given
by πj = F (α + β′xj), whereF (·) is the inverse link function
defined on page 2335.

b is the maximum likelihood estimate (MLE) of(α,β′)′.

V̂b is the estimated covariance matrix ofb.

p̂j , q̂j p̂j is the estimate ofπj evaluated atb, andq̂j = 1− p̂j .

Pregibon suggests using the index plots of several diagnostic statistics to identify in-
fluential observations and to quantify the effects on various aspects of the maximum
likelihood fit. In an index plot, the diagnostic statistic is plotted against the observa-
tion number. In general, the distributions of these diagnostic statistics are not known,
so cutoff values cannot be given for determining when the values are large. However,
the IPLOTSand INFLUENCE options provide displays of the diagnostic values al-
lowing visual inspection and comparison of the values across observations. In these
plots, if the model is correctly specified and fits all observations well, then no extreme
points should appear.

The next five sections give formulas for these diagnostic statistics.

Hat Matrix Diagonal

The diagonal elements of the hat matrix are useful in detecting extreme points in the
design space where they tend to have larger values. Thejth diagonal element is

hjj =

{
w̃j(1,x′j)V̂b(1,x′j)

′ Fisher-Scoring
ŵj(1,x′j)V̂b(1,x′j)

′ Newton-Raphson

where

w̃j =
wjnj

p̂j q̂j [g′(p̂j)]2

ŵj = w̃j +
wj(rj − nj p̂j)[p̂j q̂jg

′′(p̂j) + (q̂j − p̂j)g′(p̂j)]
(p̂j q̂j)2[g′(p̂j)]3
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andg′(·) andg′′(·) are the first and second derivatives of the link functiong(·), re-
spectively.

For a binary response logit model, the hat matrix diagonal elements are

hjj = wjnj p̂j q̂j(1,x′j)V̂b

(
1
xj

)
If the estimated probability is extreme (less than 0.1 and greater than 0.9, approxi-
mately), then the hat diagonal may be greatly reduced in value. Consequently, when
an observation has a very large or very small estimated probability, its hat diago-
nal value is not a good indicator of the observation’s distance from the design space
(Hosmer and Lemeshow 2000, p 171).

Pearson Residuals and Deviance Residuals

Pearson and Deviance residuals are useful in identifying observations that are not
explained well by the model. Pearson residuals are components of the Pearson chi-
square statistic and deviance residuals are components of the deviance. The Pearson
residual for thejth observation is

χj =
√
wj(rj − nj p̂j)√

nj p̂j q̂j

The Pearson chi-square statistic is the sum of squares of the Pearson residuals. The
deviance residual for thejth observation is

dj =


−

√
−2wjnj log(q̂j) if rj = 0

±
√

2wj [rj log( rj

nj p̂j
) + (nj − rj) log(nj−rj

nj q̂j
)] if 0 < rj < nj√

−2wjnj log(p̂j) if rj = nj

where the plus (minus) in± is used ifrj/nj is greater (less) than̂pj . The deviance is
the sum of squares of the deviance residuals.

DFBETAS

For each parameter estimate, the procedure calculates a DFBETAS diagnostic for
each observation. The DFBETAS diagnostic for an observation is the standardized
difference in the parameter estimate due to deleting the observation, and it can be
used to assess the effect of an individual observation on each estimated parameter of
the fitted model. Instead of re-estimating the parameter every time an observation
is deleted, PROC LOGISTIC uses the one-step estimate. See the section“Predicted
Probability of an Event for Classification”on page 2352. For thejth observation, the
DFBETAS are given by

DFBETASij = ∆ib1
j/σ̂(bi)
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wherei = 0, 1, . . . , s, σ̂(bi) is the standard error of theith component ofb, and∆ib1
j

is theith component of the one-step difference

∆b1
j =

wj(rj − nj p̂j)
1− hjj

V̂b

(
1
xj

)

∆b1
j is the approximate change (b− b1

j ) in the vector of parameter estimates due to
the omission of thejth observation. The DFBETAS are useful in detecting observa-
tions that are causing instability in the selected coefficients.

C and CBAR

C and CBAR are confidence interval displacement diagnostics that provide scalar
measures of the influence of individual observations onb. These diagnostics are
based on the same idea as the Cook distance in linear regression theory, and by using
the one-step estimate, C and CBAR for thejth observation are computed as

Cj = χ2
jhjj/(1− hjj)2

and

Cj = χ2
jhjj/(1− hjj)

respectively.

Typically, to use these statistics, you plot them against an index (as the IPLOT option
does) and look for outliers.

DIFDEV and DIFCHISQ

DIFDEV and DIFCHISQ are diagnostics for detecting ill-fitted observations; in other
words, observations that contribute heavily to the disagreement between the data and
the predicted values of the fitted model. DIFDEV is the change in the deviance due
to deleting an individual observation while DIFCHISQ is the change in the Pearson
chi-square statistic for the same deletion. By using the one-step estimate, DIFDEV
and DIFCHISQ for thejth observation are computed as

DIFDEV = d2
j + Cj

and

DIFCHISQ= Cj/hjj
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Scoring Data Sets

Scoring a data set, which is especially important for predictive modeling, means ap-
plying a previously fitted model to a new data set in order to compute the conditional,
or posterior, probabilities of each response category given the values of the explana-
tory variables in each observation.

The SCOREstatement enables you to score new data sets and output the scored
values and, optionally, the corresponding confidence limits into a SAS data set. If the
response variable is included in the new data set, then you can request fit statistics for
the data, which is especially useful for test or validation data. If the response is binary,
you can also create a SAS data set containing thereceiver operating characteristic
(ROC) curve. You can specify multiple SCORE statements in the same invocation of
PROC LOGISTIC.

By default, the posterior probabilities are based on implicit prior probabilities that are
proportional to the frequencies of the response categories in thetraining data(the data
used to fit the model). Explicit prior probabilities should be specified when the sam-
ple proportions of the response categories in the training data differ substantially from
the operational data to be scored. For example, to detect a rare category, it is com-
mon practice to use a training set in which the rare categories are over-represented;
without prior probabilities that reflect the true incidence rate, the predicted posterior
probabilities for the rare category will be too high. By specifying the correct priors,
the posterior probabilities are adjusted appropriately.

The model fit to theDATA= data set in the PROC LOGISTIC statement is the de-
fault model used for the scoring. Alternatively, you can save a fit model on one
run of PROC LOGISTIC and use it to score new data on a subsequent run. The
OUTMODEL= option in the PROC LOGISTIC statement saves the model informa-
tion in a SAS data set. Specifying this data set in theINMODEL= option of a new
PROC LOGISTIC run will score theDATA= data set in the SCORE statement with-
out refitting the model.

The rest of this section provides some computational details about the scoring.

Posterior Probabilities and Confidence Limits

LetF be the inverse link function. That is,

F (t) =


1

1+exp(−t) logistic

Φ(t) normal
1− exp(− exp(t)) complementary log-log

The first derivative ofF is given by

F ′(t) =


exp(−t)

(1+exp(−t))2
logistic

φ(t) normal
exp(t) exp(− exp(t)) complementary log-log
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Suppose there arek + 1 response categories. LetY be the response variable with
levels1, . . . , k + 1. Letx = (x0, x1, . . . , xp)′ be a(p+ 1)-vector of covariates, with
x0 ≡ 1. Let θ be the vector of regression parameters.

Posterior probabilities are given by

Pn(i) =
Po(i)

p̃n(i)

po(i)∑
j Po(j)

p̃n(j)

po(j)

i = 1, . . . , k + 1

where the old posterior probabilities (Po) are the conditional probabilities of the re-
sponse categories givenx, and the old priors (po) are the sample proportions of re-
sponse categories of the training data. To simplify notation, absorb the old priors into
the new priors; that is

pn(i) =
p̃n(i)
po(i)

i = 1, . . . , k + 1

The posterior probabilities are functions ofθ and their estimates are obtained by
substitutingθ by its MLE θ̂. The variances of the estimated posterior probabilities
are given by thedelta methodas follows:

V ar(P̂n(i)) =
[
∂Pn(i)
∂θ

]′
V ar(θ̂)

[
∂Pn(i)
∂θ

]
where

∂Pn(i)
∂θ

=
∂Po(i)

∂θ pn(i)∑
j Po(j)pn(j)

−
Po(i)pn(i)

∑
j

∂Po(j)
∂θ pn(j)

[
∑

j Po(j)pn(j)]2

A 100(1-α) percent confidence interval for Pn(i) is

P̂n(i)± z1−α/2

√
V̂ ar(P̂n(i))

wherezτ is the upper 100τ percentile of the standard normal distribution.

Cumulative Response Model

Letα1, . . . , αk be the intercept parameters and letβ be the vector of slope parameters.
Denoteθ = (α1, . . . , αk,β

′)′. Let

ηi = ηi(θ) = αi + x′β, i = 1, . . . , k

Estimates ofη1, . . . , ηk are obtained by substituting the maximum likelihood estimate
θ̂ for θ.
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The predicted probabilities of the responses are

P̂o(i) = P̂r(Y = i) =


F (η̂1) i = 1
F (η̂i)− F (η̂i−1) i = 2, . . . , k
1− F (η̂k) i = k + 1

Fori = 1, . . . , k, letδi(x) be a (k+1) column vector withith entry equal to 1,k+1th
entry equal tox, and all other entries 0. The derivative of Po(i) with respect toθ are

∂Po(i)
∂θ

=


F ′(α1 + x′β)δ1(x) i = 1
F ′(αi + x′β)δi(x)− F ′(αi−1 + x′β)δi−1(x) i = 2, . . . , k
−F ′(αk + x′β)δk(x) i = k + 1

Generalized Logit Model

Consider the last response level (Y=k+1) as the reference. Letβ1, . . . ,βk be the
parameter vectors for the firstk logits, respectively. Denoteθ = (β′1, . . . ,β

′
k)
′. Let

η = (η1, . . . , ηk)′ with

ηi = ηi(θ) = x′βi i = 1, . . . , k

Estimates ofη1, . . . , ηk are obtained by substituting the maximum likelihood estimate
θ̂ for θ.

The predicted probabilities are

P̂o(k + 1) ≡ Pr(Y = k + 1|x) =
1

1 +
∑k

l=1 exp(η̂l)

P̂o(i) ≡ Pr(Y = i|x) = P̂o(k + 1) exp(ηi), i = 1, . . . , k

The derivative of Po(i) with respect toθ are

∂Po(i)
∂θ

=
∂η

∂θ

∂Po(i)
∂η

= (Ik ⊗ x)
(
∂Po(i)
∂η1

, · · · , ∂Po(i)
∂ηk

)′
where

∂Po(i)
∂ηj

=
{

Po(i)(1− Po(i)) j = i
−Po(i)Po(j) otherwise
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Special Case of Binary Response Model with No Priors

Let β be the vector of regression parameters. Let

η = η(β) = x′β

The variance of̂η is given by

V ar(η̂) = x′V ar(β̂)x

A 100(1-α) percent confidence interval forη is

η̂ ± z1−α/2

√
V̂ ar(η̂)

Estimates of Po(1) and confidence intervals for the Po(1) are obtained by back-
transformingη̂ and the confidence intervals forη, respectively. That is,

P̂o(1) = F (η̂)

and the confidence intervals are

F

(
η̂ ± z1−α/2

√
V̂ ar(η̂)

)

Conditional Logistic Regression

The method of maximum likelihood described in the preceding sections relies on
large-sample asymptotic normality for the validity of estimates and especially of their
standard errors. When you do not have a large sample size compared to the number of
parameters, this approach may be inappropriate resulting in biased inferences. This
situation typically arises when your data are stratified and you fit intercepts to each
stratum so that the number of parameters is of the same order as the sample size.
For example, in a 1:1 matched pairs study withn pairs andp covariates, you would
estimaten− 1 intercept parameters andp slope parameters. Taking the stratification
into account by “conditioning out” (and not estimating) the stratum-specific inter-
cepts gives consistent and asymptotically normal MLEs for the slope coefficients.
See Breslow and Day (1980) and Stokes, Davis, and Koch (2000) for more infor-
mation. If your nuisance parameters are not just stratum-specific intercepts, you can
perform anexact conditional logistic regression.

Computational Details

For each stratumh, h = 1, . . . ,H, number the observations asi = 1, . . . , nh

so that hi indexes theith observation in thehth stratum. Denote thep
covariates for observationhi as xhi and its binary response asyhi, let
y = (y11, . . . , y1n1 , . . . , yH1, . . . , yHnH

)′, Xh = (xh1 . . .xhnh
)′, and

X = (X′
1 . . .X

′
H)′. Let the dummy variableszh, h = 1, . . . ,H, be indicator
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functions for the strata (zh = 1 if the observation is in stratumh), denote
zhi = (z1, . . . , zH) for observationhi, Zh = (zh1 . . . zhnh

)′, andZ = (Z′1 . . .Z
′
H)′.

DenoteX
∗

= (Z||X) and x∗hi = (z′hi||x′hi)
′. Arrange the observations in each

stratumh so thatyhi = 1 for i = 1, . . . ,mh, andyhi = 0 for i = mh+1, . . . , nh.
Suppose all observations have unit frequency.

Consider thebinary logistic regression modelon page 2405 written as

logit(π) = X
∗
θ

where the parameter vectorθ = (α′,β′)′ consists ofα = (α1, . . . , αH)′, αh is
the intercept for stratumh, h = 1, . . . ,H, andβ is the parameter vector for thep
covariates.

From the“Determining Observations for Likelihood Contributions”section on page
2336, you can write the likelihood contribution of observationhi, i = 1, . . . , nh, h =
1, . . . ,H, as

Lhi(θ) =
eyhix

∗
hi
′θ

1 + ex
∗
hi
′θ

whereyhi = 1 when the response takes Ordered Value 1, andyhi = 0 otherwise.

The full likelihood is

L(θ) =
H∏

h=1

nh∏
i=1

Lhi(θ) =
ey

′X
∗
θ∏H

h=1

∏nh
i=1

(
1 + ex

∗
hi
′θ

)
Unconditional likelihood inference is based on maximizing this likelihood function.

When your nuisance parameters are the stratum-specific intercepts(α1, . . . , αH)′,
andβ are your parameters of interest, “conditioning out” the nuisance parameters
produces the following conditional likelihood (Lachin 2000)

L(β) =
H∏

h=1

Lh(β) =
H∏

h=1

∏mh
i=1 exp(x′hiβ)∑∏jmh
j=j1

exp(x′hjβ)

where the summation is over all
(

nh
mh

)
subsets{j1, . . . , jmh

} ofmh observations cho-
sen from thenh observations in stratumh. Note that the nuisance parameters have
been factored out of this equation.

For conditional asymptotic inference, maximum likelihood estimatesβ̂ of the regres-
sion parameters are obtained by maximizing the conditional likelihood, and asymp-
totic results are applied to the conditional likelihood function and the maximum like-
lihood estimators. A relatively fast method for computing this conditional likelihood
and its derivatives is given by Gail, Lubin, and Rubinstein (1981) and Howard (1972).
The default optimization techniques, which are the same as those implemented by the
NLP procedure in SAS/OR software, are
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• Newton-Raphson with ridging when the number of parametersp < 40

• quasi-Newton when40 ≤ p < 400

• conjugate gradient whenp ≥ 400

Sometimes the log likelihood converges but the estimates diverge. This condition is
flagged by having inordinately large standard errors for some of your parameter esti-
mates, and can be monitored by specifying theITPRINToption. Unfortunately, broad
existence criteria such as those discussed in the“Existence of Maximum Likelihood
Estimates”section on page 2338 do not exist for this model. It may be possible to
circumvent such a problem by standardizing your independent variables before fitting
the model.

Regression Diagnostic Details

Diagnostics are used to indicate observations that may have undue influence on the
model fit, or which may be outliers. Further investigation should be performed before
removing such an observation from the data set.

The derivations in this section follow Storer and Crowley’s (1985) method of aug-
menting the logistic regression model, which provides an estimate of the “one-step”
DFBETAS estimates advocated by Pregibon (1984). The method also provides es-
timates of conditional stratum-specific predicted values, residuals, and leverage for
each observation.

Following Storer and Crowley (1985), the log-likelihood contribution can be written
as

lh = log(Lh) = y′hγh − a(γh) where

a(γh) = log

∑ jmh∏
j=j1

exp(γhj)


and theh subscript on matrices indicates the submatrix for the stratum,γ ′h =
(γh1, . . . , γhnh

), andγhi = x′hiβ. Then the gradient and information matrix are

g(β) =
{
∂lh
∂β

}H

h=1

= X′(y − π)

Λ(β) =
{
∂2lh

∂β2

}H

h=1

= X′diag(U1, . . . ,UH)X

where

πhi =
∂a(γh)
∂γhi

=

∑
j(i)

∏jmh
j=j1

exp(γhj)∑∏jmh
j=j1

exp(γhj)

πh = (πh1, . . . , πhnh
)
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Uh =
∂2a(γh)
∂γ2

h

=
{
∂2a(γh)
∂γhi∂γhj

}
= {aij}

aij =

∑
k(i,j)

∏kmh
k=k1

exp(γhk)∑∏kmh
k=k1

exp(γhk)
− ∂a(γh)

∂γhi

∂a(γh)
∂γhj

= πhij − πhiπhj

whereπhi is the conditional stratum-specific probability that subjecti in stratumh is
a case, the summation onj(i) is over all subsets from{1, . . . , nh} of sizemh that
contain the indexi, and the summation onk(i, j) is over all subsets from{1, . . . , nh}
of sizemh that contain the indicesi andj.

To produce the true one-step estimateβ1
hi, start at the MLÊβ, delete thehith obser-

vation, and take one-step of the Newton-Raphson algorithm using the reduced data
set. Note that if there is only one event or one nonevent in a stratum, deletion of that
single observation is equivalent to deletion of the entire stratum. The augmentation
method does not take this into account.

The augmented model is

logit(Pr(yhi = 1|xhi)) = x′hiβ + z′hiγ

wherezhi = (0, . . . , 0, 1, 0, . . . , 0)′ has a1 in the hith coordinate, and useβ0 =
(β̂, 0)′ as the initial estimate for(β, γ)′. The gradient and information matrix before
the step are

g(β0) =
[

X′

z′hi

]
(y − π) =

[
0

yhi − πhi

]
Λ(β0) =

[
X′

z′hi

]
U [X zhi] =

[
Λ(β) X′Uzhi

z′hiUX z′hiUzhi

]

Inserting theβ0 and(X′, z′hi)
′ into the Gail, Lubin, and Rubinstein (1981) algorithm

provides the appropriate estimates ofg(β0) andΛ(β0). Indicate these estimates with
π̂ = π(β̂), Û = U(β̂), ĝ, andΛ̂.

DFBETA is computed from the information matrix as

∆hiβ = β0 − β1
hi

= −Λ̂
−1

(β0)ĝ(β0)

= −Λ̂
−1

(β̂)(X′Ûzhi)M−1z′hi(y − π̂) where

M = (z′hiÛzhi)− (z′hiÛX)Λ̂
−1

(β̂)(X′Ûzhi)

For each observation in the dataset, a DFBETA statistic is computed for each param-
eterβj , 1 ≤ j ≤ p, and standardized by the standard error ofβj from the full data set
to produce the estimate of DFBETAS.
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The estimated residualsehi = yhi − π̂hi are obtained from̂g(β0), and the weights,
or predicted probabilities, are then̂πhi = yhi − ehi. The residuals are standardized
and reported as (estimated) Pearson residuals:

rhi − nhiπ̂hi√
nhiπ̂hi(1− π̂hi)

whererhi is the number of events in the observation andnhi is the number of trials.

The estimated leverage is defined as

hhi =
trace{(z′hiÛX)Λ̂

−1
(β̂)(X′Ûzhi)}

trace{z′hiÛzhi}

This definition of leverage produces different values from those defined by Pregibon
(1984), Moolgavkar, Lustbader, and Venzon (1985), and Hosmer and Lemeshow
(2000); however, it has the advantage that no extra computations beyond those for
the DFBETAS are required.

For events/trials MODEL syntax, treat each observation as two observations (the first
for the nonevents and the second for the events) with frequenciesfh,2i−1 = nhi− rhi

andfh,2i = rhi, and augment the model with a matrixZhi = [zh,2i−1zh,2i] instead
of a singlezhi vector. Writingγhi = x′hiβfhi in the preceding section results in the
following gradient and information matrix.

g(β0) =

 0
fh,2i−1(yh,2i−1 − πh,2i−1)

fh,2i(yh,2i − πh,2i)


Λ(β0) =

[
Λ(β) X′diag(f)Udiag(f)Zhi

Z′hidiag(f)Udiag(f)X Z′hidiag(f)Udiag(f)Zhi

]

The predicted probabilities are thenπ̂hi = yh,2i − eh,2i/rh,2i, while the leverage and
the DFBETAs are produced fromΛ(β0) in a similar fashion as for the preceding
single-trial equations.

Exact Conditional Logistic Regression

The theory of exact conditional logistic regression analysis was originally laid out
by Cox (1970), and the computational methods employed in PROC LOGISTIC are
described in Hirji, Mehta, and Patel (1987), Hirji (1992), and Mehta, Patel, and
Senchaudhuri (1992). Other useful references for the derivations include Cox and
Snell (1989), Agresti (1990), and Mehta and Patel (1995).

Exact conditional inference is based on generating the conditional distribution for the
sufficient statistics of the parameters of interest. This distribution is called theper-
mutationor exact conditionaldistribution. Using the notation in the“Computational
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Details” section on page 2365, follow Mehta and Patel (1995) and first note that the
sufficient statisticsT = (T1, . . . , Tp) for θ are

Tj =
n∑

i=1

yixij , j = 1, . . . , p

Denote a vector of observable sufficient statistics ast = (t1, . . . , tp)′.

The probability density function (pdf) forT can be created by summing over all
binary sequencesy that generate an observablet and lettingC(t) = ||{y : y′X =
t′}|| denote the number of sequencesy that generatet

Pr(T = t) =
C(t) exp(t′θ)∏n

i=1[1 + exp(x′iθ)]

In order to condition out the stratum parameters, partition the parameter vector
θ = (θ′0,θ

′
1)
′, whereθ0 is a p0 × 1 vector of the nuisance parameters, andθ1 is

the parameter vector for the remainingp1 = p− p0 parameters of interest. Likewise,
partition X into X0 andX1, T into T0 andT1, andt into t0 and t1. The nui-
sance parameters can be removed from the analysis by conditioning on their sufficient
statistics to create the conditional likelihood ofT1 givenT0 = t0

Pr(T1 = t1|T0 = t0) =
Pr(T = t)

Pr(T0 = t0)

= fθ1(t1|t0) =
C(t0, t1) exp(t′1θ1)∑
uC(t0,u) exp(u′θ1)

whereC(t0,u) is the number of vectorsy such thaty′X0 = t0 andy′X1 = u. Note
that the nuisance parameters have factored out of this equation, and thatC(t0, t1) is
a constant.

The goal of the exact conditional analysis is to determine how likely the observed re-
sponsey0 is with respect to all2n possible responsesy = (y1, . . . , yn)′. One way to
proceed is to generate everyy vector for whichy′X0 = t0, and count the number of
vectorsy for whichy′X1 is equal to each uniquet1. Generating the conditional dis-
tribution from complete enumeration of the joint distribution is conceptually simple;
however, this method becomes computationally infeasible very quickly. For example,
if you had only30 observations, you’d have to scan through230 differenty vectors.

Several algorithms are available in PROC LOGISTIC to generate the exact dis-
tribution. All of the algorithms are based on the following observation. Given
any y = (y1, . . . , yn)′ and a designX = (x1, . . . ,xn)′, let y(i) = (y1, . . . , yi)′

andX(i) = (x1, . . . ,xi)′ be the firsti rows of each matrix. Write the sufficient
statistic based on thesei rows ast′(i) = y′(i)X(i). A recursion relation results:
t(i+1) = t(i) + yi+1xi+1.
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The following methods are available.

• The multivariate shift algorithmdeveloped by Hirji, Mehta, and Patel (1987)
steps through the recursion relation by adding one observation at a time and
building an intermediate distribution at each step. If it determines thatt(i)

for the nuisance parameters could eventually equalt, thent(i) is added to the
intermediate distribution.

• Hirji (1992) extends the multivariate shift algorithm to generalized logit mod-
els. Since the generalized logit model fits a new set of parameters to each
logit, the number of parameters in the model can easily get too large for this
algorithm to handle. Note for these models that the hypothesis tests for each
effect are computed across the logit functions, while individual parameters are
estimated for each logit function.

• A network algorithm described in Mehta, Patel, and Senchaudhuri (1992)
builds a network for each parameter that you are conditioning out in order to
identify feasibleyi for they vector. These networks are combined and the set
of feasibleyi is further reduced, then the multivariate shift algorithm uses this
knowledge to build the exact distribution without adding as many intermediate
t(i+1) as the multivariate shift algorithm does.

• Mehta, Patel, and Senchaudhuri (2000) devised a hybrid Monte-Carlo and net-
work algorithm that extends their 1992 algorithm by sampling from the com-
bined network to build the exact distribution.

The bulk of the computation time and memory for these algorithms is consumed by
the creation of the networks and the exact joint distribution. After the joint distri-
bution for a set of effects is created, the computational effort required to produce
hypothesis tests and parameter estimates for any subset of the effects is (relatively)
trivial.

Hypothesis Tests

Consider testing the null hypothesisH0:β1 = 0 against the alternativeHA:β1 6= 0,
conditional onT0 = t0. Under the null hypothesis, the test statistic for theexact
probability testis justfβ1=0(t1|t0), while the correspondingp-value is the probabil-
ity of getting a less likely (more extreme) statistic,

p(t1|t0) =
∑
u∈Ωp

f0(u|t0)

whereΩp = {u: there existy with y′X1 = u, y′X0 = t0, and f0(u|t0) ≤
f0(t1|t0)}.

For theexact conditional scores test, the conditional meanµ1 and variance matrix
Σ1 of theT1 (conditional onT0 = t0) are calculated, and the score statistic for the
observed value,

s = (t1 − µ1)
′Σ−1

1 (t1 − µ1)
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is compared to the score for each member of the distribution

S(T1) = (T1 − µ1)
′Σ−1

1 (T1 − µ1)

The resultingp-value is

p(t1|t0) = Pr(S ≥ s) =
∑
u∈Ωs

f0(u|t0)

whereΩs = {u: there existy with y′X1 = u, y′X0 = t0, andS(u) ≥ s}.

The mid-p statistic, defined as

p(t1|t0)−
1
2
f0(t1|t0)

was proposed by Lancaster (1961) to compensate for the discreteness of a distribu-
tion. Refer to Agresti (1992) for more information. However, to allow for more
flexibility in handling ties, you can write the mid-p statistic as (based on a suggestion
by LaMotte 2002 and generalizing Vollset, Hirji, and Afifi 1991)

∑
u∈Ω<

f0(u|t0) + δ1f0(t1|t0) + δ2
∑

u∈Ω=

f0(u|t0)

where, fori ∈ {p, s}, Ω< is Ωi using strict inequalities, andΩ= is Ωi using equalities
with the added restriction thatu 6= t1. Letting(δ1, δ2) = (0.5, 1.0) yields Lancaster’s
mid-p.

Caution: When the exact distribution has ties and METHOD=NETWORKMC is
specified, the Monte Carlo algorithm estimatesp(t|t0) with error, and hence it cannot
determine precisely which values contribute to the reportedp-values. For example,
if the exact distribution has densities{0.2, 0.2, 0.2, 0.4} and if the observed statistic
has probability0.2, then the exact probabilityp-value is exactly0.6. Under Monte
Carlo sampling, if the densities afterN samples are{0.18, 0.21, 0.23, 0.38} and the
observed probability is0.21, then the resultingp-value is0.39. Therefore, the exact
probability testp-value for this example fluctuates between0.2, 0.4, and0.6, and
the reportedp-values are actually lower bounds for the truep-values. If you need
more precise values, you can specify the OUTDIST= option, determine appropriate
cutoff values for the observed probability and score, then construct the truep-value
estimates from the OUTDIST= data set using the following statements.

data _null_;
set outdist end=end;
retain pvalueProb 0 pvalueScore 0;
if prob < ProbCutOff then pvalueProb+prob;
if score > ScoreCutOff then pvalueScore+prob;
if end then put pvalueProb pvalueScore;

run;
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Inference for a Single Parameter

Exact parameter estimates are derived for a single parameterβi by regard-
ing all the other parametersβ0 = (β1, . . . , βi−1, βi+1, . . . , βp+q)′ as nui-
sance parameters. The appropriate sufficient statistics areT1 = Ti and
T0 = (T1, . . . , Ti−1, Ti+1, . . . , Tp+q)′, with their observed values denoted by
the lowercaset. Hence, the conditional pdf used to create the parameter estimate for
βi is

fβi
(ti|t0) =

C(t0, ti) exp(tiβi)∑
u∈ΩC(t0, u) exp(uβi)

for Ω = {u: there existy with Ti = u andT0 = t0}.

The maximum exact conditional likelihood estimate is the quantityβ̂i, which max-
imizes the conditional pdf. A Newton-Raphson algorithm is used to perform this
search. However, if the observedti attains either its maximum or minimum value in
the exact distribution (that is, eitherti = min{u : u ∈ Ω} or ti = max{u : u ∈ Ω}),
then the conditional pdf is monotonically increasing inβi and cannot be maximized.
In this case, a median unbiased estimate (Hirji, Tsiatis, and Mehta 1989)β̂i is pro-
duced that satisfiesf

β̂i
(ti|t0) = 0.5, and a Newton-Raphson-type algorithm is used

to perform the search.

Likelihood ratio tests based on the conditional pdf are used to test the nullH0:βi = 0
against the alternativeHA:βi > 0. The critical region for this UMP test consists of
the upper tail of values forTi in the exact distribution. Thus, the one-sided signifi-
cance levelp+(ti; 0) is

p+(ti; 0) =
∑
u≥ti

f0(u|t0)

Similarly, the one-sided significance levelp−(ti; 0) againstHA:βi < 0 is

p−(ti; 0) =
∑
u≤ti

f0(u|t0)

The two-sided significance levelp(ti; 0) againstHA:βi 6= 0 is calculated as

p(ti; 0) = 2min[p−(ti; 0), p+(ti; 0)]

An upper100(1− 2ε)% exact confidence limit for̂βi corresponding to the observed
ti is the solutionβU (ti) of ε = p−(ti, βU (ti)), while the lower exact confidence limit
is the solutionβL(ti) of ε = p+(ti, βL(ti)). Again, a Newton-Raphson procedure is
used to search for the solutions.

Specifying the ONESIDED option displays only onep-value and one confidence in-
terval, because small values ofp+(ti; 0) andp−(ti; 0) support different alternative
hypotheses and only one of thesep-values can be less than 0.50.
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The mid-p confidence limits are the solutions tomin{p−(ti, β(ti)), p+(ti, β(ti))} −
(1− δ1)fβ(ti)(u|t0) = ε for ε = α/2, 1−α/2 (Vollset, Hirji, and Afifi 1991).δ1 = 1
produces the usual exact (ormax-p) confidence interval,δ1 = 0.5 yields the mid-p
interval, andδ1 = 0 gives themin-p interval. The mean of the endpoints of the max-p
and min-p intervals provides themean-p interval as defined by Hirji, Mehta, and Patel
(1988).

Estimates and confidence intervals for the odds-ratios are produced by exponentiating
the estimates and interval endpoints for the parameters.

OUTEST= Output Data Set

The OUTEST= data set contains one observation for each BY group containing
the maximum likelihood estimates of the regression coefficients. If you also use
the COVOUT option in the PROC LOGISTIC statement, there are additional ob-
servations containing the rows of the estimated covariance matrix. If you use the
FORWARD, BACKWARD, or STEPWISE selection method, only the estimates of
the parameters and covariance matrix for the final model are output to the OUTEST=
data set.

Variables in the OUTEST= Data Set

The OUTEST= data set contains the following variables:

• any BY variables specified

• –LINK– , a character variable of length 8 with four possible values:
CLOGLOG for the complementary log-log function, LOGIT for the logit
function, NORMIT for the probit (alias normit) function, and GLOGIT for the
generalized logit function.

• –TYPE– , a character variable of length 8 with two possible values: PARMS
for parameter estimates or COV for covariance estimates. If an EXACT state-
ment is also specified, then two other values are possible: EPARMMLE for the
exact maximum likelihood estimates and EPARMMUE for the exact median
unbiased estimates.

• –NAME– , a character variable containing the name of the response variable
when–TYPE–=PARMS, EPARMMLE, and EPARMMUE, or the name of a
model parameter when–TYPE–=COV

• –STATUS– , a character variable that indicates whether the estimates have
converged

• one variable for each intercept parameter

• one variable for each slope parameter and one variable for the offset variable
if the OFFSET= option if specified. If an effect is not included in the final
model in a model building process, the corresponding parameter estimates and
covariances are set to missing values.

• –LNLIKE– , the log likelihood
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Parameter Names in the OUTEST= Data Set

If there are only two response categories in the entire data set, the intercept parameter
is namedIntercept. If there are more than two response categories in the entire
data set, the intercept parameters are namedIntercept–xxx, wherexxx is the value
(formatted if a format is applied) of the corresponding response category.

For continuous explanatory variables, the names of the parameters are the same as
the corresponding variables. For class variables, the parameter names are obtained
by concatenating the corresponding CLASS variable name with the CLASS cate-
gory; see thePARAM= option in the CLASS statement and the“CLASS Variable
Parameterization”section on page 2331 for more details. For interaction and nested
effects, the parameter names are created by concatenating the names of each effect.

For the generalized logit model, names of parameters corresponding to each nonref-
erence category contain–xxx as the suffix, wherexxx is the value (formatted if a
format is applied) of the corresponding nonreference category. For example, suppose
the variableNet3 represents the television network (ABC, CBS, and NBC) viewed
at a certain time. The following code fits a generalized logit model withAge and
Gender (a CLASS variable with values Female and Male) as explanatory variables.

proc logistic;
class Gender;
model Net3 = Age Gender / link=glogit;

run;

There are two logit functions, one contrasting ABC with NBC and the other contrast-
ing CBS with NBC. For each logit, there are three parameters: an intercept parameter,
a slope parameter for Age, and a slope parameter for Gender (since there are only two
gender levels and the EFFECT parameterization is used by default). The names of
the parameters and their descriptions are as follows.

Intercept–ABC intercept parameter for the logit contrasting ABC with
NBC

Intercept–CBS intercept parameter for the logit contrasting CBS with
NBC

Age–ABC Age slope parameter for the logit contrasting ABC with
NBC

Age–CBS Age slope parameter for the logit contrasting CBS with
NBC

GenderFemale–ABC Gender=Female slope parameter for the logit contrasting
ABC with NBC

GenderFemale–CBS Gender=Female slope parameter for the logit contrasting
CBS with NBC
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INEST= Input Data Set

You can specify starting values for the iterative algorithm in the INEST= data set. The
INEST= data set has the same structure as theOUTEST=data set but is not required
to have all the variables or observations that appear in the OUTEST= data set.

The INEST= data set must contain the intercept variables (named Intercept for binary
response models and Intercept, Intercept2, Intercept3, and so forth, for ordinal and
nominal response models) and all explanatory variables in the MODEL statement. If
BY processing is used, the INEST= data set should also include the BY variables,
and there must be one observation for each BY group. If the INEST= data set also
contains the–TYPE– variable, only observations with–TYPE– value ’PARMS’ are
used as starting values.

OUT= Output Data Set in the OUTPUT Statement

The OUT= data set in the OUTPUT statement contains all the variables in the in-
put data set along with statistics you request usingkeyword=nameoptions or the
PREDPROBS= option in the OUTPUT statement. In addition, if you use thesingle-
trial syntax and you request any of the XBETA=, STDXBETA=, PREDICTED=,
LCL=, and UCL= options, the OUT= data set contains the automatic variable

–LEVEL– . The value of–LEVEL– identifies the response category upon which
the computed values of XBETA=, STDXBETA=, PREDICTED=, LCL=, and UCL=
are based.

When there are more than two response levels, only variables named by the XBETA=,
STDXBETA=, PREDICTED=, LOWER=, and UPPER= options and the variables
given by PREDPROBS=(INDIVIDUAL CUMULATIVE) have their values com-
puted; the other variables have missing values. If you fit a generalized logit model,
the cumulative predicted probabilities are not computed.

When there are only two response categories, each input observation produces one
observation in the OUT= data set.

If there are more than two response categories and you only specify the
PREDPROBS= option, then each input observation produces one observation
in the OUT= data set. However, if you fit an ordinal (cumulative) model and specify
options other than the PREDPROBS= options, each input observation generates
as many output observations as one fewer than the number of response levels, and
the predicted probabilities and their confidence limits correspond to the cumulative
predicted probabilities. If you fit a generalized logit model and specify options
other than the PREDPROBS= options, each input observation generates as many
output observations as the number of response categories; the predicted probabilities
and their confidence limits correspond to the probabilities of individual response
categories.

For observations in which only the response variable is missing, values of
the XBETA=, STDXBETA=, PREDICTED=, UPPER=, LOWER=, and the
PREDPROBS= options are computed even though these observations do not affect
the model fit. This enables, for instance, predicted probabilities to be computed for
new observations.
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OUT= Output Data Set in a SCORE Statement

The OUT= data set in a SCORE statement contains all the variables in the data set
being scored. The data set being scored can be either the inputDATA= data set in the
PROC LOGISTIC statement or theDATA= data set in the SCORE statement. The
DATA= data set in the SCORE statement may not contain a response variable.

If the data set being scored contains a response variable, then denote thenormalized
levels (left justified formatted values of 16 characters or less) of your response vari-
ableY by Y1, . . . , Yk+1. For each response level, the OUT= data set also contains:

• F–Y, the normalized levels of the response variableY in the data set being
scored. If theevents/trials syntax is used, the F–Y variable is not created.

• I–Y, the normalized levels that the observations are classified into. Note that
an observation is classified into the level with the largest probability. If the
events/trials syntax is used, the–INTO– variable is created instead and it con-
tains the values EVENT and NONEVENT.

• P–Yi, the posterior probabilities of the normalized response levelYi.

• If the CLM option is specified in the SCORE statement, the OUT= data set also
includes:

– LCL–Yi, the lower 100(1-α)% confidence limits for P–Yi

– UCL–Yi, the upper 100(1-α)% confidence limits for P–Yi

OUTDIST= Output Data Set

The OUTDIST= data set contains every exact conditional distribution necessary to
process the EXACT statement. For example, the following statements create one
distribution for thex1 parameter and another for thex2 parameters, and produces the
data setdist shown inFigure 42.7:

proc logistic;
class x2 / param=ref;
model y=x1 x2;
exact x1 x2/ outdist=dist;

proc print data=dist;
run;
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Obs x1 x20 x21 Count Score Prob

1 . 0 0 3 5.81151 0.03333
2 . 0 1 15 1.66031 0.16667
3 . 0 2 9 3.12728 0.10000
4 . 1 0 15 1.46523 0.16667
5 . 1 1 18 0.21675 0.20000
6 . 1 2 6 4.58644 0.06667
7 . 2 0 19 1.61869 0.21111
8 . 2 1 2 3.27293 0.02222
9 . 3 0 3 6.27189 0.03333

10 2 . . 6 3.03030 0.12000
11 3 . . 12 0.75758 0.24000
12 4 . . 11 0.00000 0.22000
13 5 . . 18 0.75758 0.36000
14 6 . . 3 3.03030 0.06000

Figure 42.7. OUTDIST

The first nine observations in thedist data set contain a exact distribution for the
parameters of thex2 effect (hence the values for thex1 parameter are missing), and
the remaining five observations are for thex1 parameter. If a joint distribution was
created, there would be observations with values for both thex1 andx2 parameters.
For CLASS variables, the corresponding parameters in thedist data set are identified
by concatenating the variable name with the appropriate classification level.

The data set contains the possible sufficient statistics of the parameters for the effects
specified in the EXACT statement, and theCount variable contains the number of
different responses that yield these statistics. For example, there were 6 possible
response vectorsy for which the dot producty′x1 was equal to 2, and for which
y′x20, y′x21, andy′1 were equal to their actual observed values (displayed in the
“Sufficient Statistics” table). When hypothesis tests are performed on the parameters,
theProb variable contains the probability of obtaining that statistic (which is just the
count divided by the total count), and theScore variable contains the score for that
statistic. For more information, see the section“EXACT Statement Examples”on
page 2302.

OUTROC= Output Data Set

The OUTROC= data set contains data necessary for producing the ROC curve, and
can be created by specifying theOUTROC=option in the MODEL statement or the
OUTROC=option in the SCORE statement: It has the following variables:

• any BY variables specified

• –STEP– , the model step number. This variable is not included if model se-
lection is not requested.

• –PROB– , the estimated probability of an event. These estimated probabili-
ties serve as cutpoints for predicting the response. Any observation with an
estimated event probability that exceeds or equals–PROB– is predicted to be
an event; otherwise, it is predicted to be a nonevent. Predicted probabilities
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that are close to each other are grouped together, with the maximum allowable
difference between the largest and smallest values less than a constant that is
specified by the ROCEPS= option. The smallest estimated probability is used
to represent the group.

• –POS– , the number of correctly predicted event responses

• –NEG– , the number of correctly predicted nonevent responses

• –FALPOS– , the number of falsely predicted event responses

• –FALNEG– , the number of falsely predicted nonevent responses

• –SENSIT– , the sensitivity, which is the proportion of event observations that
were predicted to have an event response

• –1MSPEC– , one minus specificity, which is the proportion of nonevent ob-
servations that were predicted to have an event response

Note that none of these statistics are affected by the bias-correction method discussed
in the “Classification Table”section on page 2352. An ROC curve is obtained by
plotting –SENSIT– against–1MSPEC– . For more information, see the section
“Receiver Operating Characteristic Curves”on page 2357.

Computational Resources

The memory needed to fit an unconditional model is approximately24(p+2)2 bytes,
wherep is the number of parameters estimated. For cumulative response models
with more than two response levels, a test of the parallel lines assumption requires an
additional memory of approximately4k2(m+1)2 +24(m+2)2 bytes, wherek is the
number of response levels andm is the number of slope parameters. However, if this
additional memory is not available, the procedure skips the test and finishes the other
computations. You may need more memory if you use the SELECTION= option for
model building.

The data that consist of relevant variables (including the design variables for model
effects) and observations for fitting the model are stored in the utility file. If sufficient
memory is available, such data will also be kept in memory; otherwise, the data
are reread from the utility file for each evaluation of the likelihood function and its
derivatives, with the resulting execution time of the procedure substantially increased.

If a conditional logistic regression is performed, then approximately4(m2 + m +
4) maxh(mh)+(8sH +36)H+12sH additional bytes of memory are needed, where
mh is the number of events in stratumh, H is the total number of strata, andsH is
the number of variables used to define the strata.

Computational Resources for Exact Conditional Logistic Regression

Many problems require a prohibitive amount of time and memory for exact compu-
tations, depending on the speed and memory available on your computer. For such
problems, consider whether exact methods are really necessary. Stokes, Davis, and
Koch (2000) suggest looking at exactp-values when the sample size is small and the
approximatep-values from the unconditional analysis are less than 0.10, and they
providerules of thumbfor determining when various models are valid.
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A formula does not exist that can predict the amount of time and memory neces-
sary to generate the exact conditional distributions for a particular problem. The time
and memory required depends on several factors, including the total sample size, the
number of parameters of interest, the number of nuisance parameters, and the or-
der in which the parameters are processed. To provide a feel for how these factors
affect performance, 19 data sets containingNobs ∈ {10, . . . , 500} observations con-
sisting of up to 10 independent uniform binary covariates (X1,. . .,XN) and a binary
response variable (Y), are generated and exact conditional distributions are created
for X1 conditional on the other covariates using the defaultMETHOD=NETWORK.
Figure 42.8displays results obtained on a 400Mhz PC with 768MB RAM running
Microsoft Windows NT.

data one;
do obs=1 to HalfNobs ;

do Y=0 to 1;
X1=round(ranuni(0));
...
XN=round(ranuni(0));
output;

end;
end;

options fullstimer;
proc logistic exactonly exactoptions(method=network maxtime=1200);

class X1 ... XN / param=ref;
model Y=X1 ... XN ;
exact X1 / outdist=dist;

run;

Figure 42.8. Mean Time and Memory Required
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At any time while PROC LOGISTIC is deriving the distributions, you can terminate
the computations by pressing the system interrupt key sequence (refer to the SAS
Companion for your system) and choosing to stop computations. If you run out of
memory, refer to the SAS Companion for your system to see how to allocate more.

You can use the EXACTOPTIONS optionMAXTIME= to limit the total amount
of time PROC LOGISTIC uses to derive all of the exact distributions. If PROC
LOGISTIC does not finish within that time, the procedure terminates.

Calculation of frequencies are performed in the log-scale by default. This reduces the
need to check for excessively large frequencies but can be slower than not scaling.
You can turn off the log-scaling by specifying theNOLOGSCALE option in the
MODEL statement. If a frequency in the exact distribution is larger than the largest
integer that can be held in double-precision, a warning is printed to the LOG, but
since inaccuracies due to adding small numbers to these large frequencies may have
little-or-no effect on the statistics, the exact computations continue.

You can monitor the progress of the procedure by submitting your program with the
EXACTOPTIONS optionSTATUSTIME=. If the procedure is too slow, you can try
another method by specifying the EXACTOPTIONS optionMETHOD=, you can
try reordering the variables in the MODEL statement (note that CLASS variables are
always processed before continuous covariates), or you can try reparameterizing your
classification variables, for example:

class class-variables / param=ref ref=first order=freq;

Displayed Output

If you use the NOPRINT option in the PROC LOGISTIC statement, the procedure
does not display any output. Otherwise, the displayed output of the LOGISTIC pro-
cedure includes the following:

• “Model Information” table, which gives

– name of the input Data Set

– name and label of the Response Variable, if thesingle-trialsyntax is used

– number of Response Levels, if thesingle-trialsyntax is used

– name of the Events Variable, if theevents/trialssyntax is used

– name of the Trials Variable, if theevents/trialssyntax is used

– name of the Offset Variable, if the OFFSET= option is specified

– name of the Frequency Variable, if the FREQ statement is specified

– name of the Weight Variable, if the WEIGHT statement is specified

– Number of Strata, if the STRATA statement is specified

– Number of Strata Ignored and the total Frequency Ignored, if the
STRATA statement is specified and at least one stratum has no events
or no nonevents

– Link Function
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– Optimization Technique

– seed, if METHOD=NETWORKMC is specified

• “Number of Observations” table, which gives

– Number of Observations read from the input data set

– Number of Observations used in the analysis

– Sum of Frequencies of all the observations read from the input data set

– Sum of Frequencies of all the observations used in the analysis

– Sum of Weights of all the observations read from the input data set

– Sum of Weights of all the observations used in the analysis

– Normalized Sum of Weights of all the observations used in the analysis,
if the SCALE=WILLIAMS option is specified in the MODEL statement
or the NORMALIZE option is specified in the WEIGHT statement.

An ODS OUTPUT data set created from this table contains all of the informa-
tion in every row.

• “Response Profile” table, which gives, for each response level, the ordered
value (an integer between one and the number of response levels, inclusive);
the value of the response variable if thesingle-trial syntax is used or the val-
ues “Event” and “Nonevent” if theevents/trialssyntax is used; the count or
frequency; and the sum of weights if the WEIGHT statement is specified

• “Class Level Information” table, which gives the level and the design variables
for each CLASS explanatory variable

• “Descriptive Statistics for Continuous Explanatory Variables” table for contin-
uous explanatory variables, the “Frequency Distribution of Class Variables,”
and the “Weight Distribution of Class Variables” tables (if the WEIGHT state-
ment is specified), if you specify the SIMPLE option in the PROC LOGISTIC
statement. The “Descriptive Statistics for Continuous Explanatory Variables”
table contains the mean, standard deviation, maximum and minimum of each
continuous variable specified in the MODEL statement.

• “Maximum Likelihood Iterative Phase” table, if you use the ITPRINT option
in the MODEL statement. This table gives the iteration number, the step size
(in the scale of 1.0, .5, .25, and so on) or the ridge value,−2 log likelihood, and
parameter estimates for each iteration. Also displayed are the last evaluation
of the gradient vector and the last change in the−2 log likelihood.

• Pearson and deviance goodness-of-fit statistics, if you use the SCALE= option
in the MODEL statement

• score test result for testing the parallel lines assumption, if an ordinal response
model is fitted. If LINK=CLOGLOG or LINK=PROBIT, this test is labeled
“Score Test for the Parallel Slopes Assumption.” The proportion odds assump-
tion is a special case of the parallel lines assumption when LINK=LOGIT. In
this case, the test is labeled “Score Test for the Proportional Odds Assumption”.

• “Model Fit Statistics” and “Testing Global Null Hypothesis: BETA=0” tables,
which give the various criteria (−2 Log L, AIC, SC) based on the likelihood
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for fitting a model with intercepts only and for fitting a model with intercepts
and explanatory variables. If you specify the NOINT option, these statistics
are calculated without considering the intercept parameters. The third column
of the table gives the chi-square statistics andp-values for the−2 Log L statis-
tic and for the Score statistic. These test the joint effect of the explanatory
variables included in the model. The Score criterion is always missing for the
models identified by the first two columns of the table. Note also that the first
two rows of the Chi-Square column are always missing, since tests cannot be
performed for AIC and SC.

• generalizedR2 measures for the fitted model, if you specify the RSQUARE
option in the MODEL statement

• “Type 3 Analysis of Effects” table, if the model contains an effect involving a
CLASS variable. This table gives the Wald Chi-square statistic, the degrees of
freedom, and thep-value for each effect in the model

• “Analysis of Maximum Likelihood Estimates” table, which includes

– parameter name, which also identifies the CLASS variable level and, for
generalized logit models, a response variable column to identify the cor-
responding logit by displaying the nonreference level of the logit

– maximum likelihood estimate of the parameter

– estimated standard error of the parameter estimate, computed as the
square root of the corresponding diagonal element of the estimated co-
variance matrix

– Wald chi-square statistic, computed by squaring the ratio of the parameter
estimate divided by its standard error estimate

– p-value of the Wald chi-square statistic with respect to a chi-square dis-
tribution with one degree of freedom

– standardized estimate for the slope parameter, if you specify the STB
option in the MODEL statement. This estimate is given byβ̂i/(s/si),
wheresi is the total sample standard deviation for theith explanatory
variable and

s =


π/
√

3 Logistic
1 Normal
π/
√

6 Extreme-value

Standardized estimates of the intercept parameters are set to missing.

– eβ̂i for each slope parameterβi, if you specify the EXPB option in the
MODEL statement. For continuous variables, this is equivalent to the
estimated odds ratio for a 1 unit change.

– label of the variable, if you specify the PARMLABEL option in the
MODEL statement and if space permits. Due to constraints on the line
size, the variable label may be suppressed in order to display the table in
one panel. Use the SAS system option LINESIZE= to specify a larger
line size to accommodate variable labels. A shorter line size can break
the table into two panels allowing labels to be displayed.
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• “Odds Ratio Estimates” table, which contains the odds ratio estimates and the
corresponding 95% Wald confidence intervals. For continuous explanatory
variables, these odds ratios correspond to a unit increase in the risk factors.

• “Association of Predicted Probabilities and Observed Responses” table, which
includes a breakdown of the number of pairs with different responses, and
four rank correlation indexes: Somers’D, Goodman-Kruskal Gamma, and
Kendall’s Tau-a, andc

• confidence intervals for all the parameters, if you use the CLPARM= option in
the MODEL statement

• confidence intervals for all the odds ratios, if you use the CLODDS= option in
the MODEL statement

• a summary of the model-building process, if you use a FORWARD,
BACKWARD, or STEPWISE selection method. This summary gives the
step number, the explanatory variables entered or removed at each step, the
chi-square statistic, and the correspondingp-value on which the entry or
removal of the variable is based (the score chi-square is used to determine
entry; the Wald chi-square is used to determine removal)

• “Analysis of Variables Removed by Fast Backward Elimination” table, if you
specify the FAST option in the MODEL statement. This table gives the approx-
imate chi-square statistic for the variable removed, the correspondingp-value
with respect to a chi-square distribution with one degree of freedom, the resid-
ual chi-square statistic for testing the joint significance of the variable and the
preceding ones, the degrees of freedom, and thep-value of the residual chi-
square with respect to a chi-square distribution with the corresponding degrees
of freedom

• “Analysis of Effects not in the Model” table, if you specify the DETAILS op-
tion in the MODEL statement. This table gives the score chi-square statistic
for testing the significance of each variable not in the model after adjusting for
the variables already in the model, and thep-value of the chi-square statistic
with respect to a chi-square distribution with one degree of freedom

• classification table, if you use the CTABLE option in the MODEL state-
ment. For each prior event probability (labeled “Prob Event”) specified by the
PEVENT= option and each cutpoint specified in the PPROB= option, the table
gives the four entries of the2 × 2 table of observed and predicted responses
and the percentages of correct classification, sensitivity, specificity, false pos-
itive, and false negative. The columns labeled “Correct” give the number of
correctly classified events and nonevents. “Incorrect Event” gives the number
of nonevents incorrectly classified as events. “Incorrect Nonevent” gives the
number of nonevents incorrectly classified as events.

• estimated covariance matrix of the parameter estimates, if you use the COVB
option in the MODEL statement

• estimated correlation matrix of the parameter estimates, if you use the CORRB
option in the MODEL statement

• “Contrast Test Results” table, if you specify a CONTRAST statement. This
table gives the result of the Wald test for each CONTRAST specified. If you
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specify the E option in the CONTRAST statement, then the contrast matrix is
displayed. If you specify the ESTIMATE= option in the CONTRAST state-
ment, then estimates and Wald tests for each contrast (row of the contrast ma-
trix) or exponentiated contrast are produced.

• “Linear Hypothesis Testing” table, if you specify a TEST statement. This table
gives the result of the Wald test for each TEST statement specified. If you
specify the PRINT option in the TEST statement, then matrices used in the
intermediate calculations are also displayed.

• results of the Hosmer and Lemeshow test for the goodness of fit of the fitted
model, if you use the LACKFIT option in the MODEL statement

• “Regression Diagnostics” table, if you use the INFLUENCE option in the
MODEL statement. This table gives, for each observation, the case number
(which is the observation number), the values of the explanatory variables in-
cluded in the model, the Pearson residual, the deviance residual, the diagonal
element of the hat matrix, the standardized difference in the estimate for each
parameter (nameDFBETA, wherenameis eitherIntercept or the name of an
explanatory variable), two confidence interval displacement diagnostics (C and
CBAR), the change in the Pearson chi-square statistic (DIFCHISQ), and the
change in the deviance (DIFDEV)

If you also specify the STRATA statement, then this table contains the case
number (which is the observation number), the values of the explanatory vari-
ables included in the model, the estimated one-step Pearson residual, the esti-
mated one-step diagonal element of the hat matrix, and the estimated one-step
standardized difference in the estimate for each parameter.

• index plots of regression diagnostics, if you specify the IPLOTS option in the
MODEL statement. These include plots of

– Pearson residuals

– deviance residuals

– diagonal elements of the hat matrix

– standardized differences in parameter estimates, DFBETA0 for the inter-
cept estimate, DFBETA1 for the slope estimate of the first explanatory
variable in the MODEL statement, and so on

– confidence interval displacement diagnostics C

– confidence interval displacement diagnostics CBAR

– changes in the Pearson chi-square statistic

– changes in the deviance

• if you specify a STRATA statement

– “Strata Summary” table, which displays a pattern of the number of events
and the number of non-events in a stratum, the number of strata having
that pattern, and the total number of observations contained in those strata

– “Strata Information” table, if you specify the INFO option on the
STRATA statement. This table displays each stratum, its frequency, and
the number of events and non-events in that stratum.
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• if you specify an EXACT statement

– “Sufficient Statistics” table, if you request an OUTDIST= data set. This
table is displayed before printing any of the exact analysis results and lists
the parameters and their observed sufficient statistics.

– “Conditional Exact Tests” table, which provides two tests for the null
hypothesis that the parameters for the specified effects are zero: the Exact
Probability Test and the Exact Conditional Scores test. For each test,
the test statistic, an exactp-value (the probability of obtaining a more
extreme statistic than the observed, assuming the null hypothesis), and
a midp-value (which adjusts for the discreteness of the distribution) are
displayed.

– “Exact Parameter Estimates” table, if you specify the ESTIMATE,
ESTIMATE=PARM, or ESTIMATE=BOTH options. This table gives in-
dividual parameter estimates for each variable (conditional on the values
of all the other parameters in the model), confidence limits, and a two-
sidedp-value (twice the one-sidedp-value) for testing that the parameter
is zero.

– “Exact Odds Ratios” table, if you specify the ESTIMATE=ODDS or
ESTIMATE=BOTH options. This table gives odds ratio estimates for
the individual parameters, confidence limits, and a two-sidedp-value for
testing that the odds ratio is 1.

ODS Table Names

PROC LOGISTIC assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, seeChapter 14, “Using the Output Delivery System.”

Table 42.2. ODS Tables Produced in PROC LOGISTIC

ODS Table Name Description Statement Option
Association Association of predicted

probabilities and observed
responses

MODEL default

BestSubsets Best subset selection MODEL SELECTION=SCORE
ClassFreq Frequency breakdown of

CLASS variables
PROC Simple

(with CLASS vars)
ClassLevelInfo CLASS variable levels and

design variables
MODEL default

(with CLASS vars)
Classification Classification table MODEL CTABLE
ClassWgt Weight breakdown of

CLASS variables
PROC, WEIGHT Simple

(with CLASS vars)
CLOddsPL Profile likelihood confidence

limits for odds ratios
MODEL CLODDS=PL

CLOddsWald Wald’s confidence limits for
odds ratios

MODEL CLODDS=WALD
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Table 42.2. (continued)

ODS Table Name Description Statement Option
CLParmPL Profile likelihood confidence

limits for parameters
MODEL CLPARM=PL

CLParmWald Wald’s confidence limits for
parameters

MODEL CLPARM=WALD

ContrastCoeff L matrix from CONTRAST CONTRAST E
ContrastEstimate Estimates from CONTRAST CONTRAST ESTIMATE=
ContrastTest Wald test for CONTRAST CONTRAST default
ConvergenceStatus Convergence status MODEL default
CorrB Estimated correlation matrix

of parameter estimators
MODEL CORRB

CovB Estimated covariance matrix
of parameter estimators

MODEL COVB

CumulativeModelTest Test of the cumulative model
assumption

MODEL (ordinal response)

EffectNotInModel Test for effects not in model MODEL SELECTION=S/F
ExactOddsRatio Exact Odds Ratios EXACT ESTIMATE=ODDS,

ESTIMATE=BOTH
ExactParmEst Parameter Estimates EXACT ESTIMATE,

ESTIMATE=PARM,
ESTIMATE=BOTH

ExactTests Conditional Exact Tests EXACT default
FastElimination Fast backward elimination MODEL SELECTION=B,FAST
FitStatistics Model fit statistics MODEL default
GlobalScore Global score test MODEL NOFIT
GlobalTests Test for global null

hypothesis
MODEL default

GoodnessOfFit Pearson and deviance
goodness-of-fit tests

MODEL SCALE

IndexPlots Batch capture of the index
plots

MODEL IPLOTS

Influence Regression diagnostics MODEL INFLUENCE
IterHistory Iteration history MODEL ITPRINT
LackFitChiSq Hosmer-Lemeshow

chi-square test results
MODEL LACKFIT

LackFitPartition Partition for the Hosmer-
Lemeshow test

MODEL LACKFIT

LastGradient Last evaluation of gradient MODEL ITPRINT
LogLikeChange Final change in the log

likelihood
MODEL ITPRINT

ModelBuildingSummary Summary of model building MODEL SELECTION=B/F/S
ModelInfo Model information PROC default
NObs Number of Observations PROC default
OddsRatios Odds ratios MODEL default
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Table 42.2. (continued)

ODS Table Name Description Statement Option
ParameterEstimates Maximum likelihood

estimates of model
parameters

MODEL default

RSquare R-square MODEL RSQUARE
ResidualChiSq Residual chi-square MODEL SELECTION=F/B
ResponseProfile Response profile PROC default
SimpleStatistics Summary statistics for

explanatory variables
PROC SIMPLE

StrataSummary Number of strata with spe-
cific response frequencies

STRATA default

StrataInfo Event and non-event fre-
quencies for each stratum

STRATA INFO

SuffStats Sufficient Statistics EXACT OUTDIST=
TestPrint1 L [cov(b)]L ’ andLb -c TEST PRINT
TestPrint2 Ginv(L [cov(b)]L ’) and

Ginv(L [cov(b)]L ’)(Lb -c)
TEST PRINT

TestStmts Linear hypotheses testing
results

TEST default

Type3 Type 3 tests of effects MODEL default
(with CLASS variables)

ODS Graphics (Experimental)

This section describes the use of ODS for creating graphics with the LOGISTIC
procedure. These graphics are experimental in this release, meaning that both the
graphical results and the syntax for specifying them are subject to change in a future
release.

To request these graphs you must specify the ODS GRAPHICS statement in addition
to options on the MODEL or GRAPHICS statement as described in the following
sections. For more information on the ODS GRAPHICS statement, seeChapter 15,
“Statistical Graphics Using ODS.”

MODEL Statement Options

If the INFLUENCE or IPLOTS option is specified in the MODEL statement, then
the lineprinter plots are suppressed and ODS GRAPHICS versions of the plots are
produced.

If you specify the OUTROC= option, and if ROCEPS= is not specified, then ROC
curves are produced. If you also specify a SELECTION= method then an overlaid
plot of all the ROC curves for each step of the selection process is displayed.
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GRAPHICS Statement and Options

GRAPHICS options ;

The GRAPHICS statement provides options for requesting and modifying certain
graphical displays. This statement has no effect unless ODS GRAPHICS ON has
been specified. The functionality of this statement may be replaced by alternative
syntax in a future release.

The following options are available.

DFBETAS displays the DFBETAS versus Case Number plots. This acts like
DFBETAS=–ALL – in the OUTPUT statement. These plots are
produced by default when the GRAPHICS statement is specified.

HATDIAG displays plots of DIFCHISQ, DIFDEV, and DFBETAS (when the
DFBETAS option is specified) versus the hat diagonals.

INFLUENCE | INDEX displays the INFLUENCE plots with no DFBETAS. These
plots are produced by default when the GRAPHICS statement is
specified.

PHAT displays plots of DIFCHISQ, DIFDEV, and DFBETAS (when the
DFBETAS option is specified) versus the predicted event probabil-
ity.

ALL invokes the DFBETAS, HATDIAG, INFLUENCE, and PHAT op-
tions.

NOINFLUENCE suppresses the default INFLUENCE and DFBETAS plots.

NOPANELS unpanels the graphical displays and produces a series of plots
which form the panelled display.

ROC displays the ROC curve. If the ROCEPS= option is specified on
the MODEL statement then it must be equal to zero, otherwise
no ROC curve is produced. If you also specify a SELECTION=
method then an overlaid plot of all the ROC curves for each step of
the selection process is displayed.

ESTPROB(fit-options) displays the fit curves for the model when only one contin-
uous covariate is specified in the model. If you use events/trials
syntax, then this displays the estimated event probability and the
prediction limits versus the covariate with the observed proportions
overlaid on the graph. If you use single-trial syntax, this displays
the estimated event probability and the prediction limits versus the
covariate with the observed responses overlaid on the graph. If
you specify a polytomous logit model, then the estimated proba-
bilities for each possible response level are graphed. If you have an
OFFSET= variable with more than one value, then the prediction
curves are replaced with error bars and the estimated probabilities
are displayed at the observed covariate values.

The followingfit-optionsare available with the ESTPROB option.
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ALPHA=α specifies the size of the prediction interval. The
ALPHA= value specified on the PROC state-
ment is the default. If neither ALPHA= value
is specified, then ALPHA=0.05 by default.

GRIDSIZE=n specifies the number of equally-spaced points at
which the fit curve is computed. By default,
GRIDSIZE=50.

OBSERVE specifies that the fit curve should be computed at
the observed values only.

SeeExample 42.6on page 2422 andExample 42.7on page 2429 for examples of the
ODS graphical displays.

ODS Graph Names

PROC LOGISTIC assigns a name to each graph it creates using ODS. You can use
these names to reference the graphs when using ODS. The names are listed inTable
42.3.

To request these graphs you must specify the ODS GRAPHICS statement in addition
to the options indicated inTable 42.3. For more information on the ODS GRAPHICS
statement, seeChapter 15, “Statistical Graphics Using ODS.”

Table 42.3. ODS Graphics Produced by PROC LOGISTIC

ODS Graph Name Plot Description Statement Option
InfluencePlots Panel of influence statistics

vs. case number
GRAPHICS
or MODEL

INFLUENCE
INFLUENCE or IPLOTS

PearsonChisquarePlot Pearson chi-square residual
vs. case number

GRAPHICS INFLUENCE NOPANELS

DevianceResidualPlot Deviance residual vs. case
number

GRAPHICS INFLUENCE NOPANELS

HatPlot Hat diagonal vs. case number GRAPHICS INFLUENCE NOPANELS
CPlot CI displacement C vs. case

number
GRAPHICS INFLUENCE NOPANELS

CBarPlot CI displacement Cbar vs.
case number

GRAPHICS INFLUENCE NOPANELS

DeltaChisqPlot Difchisq vs. case number GRAPHICS INFLUENCE NOPANELS
DeltaDeviancePlot Difdev vs. case number GRAPHICS INFLUENCE NOPANELS
DFBetasPlot DFBetas vs. case number GRAPHICS DFBETAS NOPANELS
EstProbPlots Panel of estimated probability

vs. influence
GRAPHICS PHAT

PhatDifChisqPlot Estimated probability vs.
difchisq

GRAPHICS PHAT NOPANELS

PhatDifDevPlot Estimated probability vs.
difdev

GRAPHICS PHAT NOPANELS

PhatDFBetasPlot Estimated probability vs. df-
betas

GRAPHICS PHAT NOPANELS

HatDiagPlots Panel of hat diagonals vs. in-
fluence statistics

GRAPHICS HATDIAG
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Table 42.3. (continued)

ODS Graph Name Plot Description Statement Option
HatDiagDifChisqPlot Hat diagonals vs. difchisq GRAPHICS HATDIAG NOPANELS
HatDiagDifDevPlot Hat diagonals vs. difdev GRAPHICS HATDIAG NOPANELS
HatDiagDFBetasPlot Hat diagonals vs. dfbetas GRAPHICS HATDIAG NOPANELS
ROCCurve Receiver operating character-

istics curve
GRAPHICS
or MODEL

ROC
OUTROC=

ROCOverlay ROC curves for model selec-
tion steps

GRAPHICS
and MODEL

ROC
SELECTION=

FitCurve Estimated probability vs. one
continuous covariate

GRAPHICS ESTPROB

Examples

Example 42.1. Stepwise Logistic Regression and Predicted
Values

Consider a study on cancer remission (Lee 1974). The data, consisting of patient
characteristics and whether or not cancer remission occurred, are saved in the data
setRemission.

data Remission;
input remiss cell smear infil li blast temp;
label remiss=’Complete Remission’;
datalines;

1 .8 .83 .66 1.9 1.1 .996
1 .9 .36 .32 1.4 .74 .992
0 .8 .88 .7 .8 .176 .982
0 1 .87 .87 .7 1.053 .986
1 .9 .75 .68 1.3 .519 .98
0 1 .65 .65 .6 .519 .982
1 .95 .97 .92 1 1.23 .992
0 .95 .87 .83 1.9 1.354 1.02
0 1 .45 .45 .8 .322 .999
0 .95 .36 .34 .5 0 1.038
0 .85 .39 .33 .7 .279 .988
0 .7 .76 .53 1.2 .146 .982
0 .8 .46 .37 .4 .38 1.006
0 .2 .39 .08 .8 .114 .99
0 1 .9 .9 1.1 1.037 .99
1 1 .84 .84 1.9 2.064 1.02
0 .65 .42 .27 .5 .114 1.014
0 1 .75 .75 1 1.322 1.004
0 .5 .44 .22 .6 .114 .99
1 1 .63 .63 1.1 1.072 .986
0 1 .33 .33 .4 .176 1.01
0 .9 .93 .84 .6 1.591 1.02
1 1 .58 .58 1 .531 1.002
0 .95 .32 .3 1.6 .886 .988
1 1 .6 .6 1.7 .964 .99
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1 1 .69 .69 .9 .398 .986
0 1 .73 .73 .7 .398 .986
;

The data setRemission contains seven variables. The variableremiss is the cancer
remission indicator variable with a value of 1 for remission and a value of 0 for
nonremission. The other six variables are the risk factors thought to be related to
cancer remission.

The following invocation of PROC LOGISTIC illustrates the use ofstepwise selec-
tion to identify the prognostic factors for cancer remission. A significance level of
0.3 (SLENTRY=0.3) is required to allow a variable into the model, and a signifi-
cance level of 0.35 (SLSTAY=0.35) is required for a variable to stay in the model.
A detailed account of the variable selection process is requested by specifying the
DETAILS option. The Hosmer and Lemeshow goodness-of-fit test for the final se-
lected model is requested by specifying theLACKFIT option. TheOUTEST=and
COVOUT options in the PROC LOGISTIC statement create a data set that contains
parameter estimates and their covariances for the final selected model. The response
variable optionEVENT= setsremiss=1 (remission) to be Ordered Value 1 so that
the probability of remission is modeled. TheOUTPUTstatement creates a data set
that contains the cumulative predicted probabilities and the corresponding confidence
limits, and the individual and cross validated predicted probabilities for each obser-
vation.

title ’Stepwise Regression on Cancer Remission Data’;
proc logistic data=Remission outest=betas covout;

model remiss(event=’1’)=cell smear infil li blast temp
/ selection=stepwise

slentry=0.3
slstay=0.35
details
lackfit;

output out=pred p=phat lower=lcl upper=ucl
predprob=(individual crossvalidate);

run;

proc print data=betas;
title2 ’Parameter Estimates and Covariance Matrix’;

run;

proc print data=pred;
title2 ’Predicted Probabilities and 95% Confidence Limits’;

run;

In stepwise selection, an attempt is made to remove any insignificant variables from
the model before adding a significant variable to the model. Each addition or deletion
of a variable to or from a model is listed as a separate step in the displayed output,
and at each step a new model is fitted. Details of the model selection steps are shown
in Output 42.1.1–Output 42.1.5.
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Output 42.1.1. Startup Model

Stepwise Regression on Cancer Remission Data

The LOGISTIC Procedure

Model Information

Data Set WORK.REMISSION
Response Variable remiss Complete Remission
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 27
Number of Observations Used 27

Response Profile

Ordered Total
Value remiss Frequency

1 0 18
2 1 9

Probability modeled is remiss=1.

Stepwise Selection Procedure

Step 0. Intercept entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.6931 0.4082 2.8827 0.0895

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

9.4609 6 0.1493

Analysis of Effects Eligible for Entry

Score
Effect DF Chi-Square Pr > ChiSq

cell 1 1.8893 0.1693
smear 1 1.0745 0.2999
infil 1 1.8817 0.1701
li 1 7.9311 0.0049
blast 1 3.5258 0.0604
temp 1 0.6591 0.4169
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Output 42.1.2. Step 1 of the Stepwise Analysis

Step 1. Effect li entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 36.372 30.073
SC 37.668 32.665
-2 Log L 34.372 26.073

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.2988 1 0.0040
Score 7.9311 1 0.0049
Wald 5.9594 1 0.0146

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -3.7771 1.3786 7.5064 0.0061
li 1 2.8973 1.1868 5.9594 0.0146

Association of Predicted Probabilities and Observed Responses

Percent Concordant 84.0 Somers’ D 0.710
Percent Discordant 13.0 Gamma 0.732
Percent Tied 3.1 Tau-a 0.328
Pairs 162 c 0.855

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

3.1174 5 0.6819

NOTE: No effects for the model in Step 1 are removed.

Analysis of Effects Eligible for Entry

Score
Effect DF Chi-Square Pr > ChiSq

cell 1 1.1183 0.2903
smear 1 0.1369 0.7114
infil 1 0.5715 0.4497
blast 1 0.0932 0.7601
temp 1 1.2591 0.2618
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Output 42.1.3. Step 2 of the Stepwise Analysis

Step 2. Effect temp entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 36.372 30.648
SC 37.668 34.535
-2 Log L 34.372 24.648

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 9.7239 2 0.0077
Score 8.3648 2 0.0153
Wald 5.9052 2 0.0522

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 47.8448 46.4381 1.0615 0.3029
li 1 3.3017 1.3593 5.9002 0.0151
temp 1 -52.4214 47.4897 1.2185 0.2697

Association of Predicted Probabilities and Observed Responses

Percent Concordant 87.0 Somers’ D 0.747
Percent Discordant 12.3 Gamma 0.752
Percent Tied 0.6 Tau-a 0.345
Pairs 162 c 0.873

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.1429 4 0.7095

NOTE: No effects for the model in Step 2 are removed.

Analysis of Effects Eligible for Entry

Score
Effect DF Chi-Square Pr > ChiSq

cell 1 1.4700 0.2254
smear 1 0.1730 0.6775
infil 1 0.8274 0.3630
blast 1 1.1013 0.2940
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Output 42.1.4. Step 3 of the Stepwise Analysis

Step 3. Effect cell entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 36.372 29.953
SC 37.668 35.137
-2 Log L 34.372 21.953

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 12.4184 3 0.0061
Score 9.2502 3 0.0261
Wald 4.8281 3 0.1848

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 67.6339 56.8875 1.4135 0.2345
cell 1 9.6521 7.7511 1.5507 0.2130
li 1 3.8671 1.7783 4.7290 0.0297
temp 1 -82.0737 61.7124 1.7687 0.1835

Association of Predicted Probabilities and Observed Responses

Percent Concordant 88.9 Somers’ D 0.778
Percent Discordant 11.1 Gamma 0.778
Percent Tied 0.0 Tau-a 0.359
Pairs 162 c 0.889

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.1831 3 0.9803

NOTE: No effects for the model in Step 3 are removed.

Analysis of Effects Eligible for Entry

Score
Effect DF Chi-Square Pr > ChiSq

smear 1 0.0956 0.7572
infil 1 0.0844 0.7714
blast 1 0.0208 0.8852

NOTE: No (additional) effects met the 0.3 significance level for entry into the
model.
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Output 42.1.5. Summary of the Stepwise Selection

Summary of Stepwise Selection

Effect Number Score Wald
Step Entered Removed DF In Chi-Square Chi-Square Pr > ChiSq

1 li 1 1 7.9311 0.0049
2 temp 1 2 1.2591 0.2618
3 cell 1 3 1.4700 0.2254

Prior to the first step, the intercept-only model is fitted and individual score statistics
for the potential variables are evaluated (Output 42.1.1). In Step 1 (Output 42.1.2),
variableli is selected into the model since it is the most significant variable among
those to be chosen (p = 0.0049 < 0.3). The intermediate model that contains an
intercept andli is then fitted.li remains significant (p = 0.0146 < 0.35) and is not
removed. In Step 2 (Output 42.1.3), variabletemp is added to the model. The model
then contains an intercept and variablesli and temp. Both li and temp remain sig-
nificant at 0.035 level; therefore, neitherli nor temp is removed from the model. In
Step 4 (Output 42.1.4), variablecell is added to the model. The model then contains
an intercept and variablesli, temp, andcell. None of these variables are removed
from the model since all are significant at the 0.35 level. Finally, none of the remain-
ing variables outside the model meet the entry criterion, and the stepwise selection is
terminated. A summary of the stepwise selection is displayed inOutput 42.1.5.

Output 42.1.6. Display of the LACKFIT Option

Partition for the Hosmer and Lemeshow Test

remiss = 1 remiss = 0
Group Total Observed Expected Observed Expected

1 3 0 0.00 3 3.00
2 3 0 0.01 3 2.99
3 3 0 0.19 3 2.81
4 3 0 0.56 3 2.44
5 4 1 1.09 3 2.91
6 3 2 1.35 1 1.65
7 3 2 1.84 1 1.16
8 3 3 2.15 0 0.85
9 2 1 1.80 1 0.20

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

6.2983 7 0.5054

Results of the Hosmer and Lemeshow test are shown inOutput 42.1.6. There is no
evidence of a lack of fit in the selected model(p = 0.5054).
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Output 42.1.7. Data Set of Estimates and Covariances

Stepwise Regression on Cancer Remission Data
Parameter Estimates and Covariance Matrix

Obs _LINK_ _TYPE_ _STATUS_ _NAME_ Intercept cell

1 LOGIT PARMS 0 Converged remiss 67.63 9.652
2 LOGIT COV 0 Converged Intercept 3236.19 157.097
3 LOGIT COV 0 Converged cell 157.10 60.079
4 LOGIT COV 0 Converged smear . .
5 LOGIT COV 0 Converged infil . .
6 LOGIT COV 0 Converged li 64.57 6.945
7 LOGIT COV 0 Converged blast . .
8 LOGIT COV 0 Converged temp -3483.23 -223.669

Obs smear infil li blast temp _LNLIKE_

1 . . 3.8671 . -82.07 -10.9767
2 . . 64.5726 . -3483.23 -10.9767
3 . . 6.9454 . -223.67 -10.9767
4 . . . . . -10.9767
5 . . . . . -10.9767
6 . . 3.1623 . -75.35 -10.9767
7 . . . . . -10.9767
8 . . -75.3513 . 3808.42 -10.9767

The data setbetas created by the OUTEST= and COVOUT options is displayed in
Output 42.1.7. The data set contains parameter estimates and the covariance matrix
for the final selected model. Note that all explanatory variables listed in the MODEL
statement are included in this data set; however, variables that are not included in the
final model have all missing values.
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Output 42.1.8. Predicted Probabilities and Confidence Intervals

Stepwise Regression on Cancer Remission Data
Predicted Probabilities and 95% Confidence Limits

_
r _ _ L
e s i b F I E
m c m n l t R N I I X X V p

O i e e f a e O T P P P P E h l u
b s l a i l s m M O _ _ _ _ L a c c
s s l r l i t p _ _ 0 1 0 1 _ t l l

1 1 0.80 0.83 0.66 1.9 1.100 0.996 1 1 0.27735 0.72265 0.43873 0.56127 1 0.72265 0.16892 0.97093
2 1 0.90 0.36 0.32 1.4 0.740 0.992 1 1 0.42126 0.57874 0.47461 0.52539 1 0.57874 0.26788 0.83762
3 0 0.80 0.88 0.70 0.8 0.176 0.982 0 0 0.89540 0.10460 0.87060 0.12940 1 0.10460 0.00781 0.63419
4 0 1.00 0.87 0.87 0.7 1.053 0.986 0 0 0.71742 0.28258 0.67259 0.32741 1 0.28258 0.07498 0.65683
5 1 0.90 0.75 0.68 1.3 0.519 0.980 1 1 0.28582 0.71418 0.36901 0.63099 1 0.71418 0.25218 0.94876
6 0 1.00 0.65 0.65 0.6 0.519 0.982 0 0 0.72911 0.27089 0.67269 0.32731 1 0.27089 0.05852 0.68951
7 1 0.95 0.97 0.92 1.0 1.230 0.992 1 0 0.67844 0.32156 0.72923 0.27077 1 0.32156 0.13255 0.59516
8 0 0.95 0.87 0.83 1.9 1.354 1.020 0 1 0.39277 0.60723 0.09906 0.90094 1 0.60723 0.10572 0.95287
9 0 1.00 0.45 0.45 0.8 0.322 0.999 0 0 0.83368 0.16632 0.80864 0.19136 1 0.16632 0.03018 0.56123

10 0 0.95 0.36 0.34 0.5 0.000 1.038 0 0 0.99843 0.00157 0.99840 0.00160 1 0.00157 0.00000 0.68962
11 0 0.85 0.39 0.33 0.7 0.279 0.988 0 0 0.92715 0.07285 0.91723 0.08277 1 0.07285 0.00614 0.49982
12 0 0.70 0.76 0.53 1.2 0.146 0.982 0 0 0.82714 0.17286 0.63838 0.36162 1 0.17286 0.00637 0.87206
13 0 0.80 0.46 0.37 0.4 0.380 1.006 0 0 0.99654 0.00346 0.99644 0.00356 1 0.00346 0.00001 0.46530
14 0 0.20 0.39 0.08 0.8 0.114 0.990 0 0 0.99982 0.00018 0.99981 0.00019 1 0.00018 0.00000 0.96482
15 0 1.00 0.90 0.90 1.1 1.037 0.990 0 1 0.42878 0.57122 0.35354 0.64646 1 0.57122 0.25303 0.83973
16 1 1.00 0.84 0.84 1.9 2.064 1.020 1 1 0.28530 0.71470 0.47213 0.52787 1 0.71470 0.15362 0.97189
17 0 0.65 0.42 0.27 0.5 0.114 1.014 0 0 0.99938 0.00062 0.99937 0.00063 1 0.00062 0.00000 0.62665
18 0 1.00 0.75 0.75 1.0 1.322 1.004 0 0 0.77711 0.22289 0.73612 0.26388 1 0.22289 0.04483 0.63670
19 0 0.50 0.44 0.22 0.6 0.114 0.990 0 0 0.99846 0.00154 0.99842 0.00158 1 0.00154 0.00000 0.79644
20 1 1.00 0.63 0.63 1.1 1.072 0.986 1 1 0.35089 0.64911 0.42053 0.57947 1 0.64911 0.26305 0.90555
21 0 1.00 0.33 0.33 0.4 0.176 1.010 0 0 0.98307 0.01693 0.98170 0.01830 1 0.01693 0.00029 0.50475
22 0 0.90 0.93 0.84 0.6 1.591 1.020 0 0 0.99378 0.00622 0.99348 0.00652 1 0.00622 0.00003 0.56062
23 1 1.00 0.58 0.58 1.0 0.531 1.002 1 0 0.74739 0.25261 0.84423 0.15577 1 0.25261 0.06137 0.63597
24 0 0.95 0.32 0.30 1.6 0.886 0.988 0 1 0.12989 0.87011 0.03637 0.96363 1 0.87011 0.40910 0.98481
25 1 1.00 0.60 0.60 1.7 0.964 0.990 1 1 0.06868 0.93132 0.08017 0.91983 1 0.93132 0.44114 0.99573
26 1 1.00 0.69 0.69 0.9 0.398 0.986 1 0 0.53949 0.46051 0.62312 0.37688 1 0.46051 0.16612 0.78529
27 0 1.00 0.73 0.73 0.7 0.398 0.986 0 0 0.71742 0.28258 0.67259 0.32741 1 0.28258 0.07498 0.65683

The data setpred created by the OUTPUT statement is displayed inOutput 42.1.8. It
contains all the variables in the input data set, the variablephat for the (cumulative)
predicted probability, the variableslcl anducl for the lower and upper confidence lim-
its for the probability, and four other variables (viz.,IP–1, IP–0, XP–1, andXP–0)
for the PREDPROBS=option. The data set also contains the variable–LEVEL– ,
indicating the response value to whichphat, lcl, anducl refer. For instance, for the
first row of the OUTPUT data set, the values of–LEVEL– andphat, lcl, anducl are
1, 0.72265, 0.16892 and 0.97093, respectively; this means that the estimated proba-
bility that remiss≤1 is 0.723 for the given explanatory variable values, and the cor-
responding 95% confidence interval is (0.16892, 0.97093). The variablesIP–1 and
IP–0 contain the predicted probabilities thatremiss=1 andremiss=0, respectively.
Note that values ofphat and IP–1 are identical since they both contain the proba-
bilities that remiss=1. The variablesXP–1 andXP–0 contain the cross validated
predicted probabilities thatremiss=1 andremiss=0, respectively.
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Next, a different variable selection method is used to select prognostic factors for
cancer remission, and an efficient algorithm is employed to eliminate insignificant
variables from a model. The following SAS statements invoke PROC LOGISTIC to
perform the backward elimination analysis.

title ’Backward Elimination on Cancer Remission Data’;
proc logistic data=Remission;

model remiss(event=’1’)=temp cell li smear blast
/ selection=backward fast slstay=0.2 ctable;

run;

The backward elimination analysis (SELECTION=BACKWARD) starts with a
model that contains all explanatory variables given in the MODEL statement. By
specifying theFAST option, PROC LOGISTIC eliminates insignificant variables
without refitting the model repeatedly. This analysis uses a significance level of 0.2
(SLSTAY=0.2) to retain variables in the model, which is different from the previous
stepwise analysis where SLSTAY=.35. TheCTABLE option is specified to produce
classifications of input observations based on the final selected model.
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Output 42.1.9. Initial Step in Backward Elimination

Backward Elimination on Cancer Remission Data

The LOGISTIC Procedure

Model Information

Data Set WORK.REMISSION
Response Variable remiss Complete Remission
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 27
Number of Observations Used 27

Response Profile

Ordered Total
Value remiss Frequency

1 0 18
2 1 9

Probability modeled is remiss=1.

Backward Elimination Procedure

Step 0. The following effects were entered:

Intercept temp cell li smear blast

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 36.372 33.857
SC 37.668 41.632
-2 Log L 34.372 21.857

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 12.5146 5 0.0284
Score 9.3295 5 0.0966
Wald 4.7284 5 0.4499
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Output 42.1.10. Fast Elimination Step

Step 1. Fast Backward Elimination:

Analysis of Effects Removed by Fast Backward Elimination

Pr >
Effect Residual Residual
Removed Chi-Square DF Pr > ChiSq Chi-Square DF ChiSq

blast 0.0008 1 0.9768 0.0008 1 0.9768
smear 0.0951 1 0.7578 0.0959 2 0.9532
cell 1.5134 1 0.2186 1.6094 3 0.6573
temp 0.6535 1 0.4189 2.2628 4 0.6875

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 36.372 30.073
SC 37.668 32.665
-2 Log L 34.372 26.073

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.2988 1 0.0040
Score 7.9311 1 0.0049
Wald 5.9594 1 0.0146

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.8530 4 0.5827

Summary of Backward Elimination

Effect Number Wald
Step Removed DF In Chi-Square Pr > ChiSq

1 blast 1 4 0.0008 0.9768
1 smear 1 3 0.0951 0.7578
1 cell 1 2 1.5134 0.2186
1 temp 1 1 0.6535 0.4189
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Output 42.1.10. (continued)

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -3.7771 1.3786 7.5064 0.0061
li 1 2.8973 1.1868 5.9594 0.0146

Association of Predicted Probabilities and Observed Responses

Percent Concordant 84.0 Somers’ D 0.710
Percent Discordant 13.0 Gamma 0.732
Percent Tied 3.1 Tau-a 0.328
Pairs 162 c 0.855

Results of the fast elimination analysis are shown inOutput 42.1.9and Output
42.1.10. Initially, a full model containing all six risk factors is fit to the data (Output
42.1.9). In the next step (Output 42.1.10), PROC LOGISTIC removesblast, smear,
cell, andtemp from the model all at once. This leavesli and the intercept as the only
variables in the final model. Note that in this analysis, only parameter estimates for
the final model are displayed because the DETAILS option has not been specified.

Note that you can also use the FAST option when SELECTION=STEPWISE.
However, the FAST option operates only on backward elimination steps. In this
example, the stepwise process only adds variables, so the FAST option would not be
useful.
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Output 42.1.11. Classifying Input Observations

Classification Table

Correct Incorrect Percentages
Prob Non- Non- Sensi- Speci- False False

Level Event Event Event Event Correct tivity ficity POS NEG

0.060 9 0 18 0 33.3 100.0 0.0 66.7 .
0.080 9 2 16 0 40.7 100.0 11.1 64.0 0.0
0.100 9 4 14 0 48.1 100.0 22.2 60.9 0.0
0.120 9 4 14 0 48.1 100.0 22.2 60.9 0.0
0.140 9 7 11 0 59.3 100.0 38.9 55.0 0.0
0.160 9 10 8 0 70.4 100.0 55.6 47.1 0.0
0.180 9 10 8 0 70.4 100.0 55.6 47.1 0.0
0.200 8 13 5 1 77.8 88.9 72.2 38.5 7.1
0.220 8 13 5 1 77.8 88.9 72.2 38.5 7.1
0.240 8 13 5 1 77.8 88.9 72.2 38.5 7.1
0.260 6 13 5 3 70.4 66.7 72.2 45.5 18.8
0.280 6 13 5 3 70.4 66.7 72.2 45.5 18.8
0.300 6 13 5 3 70.4 66.7 72.2 45.5 18.8
0.320 6 14 4 3 74.1 66.7 77.8 40.0 17.6
0.340 5 14 4 4 70.4 55.6 77.8 44.4 22.2
0.360 5 14 4 4 70.4 55.6 77.8 44.4 22.2
0.380 5 15 3 4 74.1 55.6 83.3 37.5 21.1
0.400 5 15 3 4 74.1 55.6 83.3 37.5 21.1
0.420 5 15 3 4 74.1 55.6 83.3 37.5 21.1
0.440 5 15 3 4 74.1 55.6 83.3 37.5 21.1
0.460 4 16 2 5 74.1 44.4 88.9 33.3 23.8
0.480 4 16 2 5 74.1 44.4 88.9 33.3 23.8
0.500 4 16 2 5 74.1 44.4 88.9 33.3 23.8
0.520 4 16 2 5 74.1 44.4 88.9 33.3 23.8
0.540 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.560 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.580 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.600 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.620 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.640 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.660 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.680 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.700 3 16 2 6 70.4 33.3 88.9 40.0 27.3
0.720 2 16 2 7 66.7 22.2 88.9 50.0 30.4
0.740 2 16 2 7 66.7 22.2 88.9 50.0 30.4
0.760 2 16 2 7 66.7 22.2 88.9 50.0 30.4
0.780 2 16 2 7 66.7 22.2 88.9 50.0 30.4
0.800 2 17 1 7 70.4 22.2 94.4 33.3 29.2
0.820 2 17 1 7 70.4 22.2 94.4 33.3 29.2
0.840 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.860 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.880 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.900 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.920 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.940 0 17 1 9 63.0 0.0 94.4 100.0 34.6
0.960 0 18 0 9 66.7 0.0 100.0 . 33.3

Results of the CTABLE option are shown inOutput 42.1.11. Each row of the
“Classification Table” corresponds to a cutpoint applied to the predicted probabili-
ties, which is given in the Prob Level column. The2×2 frequency tables of observed
and predicted responses are given by the next four columns. For example, with a cut-
point of 0.5, 4 events and 16 nonevents were classified correctly. On the other hand,
2 nonevents were incorrectly classified as events and 5 events were incorrectly classi-
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fied as nonevents. For this cutpoint, the correct classification rate is 20/27 (=74.1%),
which is given in the sixth column. Accuracy of the classification is summarized by
the sensitivity, specificity, and false positive and negative rates, which are displayed
in the last four columns. You can control the number of cutpoints used, and their
values, by using thePPROB=option.

Example 42.2. Logistic Modeling with Categorical Predictors

Consider a study of the analgesic effects of treatments on elderly patients with neu-
ralgia. Two test treatments and a placebo are compared. The response variable is
whether the patient reported pain or not. Researchers recorded age and gender of the
patients and the duration of complaint before the treatment began. The data, consist-
ing of 60 patients, are contained in the data setNeuralgia.

Data Neuralgia;
input Treatment $ Sex $ Age Duration Pain $ @@;
datalines;

P F 68 1 No B M 74 16 No P F 67 30 No
P M 66 26 Yes B F 67 28 No B F 77 16 No
A F 71 12 No B F 72 50 No B F 76 9 Yes
A M 71 17 Yes A F 63 27 No A F 69 18 Yes
B F 66 12 No A M 62 42 No P F 64 1 Yes
A F 64 17 No P M 74 4 No A F 72 25 No
P M 70 1 Yes B M 66 19 No B M 59 29 No
A F 64 30 No A M 70 28 No A M 69 1 No
B F 78 1 No P M 83 1 Yes B F 69 42 No
B M 75 30 Yes P M 77 29 Yes P F 79 20 Yes
A M 70 12 No A F 69 12 No B F 65 14 No
B M 70 1 No B M 67 23 No A M 76 25 Yes
P M 78 12 Yes B M 77 1 Yes B F 69 24 No
P M 66 4 Yes P F 65 29 No P M 60 26 Yes
A M 78 15 Yes B M 75 21 Yes A F 67 11 No
P F 72 27 No P F 70 13 Yes A M 75 6 Yes
B F 65 7 No P F 68 27 Yes P M 68 11 Yes
P M 67 17 Yes B M 70 22 No A M 65 15 No
P F 67 1 Yes A M 67 10 No P F 72 11 Yes
A F 74 1 No B M 80 21 Yes A F 69 3 No
;

The data setNeuralgia contains five variables:Treatment, Sex, Age, Duration, and
Pain. The last variable,Pain, is the response variable. A specification ofPain=Yes
indicates there was pain, andPain=No indicates no pain. The variableTreatment
is a categorical variable with three levels: A and B represent the two test treatments,
and P represents the placebo treatment. The gender of the patients is given by the
categorical variableSex. The variableAge is the age of the patients, in years, when
treatment began. The duration of complaint, in months, before the treatment began
is given by the variableDuration. The following statements use the LOGISTIC pro-
cedure to fit a two-way logit with interaction model for the effect ofTreatment and
Sex, with Age andDuration as covariates. The categorical variablesTreatment and
Sex are declared in theCLASSstatement.
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proc logistic data=Neuralgia;
class Treatment Sex;
model Pain= Treatment Sex Treatment*Sex Age Duration / expb;

run;

In this analysis, PROC LOGISTIC models the probability of no pain (Pain=No). By
default, effect coding is used to represent the CLASS variables. Two design variables
are created forTreatment and one forSex, as shown inOutput 42.2.1.

Output 42.2.1. Effect Coding of CLASS Variables

The LOGISTIC Procedure

Class Level Information

Design
Class Value Variables

Treatment A 1 0
B 0 1
P -1 -1

Sex F 1
M -1

PROC LOGISTIC displays a table of the Type 3 analysis of effects based on the Wald
test (Output 42.2.2). Note that theTreatment*Sex interaction and the duration of
complaint are not statistically significant (p =0.9318 andp =0.8752, respectively).
This indicates that there is no evidence that the treatments affect pain differently in
men and women, and no evidence that the pain outcome is related to the duration of
pain.

Output 42.2.2. Wald Tests of Individual Effects

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

Treatment 2 11.9886 0.0025
Sex 1 5.3104 0.0212
Treatment*Sex 2 0.1412 0.9318
Age 1 7.2744 0.0070
Duration 1 0.0247 0.8752

Parameter estimates are displayed inOutput 42.2.3. The Exp(Est) column contains
the exponentiated parameter estimates requested with theEXPBoption. These values
may, but do not necessarily, represent odds ratios for the corresponding variables. For
continuous explanatory variables, the Exp(Est) value corresponds to the odds ratio for
a unit increase of the corresponding variable. For CLASS variables using the effect
coding, the Exp(Est) values have no direct interpretation as a comparison of levels.
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However, when the reference coding is used, the Exp(Est) values represent the odds
ratio between the corresponding level and the last level. Following the parameter es-
timates table, PROC LOGISTIC displays the odds ratio estimates for those variables
that are not involved in any interaction terms. If the variable is a CLASS variable, the
odds ratio estimate comparing each level with the last level is computed regardless of
the coding scheme. In this analysis, since the model contains theTreatment*Sex in-
teraction term, the odds ratios forTreatment andSex were not computed. The odds
ratio estimates forAge andDuration are precisely the values given in the Exp(Est)
column in the parameter estimates table.

Output 42.2.3. Parameter Estimates with Effect Coding

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq Exp(Est)

Intercept 1 19.2236 7.1315 7.2661 0.0070 2.232E8
Treatment A 1 0.8483 0.5502 2.3773 0.1231 2.336
Treatment B 1 1.4949 0.6622 5.0956 0.0240 4.459
Sex F 1 0.9173 0.3981 5.3104 0.0212 2.503
Treatment*Sex A F 1 -0.2010 0.5568 0.1304 0.7180 0.818
Treatment*Sex B F 1 0.0487 0.5563 0.0077 0.9302 1.050
Age 1 -0.2688 0.0996 7.2744 0.0070 0.764
Duration 1 0.00523 0.0333 0.0247 0.8752 1.005

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

Age 0.764 0.629 0.929
Duration 1.005 0.942 1.073

The following PROC LOGISTIC statements illustrate the use of forward selection on
the data setNeuralgia to identify the effects that differentiate the twoPain responses.
The optionSELECTION=FORWARDis specified to carry out the forward selection.
The termTreatment|Sex@2 illustrates another way to specify main effects and two-
way interaction as is available in other procedures such as PROC GLM. (Note that,
in this case, the “@2” is unnecessary because no interactions besides the two-way
interaction are possible).

proc logistic data=Neuralgia;
class Treatment Sex;
model Pain=Treatment|Sex@2 Age Duration

/selection=forward expb;
run;

Results of the forward selection process are summarized inOutput 42.2.4. The vari-
able Treatment is selected first, followed byAge and thenSex. The results are
consistent with the previous analysis (Output 42.2.2) in which theTreatment*Sex
interaction andDuration are not statistically significant.
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Output 42.2.4. Effects Selected into the Model

The LOGISTIC Procedure

Summary of Forward Selection

Effect Number Score
Step Entered DF In Chi-Square Pr > ChiSq

1 Treatment 2 1 13.7143 0.0011
2 Age 1 2 10.6038 0.0011
3 Sex 1 3 5.9959 0.0143

Output 42.2.5shows the Type 3 analysis of effects, the parameter estimates, and
the odds ratio estimates for the selected model. All three variables,Treatment,
Age, andSex, are statistically significant at the 0.05 level (p =0.0011,p =0.0011,
and p =0.0143, respectively). Since the selected model does not contain the
Treatment*Sex interaction, odds ratios forTreatment andSex are computed. The
estimated odds ratio is 24.022 for treatment A versus placebo, 41.528 for Treatment
B versus placebo, and 6.194 for female patients versus male patients. Note that these
odds ratio estimates are not the same as the corresponding values in the Exp(Est) col-
umn in the parameter estimates table because effect coding was used. FromOutput
42.2.5, it is evident that both Treatment A and Treatment B are better than the placebo
in reducing pain; females tend to have better improvement than males; and younger
patients are faring better than older patients.
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Output 42.2.5. Type 3 Effects and Parameter Estimates with Effect Coding

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

Treatment 2 12.6928 0.0018
Sex 1 5.3013 0.0213
Age 1 7.6314 0.0057

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq Exp(Est)

Intercept 1 19.0804 6.7882 7.9007 0.0049 1.9343E8
Treatment A 1 0.8772 0.5274 2.7662 0.0963 2.404
Treatment B 1 1.4246 0.6036 5.5711 0.0183 4.156
Sex F 1 0.9118 0.3960 5.3013 0.0213 2.489
Age 1 -0.2650 0.0959 7.6314 0.0057 0.767

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

Treatment A vs P 24.022 3.295 175.121
Treatment B vs P 41.528 4.500 383.262
Sex F vs M 6.194 1.312 29.248
Age 0.767 0.636 0.926

Finally, PROC LOGISTIC is invoked to refit the previously selected model using ref-
erence coding for the CLASS variables. TwoCONTRASTstatements are specified.
The one labeled ’Pairwise’ specifies three rows in the contrast matrix, L, for all the
pairwise comparisons between the three levels ofTreatment. The contrast labeled
’Female vs Male’ compares female to male patients. The optionESTIMATE=EXP
is specified in both CONTRAST statements to exponentiate the estimates ofL′β.
With the given specification of contrast coefficients, the first row of the ’Pairwise’
CONTRAST statement corresponds to the odds ratio of A versus P, the second row
corresponds to B versus P, and the third row corresponds to A versus B. There is only
one row in the ’Female vs Male’ CONTRAST statement, and it corresponds to the
odds ratio comparing female to male patients.

proc logistic data=Neuralgia;
class Treatment Sex /param=ref;
model Pain= Treatment Sex age;
contrast ’Pairwise’ Treatment 1 0,

Treatment 0 1,
Treatment 1 -1 / estimate=exp;

contrast ’Female vs Male’ Sex 1 / estimate=exp;
run;
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Output 42.2.6. Reference Coding of CLASS Variables

The LOGISTIC Procedure

Class Level Information

Design
Class Value Variables

Treatment A 1 0
B 0 1
P 0 0

Sex F 1
M 0

The reference coding is shown inOutput 42.2.6. The Type 3 analysis of effects,
the parameter estimates for the reference coding, and the odds ratio estimates are
displayed inOutput 42.2.7. Although the parameter estimates are different (because
of the different parameterizations), the “Type 3 Analysis of Effects” table and the
“Odds Ratio” table remain the same as inOutput 42.2.5. With effect coding, the
treatment A parameter estimate (0.8772) estimates the effect of treatment A compared
to the average effect of treatments A, B, and placebo. The treatment A estimate
(3.1790) under the reference coding estimates the difference in effect of treatment A
and the placebo treatment.
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Output 42.2.7. Type 3 Effects and Parameter Estimates with Reference Coding

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

Treatment 2 12.6928 0.0018
Sex 1 5.3013 0.0213
Age 1 7.6314 0.0057

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 15.8669 6.4056 6.1357 0.0132
Treatment A 1 3.1790 1.0135 9.8375 0.0017
Treatment B 1 3.7264 1.1339 10.8006 0.0010
Sex F 1 1.8235 0.7920 5.3013 0.0213
Age 1 -0.2650 0.0959 7.6314 0.0057

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

Treatment A vs P 24.022 3.295 175.121
Treatment B vs P 41.528 4.500 383.262
Sex F vs M 6.194 1.312 29.248
Age 0.767 0.636 0.926

Output 42.2.8contains two tables: the “Contrast Test Results” table and the “Contrast
Rows Estimation and Testing Results” table. The former contains the overall Wald
test for each CONTRAST statement. Although three rows are specified in the
’Pairwise’ CONTRAST statement, there are only two degrees of freedom, and the
Wald test result is identical to the Type 3 analysis ofTreatment in Output 42.2.7.
The latter table contains estimates and tests of individual contrast rows. The esti-
mates for the first two rows of the ’Pairwise’ CONTRAST statement are the same as
those given in the “Odds Ratio Estimates” table (inOutput 42.2.7). Both treatments
A and B are highly effective over placebo in reducing pain. The third row estimates
the odds ratio comparing A to B. The 95% confidence interval for this odds ratio is
(0.0932, 3.5889), indicating that the pain reduction effects of these two test treat-
ments are not that different. Again, the ’Female vs Male’ contrast shows that female
patients fared better in obtaining relief from pain than male patients.
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Output 42.2.8. Results of CONTRAST Statements

Contrast Test Results

Wald
Contrast DF Chi-Square Pr > ChiSq

Pairwise 2 12.6928 0.0018
Female vs Male 1 5.3013 0.0213

Contrast Rows Estimation and Testing Results

Standard
Contrast Type Row Estimate Error Alpha Confidence Limits

Pairwise EXP 1 24.0218 24.3473 0.05 3.2951 175.1
Pairwise EXP 2 41.5284 47.0877 0.05 4.4998 383.3
Pairwise EXP 3 0.5784 0.5387 0.05 0.0932 3.5889
Female vs Male EXP 1 6.1937 4.9053 0.05 1.3116 29.2476

Contrast Rows Estimation and Testing Results

Wald
Contrast Type Row Chi-Square Pr > ChiSq

Pairwise EXP 1 9.8375 0.0017
Pairwise EXP 2 10.8006 0.0010
Pairwise EXP 3 0.3455 0.5567
Female vs Male EXP 1 5.3013 0.0213

Example 42.3. Ordinal Logistic Regression

Consider a study of the effects on taste of various cheese additives. Researchers
tested four cheese additives and obtained 52 response ratings for each additive. Each
response was measured on a scale of nine categories ranging from strong dislike (1)
to excellent taste (9). The data, given in McCullagh and Nelder (1989, p. 175) in
the form of a two-way frequency table of additive by rating, are saved in the data set
Cheese.

data Cheese;
do Additive = 1 to 4;

do y = 1 to 9;
input freq @@;
output;

end;
end;
label y=’Taste Rating’;
datalines;

0 0 1 7 8 8 19 8 1
6 9 12 11 7 6 1 0 0
1 1 6 8 23 7 5 1 0
0 0 0 1 3 7 14 16 11
;
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The data setCheese contains the variablesy, Additive, and freq. The variabley
contains the response rating. The variableAdditive specifies the cheese additive (1,
2, 3, or 4). The variablefreq gives the frequency with which each additive received
each rating.

The response variabley is ordinally scaled. A cumulative logit model is used to
investigate the effects of the cheese additives on taste. The following SAS statements
invoke PROC LOGISTIC to fit this model withy as the response variable and three
indicator variables as explanatory variables, with the fourth additive as the reference
level. With this parameterization, eachAdditive parameter compares an additive to
the fourth additive. TheCOVB option produces the estimated covariance matrix.

proc logistic data=Cheese;
freq freq;
class Additive (param=ref ref=’4’);
model y=Additive / covb;
title1 ’Multiple Response Cheese Tasting Experiment’;

run;

Results of the analysis are shown inOutput 42.3.1, and the estimated covariance
matrix is displayed inOutput 42.3.2.

Since the strong dislike (y=1) end of the rating scale is associated with lower Ordered
Values in the Response Profile table, the probability of disliking the additives is mod-
eled.

The score chi-square for testing the proportional odds assumption is 17.287, which
is not significant with respect to a chi-square distribution with 21 degrees of free-
dom(p = 0.694). This indicates that the proportional odds model adequately fits the
data. The positive value (1.6128) for the parameter estimate forAdditive1 indicates
a tendency towards the lower-numbered categories of the first cheese additive rela-
tive to the fourth. In other words, the fourth additive is better in taste than the first
additive. Each of the second and the third additives is less favorable than the fourth
additive. The relative magnitudes of these slope estimates imply the preference or-
dering: fourth, first, third, second.
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Output 42.3.1. Proportional Odds Model Regression Analysis

Multiple Response Cheese Tasting Experiment

The LOGISTIC Procedure

Model Information

Data Set WORK.CHEESE
Response Variable y Taste Rating
Number of Response Levels 9
Frequency Variable freq
Model cumulative logit
Optimization Technique Fisher’s scoring

Number of Observations Read 36
Number of Observations Used 28
Sum of Frequencies Read 208
Sum of Frequencies Used 208

Response Profile

Ordered Total
Value y Frequency

1 1 7
2 2 10
3 3 19
4 4 27
5 5 41
6 6 28
7 7 39
8 8 25
9 9 12

Probabilities modeled are cumulated over the lower Ordered Values.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

17.2866 21 0.6936
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Output 42.3.1. (continued)

Multiple Response Cheese Tasting Experiment

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 875.802 733.348
SC 902.502 770.061
-2 Log L 859.802 711.348

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 148.4539 3 <.0001
Score 111.2670 3 <.0001
Wald 115.1504 3 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1 -7.0801 0.5624 158.4851 <.0001
Intercept 2 1 -6.0249 0.4755 160.5500 <.0001
Intercept 3 1 -4.9254 0.4272 132.9484 <.0001
Intercept 4 1 -3.8568 0.3902 97.7087 <.0001
Intercept 5 1 -2.5205 0.3431 53.9704 <.0001
Intercept 6 1 -1.5685 0.3086 25.8374 <.0001
Intercept 7 1 -0.0669 0.2658 0.0633 0.8013
Intercept 8 1 1.4930 0.3310 20.3439 <.0001
Additive 1 1 1.6128 0.3778 18.2265 <.0001
Additive 2 1 4.9645 0.4741 109.6427 <.0001
Additive 3 1 3.3227 0.4251 61.0931 <.0001

Association of Predicted Probabilities and Observed Responses

Percent Concordant 67.6 Somers’ D 0.578
Percent Discordant 9.8 Gamma 0.746
Percent Tied 22.6 Tau-a 0.500
Pairs 18635 c 0.789
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Output 42.3.2. Estimated Covariance Matrix

Multiple Response Cheese Tasting Experiment

Estimated Covariance Matrix

Intercept_ Intercept_ Intercept_ Intercept_ Intercept_
Parameter 1 2 3 4 5

Intercept_1 0.316291 0.219581 0.176278 0.147694 0.114024
Intercept_2 0.219581 0.226095 0.177806 0.147933 0.11403
Intercept_3 0.176278 0.177806 0.182473 0.148844 0.114092
Intercept_4 0.147694 0.147933 0.148844 0.152235 0.114512
Intercept_5 0.114024 0.11403 0.114092 0.114512 0.117713
Intercept_6 0.091085 0.091081 0.091074 0.091109 0.091821
Intercept_7 0.057814 0.057813 0.057807 0.05778 0.057721
Intercept_8 0.041304 0.041304 0.0413 0.041277 0.041162
Additive1 -0.09419 -0.09421 -0.09427 -0.09428 -0.09246
Additive2 -0.18686 -0.18161 -0.1687 -0.14717 -0.11415
Additive3 -0.13565 -0.13569 -0.1352 -0.13118 -0.11207

Estimated Covariance Matrix

Intercept_ Intercept_ Intercept_
Parameter 6 7 8 Additive1 Additive2 Additive3

Intercept_1 0.091085 0.057814 0.041304 -0.09419 -0.18686 -0.13565
Intercept_2 0.091081 0.057813 0.041304 -0.09421 -0.18161 -0.13569
Intercept_3 0.091074 0.057807 0.0413 -0.09427 -0.1687 -0.1352
Intercept_4 0.091109 0.05778 0.041277 -0.09428 -0.14717 -0.13118
Intercept_5 0.091821 0.057721 0.041162 -0.09246 -0.11415 -0.11207
Intercept_6 0.09522 0.058312 0.041324 -0.08521 -0.09113 -0.09122
Intercept_7 0.058312 0.07064 0.04878 -0.06041 -0.05781 -0.05802
Intercept_8 0.041324 0.04878 0.109562 -0.04436 -0.0413 -0.04143
Additive1 -0.08521 -0.06041 -0.04436 0.142715 0.094072 0.092128
Additive2 -0.09113 -0.05781 -0.0413 0.094072 0.22479 0.132877
Additive3 -0.09122 -0.05802 -0.04143 0.092128 0.132877 0.180709

Example 42.4. Nominal Response Data: Generalized Logits
Model

Over the course of one school year, third graders from three different schools are
exposed to three different styles of mathematics instruction: a self-paced computer-
learning style, a team approach, and a traditional class approach. The students are
asked which style they prefer and their responses, classified by the type of program
they are in (a regular school day versus a regular day supplemented with an afternoon
school program) are displayed inTable 42.4. The data set is from Stokes, Davis, and
Koch (2000), and is also analyzed in the“Generalized Logits Model”section on page
824 ofChapter 22, “The CATMOD Procedure.”
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Table 42.4. School Program Data
Learning Style Preference

School Program Self Team Class
1 Regular 10 17 26
1 Afternoon 5 12 50
2 Regular 21 17 26
2 Afternoon 16 12 36
3 Regular 15 15 16
3 Afternoon 12 12 20

The levels of the response variable (self, team, and class) have no essential ordering,
so a logistic regression is performed on the generalized logits. The model to be fit is

log
(
πhij

πhir

)
= αj + x′hiβj

whereπhij is the probability that a student in schoolh and programi prefers teaching
stylej, j 6= r, and styler is the baseline style (in this case, class). There are separate
sets of intercept parametersαj and regression parametersβj for each logit, and the
matrixxhi is the set of explanatory variables for thehith population. Thus, two logits
are modeled for each school and program combination: the logit comparing self to
class and the logit comparing team to class.

The following statements create the data setschool and request the analysis. The
LINK=GLOGIT option forms the generalized logits. The response variable option
ORDER=DATA means that the response variable levels are ordered as they exist in
the data set: self, team, and class; thus, the logits are formed by comparing self to
class and by comparing team to class. The ODS statement suppresses the display of
the maximum likelihood estimates. The results of this analysis are shown inOutput
42.4.1throughOutput 42.4.4.

data school;
length Program $ 9;
input School Program $ Style $ Count @@;
datalines;

1 regular self 10 1 regular team 17 1 regular class 26
1 afternoon self 5 1 afternoon team 12 1 afternoon class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 afternoon self 16 2 afternoon team 12 2 afternoon class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 afternoon self 12 3 afternoon team 12 3 afternoon class 20
;

proc logistic data=school;
freq Count;
class School Program(ref=first);
model Style(order=data)=School Program School*Program

/ link=glogit;
run;
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Output 42.4.1. Analysis of Saturated Model

The LOGISTIC Procedure

Model Information

Data Set WORK.SCHOOL
Response Variable Style
Number of Response Levels 3
Frequency Variable Count
Model generalized logit
Optimization Technique Fisher’s scoring

Number of Observations Read 18
Number of Observations Used 18
Sum of Frequencies Read 338
Sum of Frequencies Used 338

Response Profile

Ordered Total
Value Style Frequency

1 self 79
2 team 85
3 class 174

Logits modeled use Style=’class’ as the reference category.

Class Level Information

Design
Class Value Variables

School 1 1 0
2 0 1
3 -1 -1

Program afternoon -1
regular 1



Example 42.4. Nominal Response Data: Generalized Logits Model � 2419

Output 42.4.2. Fit Statistics

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 699.404 689.156
SC 707.050 735.033
-2 Log L 695.404 665.156

Output 42.4.3. Tests

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 30.2480 10 0.0008
Score 28.3738 10 0.0016
Wald 25.6828 10 0.0042

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

School 4 14.5522 0.0057
Program 2 10.4815 0.0053
School*Program 4 1.7439 0.7827

Output 42.4.4. Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter Style DF Estimate Error Chi-Square Pr > ChiSq

Intercept self 1 -0.8097 0.1488 29.5989 <.0001
Intercept team 1 -0.6585 0.1366 23.2449 <.0001
School 1 self 1 -0.8194 0.2281 12.9066 0.0003
School 1 team 1 -0.2675 0.1881 2.0233 0.1549
School 2 self 1 0.2974 0.1919 2.4007 0.1213
School 2 team 1 -0.1033 0.1898 0.2961 0.5863
Program regular self 1 0.3985 0.1488 7.1684 0.0074
Program regular team 1 0.3537 0.1366 6.7071 0.0096
School*Program 1 regular self 1 0.2751 0.2281 1.4547 0.2278
School*Program 1 regular team 1 0.1474 0.1881 0.6143 0.4332
School*Program 2 regular self 1 -0.0998 0.1919 0.2702 0.6032
School*Program 2 regular team 1 -0.0168 0.1898 0.0079 0.9293
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The “Type 3 Analysis of Effects” table inOutput 42.4.3shows that the interaction
effect is clearly nonsignificant, so a main effects model is fit with the following state-
ments.

proc logistic data=school;
freq Count;
class School Program(ref=first);
model Style(order=data)=School Program / link=glogit;

run;

Output 42.4.5. Analysis of Main Effects Model

The LOGISTIC Procedure

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 699.404 682.934
SC 707.050 713.518
-2 Log L 695.404 666.934

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 28.4704 6 <.0001
Score 27.1190 6 0.0001
Wald 25.5881 6 0.0003

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

School 4 14.8424 0.0050
Program 2 10.9160 0.0043

All of the global fit tests inOutput 42.4.5suggest the model is significant, and the
Type 3 tests show that the school and program effects are also significant.
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Output 42.4.6. Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter Style DF Estimate Error Chi-Square Pr > ChiSq

Intercept self 1 -0.7978 0.1465 29.6502 <.0001
Intercept team 1 -0.6589 0.1367 23.2300 <.0001
School 1 self 1 -0.7992 0.2198 13.2241 0.0003
School 1 team 1 -0.2786 0.1867 2.2269 0.1356
School 2 self 1 0.2836 0.1899 2.2316 0.1352
School 2 team 1 -0.0985 0.1892 0.2708 0.6028
Program regular self 1 0.3737 0.1410 7.0272 0.0080
Program regular team 1 0.3713 0.1353 7.5332 0.0061

Odds Ratio Estimates

Point 95% Wald
Effect Style Estimate Confidence Limits

School 1 vs 3 self 0.269 0.127 0.570
School 1 vs 3 team 0.519 0.267 1.010
School 2 vs 3 self 0.793 0.413 1.522
School 2 vs 3 team 0.622 0.317 1.219
Program regular vs afternoon self 2.112 1.215 3.670
Program regular vs afternoon team 2.101 1.237 3.571

The parameter estimates, tests for individual parameters, and odds ratios are dis-
played inOutput 42.4.6. TheProgram variable has nearly the same effect on both
logits, whileSchool=1 has the largest effect of the schools.

Example 42.5. Stratified Sampling

Consider the hypothetical example in Fleiss (1981, pp. 6–7) in which a test is applied
to a sample of 1,000 people known to have a disease and to another sample of 1,000
people known not to have the same disease. In the diseased sample, 950 test positive;
in the nondiseased sample, only 10 test positive. If the true disease rate in the popu-
lation is 1 in 100, specifyingPEVENT=0.01results in the correct false positive and
negative rates for the stratified sampling scheme. Omitting the PEVENT= option is
equivalent to using the overall sample disease rate (1000/2000 = 0.5) as the value of
the PEVENT= option, which would ignore the stratified sampling.

The SAS code is as follows:

data Screen;
do Disease=’Present’,’Absent’;

do Test=1,0;
input Count @@;
output;

end;
end;
datalines;

950 50
10 990

;
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proc logistic data=Screen;
freq Count;
model Disease(event=’Present’)=Test

/ pevent=.5 .01 ctable pprob=.5;
run;

The response variable optionEVENT= indicates thatDisease=’Present’ is the
event. TheCTABLE option is specified to produce a classification table. Specifying
PPROB=0.5indicates a cutoff probability of 0.5. A list of two probabilities, 0.5 and
0.01, is specified for the PEVENT= option; 0.5 corresponds to the overall sample
disease rate, and 0.01 corresponds to a true disease rate of 1 in 100.

The classification table is shown inOutput 42.5.1.

Output 42.5.1. False Positive and False Negative Rates

The LOGISTIC Procedure

Classification Table

Correct Incorrect Percentages
Prob Prob Non- Non- Sensi- Speci- False False

Event Level Event Event Event Event Correct tivity ficity POS NEG

0.500 0.500 950 990 10 50 97.0 95.0 99.0 1.0 4.8

0.010 0.500 950 990 10 50 99.0 95.0 99.0 51.0 0.1

In the classification table, the column “Prob Level” represents the cutoff values (the
settings of the PPROB= option) for predicting whether an observation is an event.
The “Correct” columns list the numbers of subjects that are correctly predicted as
events and nonevents, respectively, and the “Incorrect” columns list the number of
nonevents incorrectly predicted as events and the number of events incorrectly pre-
dicted as nonevents, respectively. For PEVENT=0.5, the false positive rate is 1% and
the false negative rate is 4.8%. These results ignore the fact that the samples were
stratified and incorrectly assume that the overall sample proportion of disease (which
is 0.5) estimates the true disease rate. For a true disease rate of 0.01, the false posi-
tive rate and the false negative rate are 51% and 0.1%, respectively, as shown on the
second line of the classification table.

Example 42.6. Logistic Regression Diagnostics

In a controlled experiment to study the effect of the rate and volume of air inspired
on a transient reflex vaso-constriction in the skin of the digits, 39 tests under various
combinations of rate and volume of air inspired were obtained (Finney 1947). The
end point of each test is whether or not vaso-constriction occurred. Pregibon (1981)
uses this set of data to illustrate the diagnostic measures he proposes for detecting in-
fluential observations and to quantify their effects on various aspects of the maximum
likelihood fit.

The vaso-constriction data are saved in the data setvaso:
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data vaso;
length Response $12;
input Volume Rate Response @@;
LogVolume=log(Volume);
LogRate=log(Rate);
datalines;

3.70 0.825 constrict 3.50 1.09 constrict
1.25 2.50 constrict 0.75 1.50 constrict
0.80 3.20 constrict 0.70 3.50 constrict
0.60 0.75 no_constrict 1.10 1.70 no_constrict
0.90 0.75 no_constrict 0.90 0.45 no_constrict
0.80 0.57 no_constrict 0.55 2.75 no_constrict
0.60 3.00 no_constrict 1.40 2.33 constrict
0.75 3.75 constrict 2.30 1.64 constrict
3.20 1.60 constrict 0.85 1.415 constrict
1.70 1.06 no_constrict 1.80 1.80 constrict
0.40 2.00 no_constrict 0.95 1.36 no_constrict
1.35 1.35 no_constrict 1.50 1.36 no_constrict
1.60 1.78 constrict 0.60 1.50 no_constrict
1.80 1.50 constrict 0.95 1.90 no_constrict
1.90 0.95 constrict 1.60 0.40 no_constrict
2.70 0.75 constrict 2.35 0.03 no_constrict
1.10 1.83 no_constrict 1.10 2.20 constrict
1.20 2.00 constrict 0.80 3.33 constrict
0.95 1.90 no_constrict 0.75 1.90 no_constrict
1.30 1.625 constrict
;

In the data setvaso, the variableResponse represents the outcome of a test. The
variableLogVolume represents the log of the volume of air intake, and the variable
LogRate represents the log of the rate of air intake.

The following SAS statements invoke PROC LOGISTIC to fit a logistic regression
model to the vaso-constriction data, whereResponse is the response variable, and
LogRate andLogVolume are the explanatory variables. TheINFLUENCE option
and theIPLOTS option are specified to display the regression diagnostics and the
index plots.

ods html;
ods graphics on;

title ’Occurrence of Vaso-Constriction’;
proc logistic data=vaso;

model Response=LogRate LogVolume/influence iplots;
run;

ods graphics off;
ods html close;

Results of the model fit are shown inOutput 42.6.1. BothLogRate andLogVolume
are statistically significant to the occurrence of vaso-constriction (p = 0.0131 and
p = 0.0055, respectively). Their positive parameter estimates indicate that a higher
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inspiration rate or a larger volume of air intake is likely to increase the probability of
vaso-constriction.

Output 42.6.1. Logistic Regression Analysis for Vaso-Constriction Data

Occurrence of Vaso-Constriction

The LOGISTIC Procedure

Model Information

Data Set WORK.VASO
Response Variable Response
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 39
Number of Observations Used 39

Response Profile

Ordered Total
Value Response Frequency

1 constrict 20
2 no_constrict 19

Probability modeled is Response=’constrict’.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.



Example 42.6. Logistic Regression Diagnostics � 2425

Output 42.6.1. (continued)

Occurrence of Vaso-Constriction

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 56.040 35.227
SC 57.703 40.218
-2 Log L 54.040 29.227

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 24.8125 2 <.0001
Score 16.6324 2 0.0002
Wald 7.8876 2 0.0194

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.8754 1.3208 4.7395 0.0295
LogRate 1 4.5617 1.8380 6.1597 0.0131
LogVolume 1 5.1793 1.8648 7.7136 0.0055

Association of Predicted Probabilities and Observed Responses

Percent Concordant 93.7 Somers’ D 0.874
Percent Discordant 6.3 Gamma 0.874
Percent Tied 0.0 Tau-a 0.448
Pairs 380 c 0.937

The INFLUENCE option displays the values of the explanatory variables (LogRate
andLogVolume) for each observation, a column for each diagnostic produced, and
the case numberwhich represents the sequence number of the observation (Output
42.6.2). Also produced (but not shown here) is a lineprinter plot where the vertical
axis represents the case number and the horizontal axis represents the value of the
diagnostic statistic.

The index plots produced by the IPLOTS option are essentially the same lineprinter
plots as those produced by the INFLUENCE option with a 90-degree rotation and
perhaps on a more refined scale. This version of the plots are not displayed here. The
vertical axis of an index plot represents the value of the diagnostic and the horizontal
axis represents the sequence (case number) of the observation. The index plots are
useful for identification of extreme values.

Since the experimental ODS GRAPHICS statement is also specified, the lineprinter
plots from the INFLUENCE and IPLOTS options are suppressed and graphical dis-
plays are produced as shown inOutput 42.6.3throughOutput 42.6.5. For general
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information about ODS graphics, seeChapter 15, “Statistical Graphics Using ODS.”
For specific information about the graphics available in the LOGISTIC procedure,
see the“ODS Graphics”section on page 2388.

Output 42.6.2. Regression Diagnostics from the INFLUENCE Option
(Experimental)

The LOGISTIC Procedure

Regression Diagnostics

Covariates
Hat

Case Log Pearson Deviance Matrix Intercept LogRate
Number LogRate Volume Residual Residual Diagonal DfBeta DfBeta

1 -0.1924 1.3083 0.2205 0.3082 0.0927 -0.0165 0.0193
2 0.0862 1.2528 0.1349 0.1899 0.0429 -0.0134 0.0151
3 0.9163 0.2231 0.2923 0.4049 0.0612 -0.0492 0.0660
4 0.4055 -0.2877 3.5181 2.2775 0.0867 1.0734 -0.9302
5 1.1632 -0.2231 0.5287 0.7021 0.1158 -0.0832 0.1411
6 1.2528 -0.3567 0.6090 0.7943 0.1524 -0.0922 0.1710
7 -0.2877 -0.5108 -0.0328 -0.0464 0.00761 -0.00280 0.00274
8 0.5306 0.0953 -1.0196 -1.1939 0.0559 -0.1444 0.0613
9 -0.2877 -0.1054 -0.0938 -0.1323 0.0342 -0.0178 0.0173

10 -0.7985 -0.1054 -0.0293 -0.0414 0.00721 -0.00245 0.00246
11 -0.5621 -0.2231 -0.0370 -0.0523 0.00969 -0.00361 0.00358
12 1.0116 -0.5978 -0.5073 -0.6768 0.1481 -0.1173 0.0647
13 1.0986 -0.5108 -0.7751 -0.9700 0.1628 -0.0931 -0.00946
14 0.8459 0.3365 0.2559 0.3562 0.0551 -0.0414 0.0538
15 1.3218 -0.2877 0.4352 0.5890 0.1336 -0.0940 0.1408
16 0.4947 0.8329 0.1576 0.2215 0.0402 -0.0198 0.0234
17 0.4700 1.1632 0.0709 0.1001 0.0172 -0.00630 0.00701
18 0.3471 -0.1625 2.9062 2.1192 0.0954 0.9595 -0.8279
19 0.0583 0.5306 -1.0718 -1.2368 0.1315 -0.2591 0.2024
20 0.5878 0.5878 0.2405 0.3353 0.0525 -0.0331 0.0421
21 0.6931 -0.9163 -0.1076 -0.1517 0.0373 -0.0180 0.0158
22 0.3075 -0.0513 -0.4193 -0.5691 0.1015 -0.1449 0.1237
23 0.3001 0.3001 -1.0242 -1.1978 0.0761 -0.1961 0.1275
24 0.3075 0.4055 -1.3684 -1.4527 0.0717 -0.1281 0.0410
25 0.5766 0.4700 0.3347 0.4608 0.0587 -0.0403 0.0570
26 0.4055 -0.5108 -0.1595 -0.2241 0.0548 -0.0366 0.0329
27 0.4055 0.5878 0.3645 0.4995 0.0661 -0.0327 0.0496
28 0.6419 -0.0513 -0.8989 -1.0883 0.0647 -0.1423 0.0617
29 -0.0513 0.6419 0.8981 1.0876 0.1682 0.2367 -0.1950
30 -0.9163 0.4700 -0.0992 -0.1400 0.0507 -0.0224 0.0227
31 -0.2877 0.9933 0.6198 0.8064 0.2459 0.1165 -0.0996
32 -3.5066 0.8544 -0.00073 -0.00103 0.000022 -3.22E-6 3.405E-6
33 0.6043 0.0953 -1.2062 -1.3402 0.0510 -0.0882 -0.0137
34 0.7885 0.0953 0.5447 0.7209 0.0601 -0.0425 0.0877
35 0.6931 0.1823 0.5404 0.7159 0.0552 -0.0340 0.0755
36 1.2030 -0.2231 0.4828 0.6473 0.1177 -0.0867 0.1381
37 0.6419 -0.0513 -0.8989 -1.0883 0.0647 -0.1423 0.0617
38 0.6419 -0.2877 -0.4874 -0.6529 0.1000 -0.1395 0.1032
39 0.4855 0.2624 0.7053 0.8987 0.0531 0.0326 0.0190
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Output 42.6.2. (continued)

The LOGISTIC Procedure

Regression Diagnostics

Confidence Confidence
Log Interval Interval

Case Volume Displacement Displacement Delta Delta
Number DfBeta C CBar Deviance Chi-Square

1 0.0556 0.00548 0.00497 0.1000 0.0536
2 0.0261 0.000853 0.000816 0.0369 0.0190
3 0.0589 0.00593 0.00557 0.1695 0.0910
4 -1.0180 1.2873 1.1756 6.3626 13.5523
5 0.0583 0.0414 0.0366 0.5296 0.3161
6 0.0381 0.0787 0.0667 0.6976 0.4376
7 0.00265 8.321E-6 8.258E-6 0.00216 0.00109
8 0.0570 0.0652 0.0616 1.4870 1.1011
9 0.0153 0.000322 0.000311 0.0178 0.00911

10 0.00211 6.256E-6 6.211E-6 0.00172 0.000862
11 0.00319 0.000014 0.000013 0.00274 0.00138
12 0.1651 0.0525 0.0447 0.5028 0.3021
13 0.1775 0.1395 0.1168 1.0577 0.7175
14 0.0527 0.00404 0.00382 0.1307 0.0693
15 0.0643 0.0337 0.0292 0.3761 0.2186
16 0.0307 0.00108 0.00104 0.0501 0.0259
17 0.00914 0.000089 0.000088 0.0101 0.00511
18 -0.8477 0.9845 0.8906 5.3817 9.3363
19 -0.00488 0.2003 0.1740 1.7037 1.3227
20 0.0518 0.00338 0.00320 0.1156 0.0610
21 0.0208 0.000465 0.000448 0.0235 0.0120
22 0.1179 0.0221 0.0199 0.3437 0.1956
23 0.0357 0.0935 0.0864 1.5212 1.1355
24 -0.1004 0.1558 0.1447 2.2550 2.0171
25 0.0708 0.00741 0.00698 0.2193 0.1190
26 0.0373 0.00156 0.00147 0.0517 0.0269
27 0.0788 0.0101 0.00941 0.2589 0.1423
28 0.1025 0.0597 0.0559 1.2404 0.8639
29 0.0286 0.1961 0.1631 1.3460 0.9697
30 0.0159 0.000554 0.000526 0.0201 0.0104
31 0.1322 0.1661 0.1253 0.7755 0.5095
32 2.48E-6 1.18E-11 1.18E-11 1.065E-6 5.324E-7
33 -0.00216 0.0824 0.0782 1.8744 1.5331
34 0.0671 0.0202 0.0190 0.5387 0.3157
35 0.0711 0.0180 0.0170 0.5295 0.3091
36 0.0631 0.0352 0.0311 0.4501 0.2641
37 0.1025 0.0597 0.0559 1.2404 0.8639
38 0.1397 0.0293 0.0264 0.4526 0.2639
39 0.0489 0.0295 0.0279 0.8355 0.5254



2428 � Chapter 42. The LOGISTIC Procedure

Output 42.6.3. Residuals, Hat Matrix, and CI Displacement C (Experimental)

Output 42.6.4. CI Displacement CBar, Change in Deviance and Pearson χ2, and
DFBETAS for the Intercept (Experimental)



Example 42.7. ROC Curve, Customized Odds Ratios, Goodness-of-Fit Statistics,
R-Square, and Confidence Limits � 2429

Output 42.6.5. DFBETAS for LogRate and LogVolume (Experimental)

The index plots of the Pearson residuals and the deviance residuals (Output 42.6.3)
indicate that case 4 and case 18 are poorly accounted for by the model. The index
plot of the diagonal elements of the hat matrix (Output 42.6.3) suggests that case 31
is an extreme point in the design space. The index plots of DFBETAS (Output 42.6.4
andOutput 42.6.5) indicate that case 4 and case 18 are causing instability in all three
parameter estimates. The other four index plots inOutput 42.6.3andOutput 42.6.4
also point to these two cases as having a large impact on the coefficients and goodness
of fit.

Example 42.7. ROC Curve, Customized Odds Ratios,
Goodness-of-Fit Statistics, R-Square, and
Confidence Limits

This example plots an ROC curve, estimates a customized odds ratio, produces the
traditional goodness-of-fit analysis, displays the generalizedR2 measures for the
fitted model, calculates the normal confidence intervals for the regression parame-
ters, and produces an experimental display of the probability function and prediction
curves for the fitted model. The data consist of three variables:n (number of subjects
in a sample),disease (number of diseased subjects in the sample), andage (age for
the sample). A linear logistic regression model is used to study the effect of age on
the probability of contracting the disease.
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The SAS statements are as follows:

data Data1;
input disease n age;
datalines;

0 14 25
0 20 35
0 19 45
7 18 55
6 12 65

17 17 75
;

ods html;
ods graphics on;

proc logistic data=Data1;
model disease/n=age / scale=none

clparm=wald
clodds=pl
rsquare
outroc=roc1;

units age=10;
run;

ods graphics off;
ods html close;

The option SCALE=NONE is specified to produce the deviance and Pearson
goodness-of-fit analysis without adjusting for overdispersion. TheRSQUAREop-
tion is specified to produce generalizedR2 measures of the fitted model. The
CLPARM=WALD option is specified to produce the Wald confidence intervals for the
regression parameters. TheUNITS statement is specified to produce customized odds
ratio estimates for a change of 10 years in theage variable, and theCLODDS=PL
option is specified to produce profile likelihood confidence limits for the odds ratio.
TheOUTROC=option outputs the data for the ROC curve to the SAS data set,roc1.

Results are shown inOutput 42.7.1andOutput 42.7.2.

Output 42.7.1. Deviance and Pearson Goodness-of-Fit Analysis

The LOGISTIC Procedure

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 7.7756 4 1.9439 0.1002
Pearson 6.6020 4 1.6505 0.1585

Number of events/trials observations: 6
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R-Square, and Confidence Limits � 2431

Output 42.7.2. R-Square, Confidence Intervals, and Customized Odds Ratio

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 124.173 52.468
SC 126.778 57.678
-2 Log L 122.173 48.468

R-Square 0.5215 Max-rescaled R-Square 0.7394

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 73.7048 1 <.0001
Score 55.3274 1 <.0001
Wald 23.3475 1 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -12.5016 2.5555 23.9317 <.0001
age 1 0.2066 0.0428 23.3475 <.0001

Association of Predicted Probabilities and Observed Responses

Percent Concordant 92.6 Somers’ D 0.906
Percent Discordant 2.0 Gamma 0.958
Percent Tied 5.4 Tau-a 0.384
Pairs 2100 c 0.953

Wald Confidence Interval for Parameters

Parameter Estimate 95% Confidence Limits

Intercept -12.5016 -17.5104 -7.4929
age 0.2066 0.1228 0.2904

Profile Likelihood Confidence Interval for Adjusted Odds Ratios

Effect Unit Estimate 95% Confidence Limits

age 10.0000 7.892 3.881 21.406

Since the experimental ODS GRAPHICS statement is specified, a graphical display
of the ROC curve is produced as shown inOutput 42.7.3. For general information
about ODS graphics, seeChapter 15, “Statistical Graphics Using ODS.”For specific
information about the graphics available in the LOGISTIC procedure, see the“ODS
Graphics”section on page 2388.
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Output 42.7.3. Receiver Operating Characteristic Curve (Experimental)

Note that the area under the ROC curve is given by the statisticc in the “Association
of Predicted Probabilities and Observed Responses” table. In this example, the area
under the ROC curve is 0.953.

The ROC curve may also be displayed with the GPLOT procedure by using the fol-
lowing code.

symbol1 i=join v=none c=black;
proc gplot data=roc1;

title ’ROC Curve’;
plot _sensit_*_1mspec_=1 / vaxis=0 to 1 by .1 cframe=white;

run;



Example 42.7. ROC Curve, Customized Odds Ratios, Goodness-of-Fit Statistics,
R-Square, and Confidence Limits � 2433

Because there is only one continuous covariate, if the experimental ODS GRAPHICS
statement and the experimental GRAPHICS option ESTPROB are specified, then a
graphical display of the estimated probability curve with bounding 95% prediction
limits is displayed as shown inOutput 42.7.4.

ods html;
ods graphics on;

proc logistic data=Data1;
model disease/n=age / scale=none

clparm=wald
clodds=pl
rsquare
outroc=roc1;

units age=10;
graphics estprob;

run;

ods graphics off;
ods html close;

Output 42.7.4. Estimated Probability and 95% Prediction Limits (Experimental)
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Example 42.8. Goodness-of-Fit Tests and Subpopulations

A study is done to investigate the effects of two binary factors,A andB, on a binary
response,Y. Subjects are randomly selected from subpopulations defined by the four
possible combinations of levels ofA andB. The number of subjects responding with
each level ofY is recorded and entered into data setA.

data a;
do A=0,1;

do B=0,1;
do Y=1,2;

input F @@;
output;

end;
end;

end;
datalines;

23 63 31 70 67 100 70 104
;

A full model is fit to examine the main effects ofA andB as well as the interaction
effect ofA andB.

proc logistic data=a;
freq F;
model Y=A B A*B;

run;
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Output 42.8.1. Full Model Fit

The LOGISTIC Procedure

Model Information

Data Set WORK.A
Response Variable Y
Number of Response Levels 2
Frequency Variable F
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 8
Number of Observations Used 8
Sum of Frequencies Read 528
Sum of Frequencies Used 528

Response Profile

Ordered Total
Value Y Frequency

1 1 191
2 2 337

Probability modeled is Y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 693.061 691.914
SC 697.330 708.990
-2 Log L 691.061 683.914

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 7.1478 3 0.0673
Score 6.9921 3 0.0721
Wald 6.9118 3 0.0748
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Output 42.8.1. (continued)

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.0074 0.2436 17.1015 <.0001
A 1 0.6069 0.2903 4.3714 0.0365
B 1 0.1929 0.3254 0.3515 0.5533
A*B 1 -0.1883 0.3933 0.2293 0.6321

Association of Predicted Probabilities and Observed Responses

Percent Concordant 42.2 Somers’ D 0.118
Percent Discordant 30.4 Gamma 0.162
Percent Tied 27.3 Tau-a 0.054
Pairs 64367 c 0.559

Pearson and Deviance goodness-of-fit tests cannot be obtained for this model since a
full model containing four parameters is fit, leaving no residual degrees of freedom.
For a binary response model, the goodness-of-fit tests havem−q degrees of freedom,
wherem is the number of subpopulations andq is the number of model parameters.
In the preceding model,m = q = 4, resulting in zero degrees of freedom for the
tests.

Results of the model fit are shown inOutput 42.8.1. Notice that neither theA*B in-
teraction nor theB main effect is significant. If a reduced model containing only the
A effect is fit, two degrees of freedom become available for testing goodness of fit.
Specifying theSCALE=NONEoption requests the Pearson and deviance statistics.
With single-trial syntax, theAGGREGATE=option is needed to define the subpop-
ulations in the study. Specifying AGGREGATE=(A B) creates subpopulations of
the four combinations of levels ofA andB. Although theB effect is being dropped
from the model, it is still needed to define the original subpopulations in the study. If
AGGREGATE=(A) were specified, only two subpopulations would be created from
the levels ofA, resulting inm = q = 2 and zero degrees of freedom for the tests.

proc logistic data=a;
freq F;
model Y=A / scale=none aggregate=(A B);

run;
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Output 42.8.2. Reduced Model Fit

The LOGISTIC Procedure

Model Information

Data Set WORK.A
Response Variable Y
Number of Response Levels 2
Frequency Variable F
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 8
Number of Observations Used 8
Sum of Frequencies Read 528
Sum of Frequencies Used 528

Response Profile

Ordered Total
Value Y Frequency

1 1 191
2 2 337

Probability modeled is Y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 0.3541 2 0.1770 0.8377
Pearson 0.3531 2 0.1765 0.8382

Number of unique profiles: 4

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 693.061 688.268
SC 697.330 696.806
-2 Log L 691.061 684.268

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6.7937 1 0.0091
Score 6.6779 1 0.0098
Wald 6.6210 1 0.0101
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Output 42.8.2. (continued)

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.9013 0.1614 31.2001 <.0001
A 1 0.5032 0.1955 6.6210 0.0101

Association of Predicted Probabilities and Observed Responses

Percent Concordant 28.3 Somers’ D 0.112
Percent Discordant 17.1 Gamma 0.246
Percent Tied 54.6 Tau-a 0.052
Pairs 64367 c 0.556

The goodness-of-fit tests (Output 42.8.2) show that dropping theB main effect and
the A*B interaction simultaneously does not result in significant lack of fit of the
model. The tests’ largep-values indicate insufficient evidence for rejecting the null
hypothesis that the model fits.

Example 42.9. Overdispersion

In a seed germination test, seeds of two cultivars were planted in pots of two soil
conditions. The following SAS statements create the data setseeds, which contains
the observed proportion of seeds that germinated for various combinations of cultivar
and soil condition. Variablen represents the number of seeds planted in a pot, and
variabler represents the number germinated. The indicator variablescult andsoil
represent the cultivar and soil condition, respectively.

data seeds;
input pot n r cult soil;
datalines;

1 16 8 0 0
2 51 26 0 0
3 45 23 0 0
4 39 10 0 0
5 36 9 0 0
6 81 23 1 0
7 30 10 1 0
8 39 17 1 0
9 28 8 1 0

10 62 23 1 0
11 51 32 0 1
12 72 55 0 1
13 41 22 0 1
14 12 3 0 1
15 13 10 0 1
16 79 46 1 1
17 30 15 1 1
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18 51 32 1 1
19 74 53 1 1
20 56 12 1 1
;

PROC LOGISTIC is used to fit a logit model to the data, withcult, soil, andcult ×
soil interaction as explanatory variables. The optionSCALE=NONEis specified to
display goodness-of-fit statistics.

proc logistic data=seeds;
model r/n=cult soil cult*soil/scale=none;
title ’Full Model With SCALE=NONE’;

run;

Output 42.9.1. Results of the Model Fit for the Two-Way Layout

Full Model With SCALE=NONE

The LOGISTIC Procedure

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 68.3465 16 4.2717 <.0001
Pearson 66.7617 16 4.1726 <.0001

Number of events/trials observations: 20

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 1256.852 1213.003
SC 1261.661 1232.240
-2 Log L 1254.852 1205.003

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 49.8488 3 <.0001
Score 49.1682 3 <.0001
Wald 47.7623 3 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.3788 0.1489 6.4730 0.0110
cult 1 -0.2956 0.2020 2.1412 0.1434
soil 1 0.9781 0.2128 21.1234 <.0001
cult*soil 1 -0.1239 0.2790 0.1973 0.6569
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Results of fitting the full factorial model are shown inOutput 42.9.1. Both Pearson
χ2 and deviance are highly significant (p < 0.0001), suggesting that the model does
not fit well. If the link function and the model specification are correct and if there
are no outliers, then the lack of fit may be due to overdispersion. Without adjusting
for the overdispersion, the standard errors are likely to be underestimated, causing the
Wald tests to be too sensitive. In PROC LOGISTIC, there are three SCALE= options
to accommodate overdispersion. With unequal sample sizes for the observations,
SCALE=WILLIAMS is preferred. The Williams model estimates a scale parameter
φ by equating the value of Pearsonχ2 for the full model to its approximate expected
value. The full model considered here is the model with cultivar, soil condition, and
their interaction. Using a full model reduces the risk of contaminatingφ with lack of
fit due to incorrect model specification.

proc logistic data=seeds;
model r/n=cult soil cult*soil / scale=williams;
title ’Full Model With SCALE=WILLIAMS’;

run;
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Output 42.9.2. Williams’ Model for Overdispersion

Full Model With SCALE=WILLIAMS

The LOGISTIC Procedure

Model Information

Data Set WORK.SEEDS
Response Variable (Events) r
Response Variable (Trials) n
Weight Variable 1 / ( 1 + 0.075941 * (n - 1) )
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 20
Number of Observations Used 20
Sum of Frequencies Read 906
Sum of Frequencies Used 906
Sum of Weights Read 198.3216
Sum of Weights Used 198.3216

Response Profile

Ordered Binary Total Total
Value Outcome Frequency Weight

1 Event 437 92.95346
2 Nonevent 469 105.36819

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 16.4402 16 1.0275 0.4227
Pearson 16.0000 16 1.0000 0.4530

Number of events/trials observations: 20

NOTE: Since the Williams method was used to accommodate overdispersion, the
Pearson chi-squared statistic and the deviance can no longer be used to
assess the goodness of fit of the model.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 276.155 273.586
SC 280.964 292.822
-2 Log L 274.155 265.586
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Output 42.9.2. (continued)

Full Model With SCALE=WILLIAMS

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.5687 3 0.0356
Score 8.4856 3 0.0370
Wald 8.3069 3 0.0401

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.3926 0.2932 1.7932 0.1805
cult 1 -0.2618 0.4160 0.3963 0.5290
soil 1 0.8309 0.4223 3.8704 0.0491
cult*soil 1 -0.0532 0.5835 0.0083 0.9274

Association of Predicted Probabilities and Observed Responses

Percent Concordant 50.6 Somers’ D 0.258
Percent Discordant 24.8 Gamma 0.343
Percent Tied 24.6 Tau-a 0.129
Pairs 204953 c 0.629

Results using Williams’ method are shown inOutput 42.9.2. The estimate ofφ is
0.075941 and is given in the formula for the Weight Variable at the beginning of the
displayed output. Since neithercult nor cult × soil is statistically significant (p =
0.5290 andp = 0.9274, respectively), a reduced model that contains only the soil
condition factor is fitted, with the observations weighted by1/(1+0.075941(N−1)).
This can be done conveniently in PROC LOGISTIC by including the scale estimate
in the SCALE=WILLIAMS option as follows:

proc logistic data=seeds;
model r/n=soil / scale=williams(0.075941);
title ’Reduced Model With SCALE=WILLIAMS(0.075941)’;

run;
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Output 42.9.3. Reduced Model with Overdispersion Controlled

Reduced Model With SCALE=WILLIAMS(0.075941)

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.5249 0.2076 6.3949 0.0114
soil 1 0.7910 0.2902 7.4284 0.0064

Results of the reduced model fit are shown inOutput 42.9.3. Soil condition remains
a significant factor (p = 0.0064) for the seed germination.

Example 42.10. Conditional Logistic Regression for Matched
Pairs Data

In matched pairs, orcase-control, studies, conditional logistic regression is used to
investigate the relationship between an outcome of being an event (case) or a nonevent
(control) and a set of prognostic factors.

The data in this example are a subset of the data from the Los Angeles Study of
the Endometrial Cancer Data in Breslow and Day (1980). There are 63 matched
pairs, each consisting of a case of endometrial cancer (Outcome=1) and a control
(Outcome=0). The case and corresponding control have the sameID. Two prog-
nostic factors are included:Gall (an indicator variable for gall bladder disease) and
Hyper (an indicator variable for hypertension). The goal of the case-control analysis
is to determine the relative risk for gall bladder disease, controlling for the effect of
hypertension.

data Data1;
do ID=1 to 63;

do Outcome = 1 to 0 by -1;
input Gall Hyper @@;
output;

end;
end;
datalines;

0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1
0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1
0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0
0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0
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0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 1 0 0 1 0 0 1 0 0 0
;

There are several ways to approach this problem with PROC LOGISTIC.

• Specify the STRATA statementto perform a conditional logistic regression.

• Specify EXACT and STRATA statementsto perform an exact conditional lo-
gistic regression on the original data set, if you believe the data set is too small
or too sparse for the usual asymptotics to hold.

• Transform each matched pairinto a single observation then specify a PROC
LOGISTIC statement on this transformed data without a STRATA statement;
this also performs a conditional logistic regression and produces essentially the
same results.

• Specify an EXACT statementon the transformed data.

SAS statements and selected results for these four approaches are given in the re-
mainder of this example.

Conditional Analysis Using the STRATA Statement

In the following SAS statements, PROC LOGISTIC is invoked with theID variable
declared in theSTRATA statement to obtain the conditional logistic model estimates.
Two models are fitted. The first model containsGall as the only predictor variable,
and the second model contains bothGall andHyper as predictor variables. Because
the optionCLODDS=Waldis specified, PROC LOGISTIC computes a 95% Wald
confidence interval for the odds ratio for each predictor variable.

proc logistic data=Data1;
strata ID;
model outcome(event=’1’)=Gall / clodds=Wald;

run;

proc logistic data=Data1;
strata ID;
model outcome(event=’1’)=Gall Hyper /clodds=Wald;

run;

Results from the two conditional logistic analyses are shown inOutput 42.10.1and
Output 42.10.2. Note that there is only one response level listed in the “Response
Profile” tables, and there is no intercept term in the “Analysis of Maximum
Likelihood Estimates” tables.
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Output 42.10.1. Conditional Logistic Regression (Gall as Risk Factor)

The LOGISTIC Procedure

Conditional Analysis

Model Information

Data Set WORK.DATA1
Response Variable Outcome
Number of Response Levels 2
Number of Strata 63
Model binary logit
Optimization Technique Newton-Raphson ridge

Number of Observations Read 126
Number of Observations Used 126

Response Profile

Ordered Total
Value Outcome Frequency

1 0 63
2 1 63

Probability modeled is Outcome=1.

Strata Summary

Outcome
Response ------- Number of

Pattern 0 1 Strata Frequency

1 1 1 63 126
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Output 42.10.1. (continued)

Conditional Analysis

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

AIC 87.337 85.654
SC 87.337 88.490
-2 Log L 87.337 83.654

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 3.6830 1 0.0550
Score 3.5556 1 0.0593
Wald 3.2970 1 0.0694

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Gall 1 0.9555 0.5262 3.2970 0.0694

Wald Confidence Interval for Adjusted Odds Ratios

Effect Unit Estimate 95% Confidence Limits

Gall 1.0000 2.600 0.927 7.293
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Output 42.10.2. Conditional Logistic Regression (Gall and Hyper as Risk Factors)

The LOGISTIC Procedure

Conditional Analysis

Model Information

Data Set WORK.DATA1
Response Variable Outcome
Number of Response Levels 2
Number of Strata 63
Model binary logit
Optimization Technique Newton-Raphson ridge

Number of Observations Read 126
Number of Observations Used 126

Response Profile

Ordered Total
Value Outcome Frequency

1 0 63
2 1 63

Probability modeled is Outcome=1.

Strata Summary

Outcome
Response ------- Number of

Pattern 0 1 Strata Frequency

1 1 1 63 126
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Output 42.10.2. (continued)

Conditional Analysis

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

AIC 87.337 86.788
SC 87.337 92.460
-2 Log L 87.337 82.788

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 4.5487 2 0.1029
Score 4.3620 2 0.1129
Wald 4.0060 2 0.1349

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Gall 1 0.9704 0.5307 3.3432 0.0675
Hyper 1 0.3481 0.3770 0.8526 0.3558

Wald Confidence Interval for Adjusted Odds Ratios

Effect Unit Estimate 95% Confidence Limits

Gall 1.0000 2.639 0.933 7.468
Hyper 1.0000 1.416 0.677 2.965

In the first model, whereGall is the only predictor variable (Output 42.10.1), the odds
ratio estimate forGall is 2.60, which is marginally significant (p=0.0694) and which
is an estimate of the relative risk for gall bladder disease. A 95% confidence interval
for this relative risk is (0.927, 7.293).

In the second model, where bothGall andHyper are present (Output 42.10.2), the
odds ratio estimate forGall is 2.639, which is an estimate of the relative risk for
gall bladder disease adjusted for the effects of hypertension. A 95% confidence in-
terval for this adjusted relative risk is (0.933, 7.468). Note that the adjusted values
(accounting for hypertension) for gall bladder disease are not very different from the
unadjusted values (ignoring hypertension). This is not surprising since the prognostic
factorHyper is highly statistically insignificant. The 95% Wald confidence interval
for the odds ratio forHyper is (0.677, 2.965), which contains unity with ap-value
greater than0.3.
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Exact Analysis Using the STRATA Statement

When you believe there is not enough data or that the data are too sparse, you can
perform a stratified exact conditional logistic regression. The following statements
perform stratified exact conditional logistic regressions on the original data set by
specifying both theSTRATA andEXACT statements.

proc logistic data=Data1 exactonly;
strata ID;
model outcome(event=’1’)=Gall;
exact Gall / estimate=both;

run;

proc logistic data=Data1 exactonly;
strata ID;
model outcome(event=’1’)=Gall Hyper;
exact Gall Hyper / jointonly estimate=both;

run;

Output 42.10.3. Exact Conditional Logistic Regression (Gall as Risk Factor)

The LOGISTIC Procedure

Exact Conditional Analysis

Conditional Exact Tests

--- p-Value ---
Effect Test Statistic Exact Mid

Gall Score 3.5556 0.0963 0.0799
Probability 0.0327 0.0963 0.0799

Exact Parameter Estimates

95% Confidence
Parameter Estimate Limits p-Value

Gall 0.9555 -0.1394 2.2316 0.0963

Exact Odds Ratios

95% Confidence
Parameter Estimate Limits p-Value

Gall 2.600 0.870 9.315 0.0963
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Output 42.10.4. Exact Conditional Logistic Regression (Gall and Hyper as Risk
Factors)

The LOGISTIC Procedure

Exact Conditional Analysis

Conditional Exact Tests

--- p-Value ---
Effect Test Statistic Exact Mid

Joint Score 4.3620 0.1150 0.1134
Probability 0.00316 0.1150 0.1134

Exact Parameter Estimates

95% Confidence
Parameter Estimate Limits p-Value

Gall 0.9530 -0.1407 2.2292 0.0969
Hyper 0.3425 -0.4486 1.1657 0.4622

Exact Odds Ratios

95% Confidence
Parameter Estimate Limits p-Value

Gall 2.593 0.869 9.293 0.0969
Hyper 1.408 0.639 3.208 0.4622

Note that the score statistics in the “Conditional Exact Tests” tables inOutput 42.10.3
andOutput 42.10.4are identical to the score statistics in the conditional analyses in
Output 42.10.1andOutput 42.10.2, respectively. The exact odds ratio confidence in-
tervals are much wider than their conditional analysis counterparts, but the parameter
estimates are similar. The exact analyses confirm the marginal significance ofGall
and the insignificance ofHyper as predictor variables.

Conditional Analysis Using Transformed Data

When each matched set consists of one event and one nonevent, the conditional like-
lihood is given by

∏
i

(1 + exp(−β′(xi1 − xi0))−1

wherexi1 andxi0 are vectors representing the prognostic factors for the event and
nonevent, respectively, of theith matched set. This likelihood is identical to the
likelihood of fitting a logistic regression model to a set of data with constant response,
where the model contains no intercept term and has explanatory variables given by
di = xi1 − xi0 (Breslow 1982).
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To apply this method, each matched pair is transformed into a single observation,
where the variablesGall andHyper contain the differences between the correspond-
ing values for the case and the control (case− control). The variableOutcome,
which will be used as the response variable in the logistic regression model, is given
a constant value of 0 (which is theOutcome value for the control, although any
constant, numeric or character, will do).

data Data2;
set Data1;
drop id1 gall1 hyper1;
retain id1 gall1 hyper1 0;
if (ID = id1) then do;

Gall=gall1-Gall; Hyper=hyper1-Hyper;
output;

end;
else do;

id1=ID; gall1=Gall; hyper1=Hyper;
end;

run;

Note that there are 63 observations in the data set, one for each matched pair. The
variableOutcome has a constant value of 0.

In the following SAS statements, PROC LOGISTIC is invoked with theNOINT
option to obtain the conditional logistic model estimates. Because the option
CLODDS=PL is specified, PROC LOGISTIC computes a 95% profile likelihood
confidence interval for the odds ratio for each predictor variable; note that profile
likelihood confidence intervals are not currently available when a STRATA statement
is specified.

proc logistic data=Data2;
model outcome=Gall / noint clodds=PL;

run;

proc logistic data=Data2;
model outcome=Gall Hyper / noint clodds=PL;

run;

The results are not displayed here.

Exact Analysis Using Transformed Data

Sometimes the original data set in a matched-pairs study may be too large for the
exact methods to handle. In such cases it may be possible to use the transformed
data set. The following code performs exact conditional logistic regressions on the
transformed data set. The results are not displayed here.
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proc logistic data=Data2 exactonly;
model outcome=Gall / noint;
exact Gall / estimate=both;

run;
proc logistic data=Data2 exactonly;

model outcome=Gall Hyper / noint;
exact Gall Hyper / jointonly estimate=both;

run;

Example 42.11. Complementary Log-Log Model for Infection
Rates

Antibodies produced in response to an infectious disease like malaria remain in the
body after the individual has recovered from the disease. A serological test detects
the presence or absence of such antibodies. An individual with such antibodies is
termed seropositive. In areas where the disease is endemic, the inhabitants are at
fairly constant risk of infection. The probability of an individual never having been
infected inY years isexp(−µY ), whereµ is the mean number of infections per year
(refer to the appendix of Draper, Voller, and Carpenter 1972). Rather than estimating
the unknownµ, it is of interest to epidemiologists to estimate the probability of a
person living in the area being infected in one year. This infection rateγ is given by

γ = 1− e−µ

The following statements create the data setsero, which contains the results of a
serological survey of malarial infection. Individuals of nine age groups (Group)
were tested. VariableA represents the midpoint of the age range for each age group.
VariableN represents the number of individuals tested in each age group, and variable
R represents the number of individuals that are seropositive.

data sero;
input Group A N R;
X=log(A);
label X=’Log of Midpoint of Age Range’;
datalines;

1 1.5 123 8
2 4.0 132 6
3 7.5 182 18
4 12.5 140 14
5 17.5 138 20
6 25.0 161 39
7 35.0 133 19
8 47.0 92 25
9 60.0 74 44
;

For theith group with age midpointAi, the probability of being seropositive ispi =
1− exp(−µAi). It follows that

log(− log(1− pi)) = log(µ) + log(Ai)
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By fitting a binomial model with a complementary log-log link function and by using
X=log(A) as an offset term, you can estimateβ0 = log(µ) as an intercept parameter.
The following SAS statements invoke PROC LOGISTIC to compute the maximum
likelihood estimate ofβ0. TheLINK=CLOGLOG option is specified to request the
complementary log-log link function. Also specified is theCLPARM=PL option,
which requests the profile likelihood confidence limits forβ0.

proc logistic data=sero;
model R/N= / offset=X

link=cloglog
clparm=pl
scale=none;

title ’Constant Risk of Infection’;
run;

Output 42.11.1. Modeling Constant Risk of Infection

Constant Risk of Infection

The LOGISTIC Procedure

Model Information

Data Set WORK.SERO
Response Variable (Events) R
Response Variable (Trials) N
Offset Variable X Log of Midpoint of Age Range
Model binary cloglog
Optimization Technique Fisher’s scoring

Number of Observations Read 9
Number of Observations Used 9
Sum of Frequencies Read 1175
Sum of Frequencies Used 1175

Response Profile

Ordered Binary Total
Value Outcome Frequency

1 Event 193
2 Nonevent 982

Intercept-Only Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

-2 Log L = 967.1158



2454 � Chapter 42. The LOGISTIC Procedure

Output 42.11.1. (continued)

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 41.5032 8 5.1879 <.0001
Pearson 50.6883 8 6.3360 <.0001

Number of events/trials observations: 9

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -4.6605 0.0725 4133.5626 <.0001
X 1 1.0000 0 . .

Profile Likelihood Confidence
Interval for Parameters

Parameter Estimate 95% Confidence Limits

Intercept -4.6605 -4.8057 -4.5219

Results of fitting this constant risk model are shown inOutput 42.11.1. The maximum
likelihood estimate ofβ0 = log(µ) and its estimated standard error areβ̂0 = −4.6605
andσ̂

β̂0
= 0.0725, respectively. The infection rate is estimated as

γ̂ = 1− e−µ̂ = 1− e−eβ̂0 = 1− e−e−4.6605
= 0.00942

The 95% confidence interval forγ, obtained by back-transforming the 95% confi-
dence interval forβ0, is (0.0082, 0.0108); that is, there is a 95% chance that, in re-
peated sampling, the interval of 8 to 11 infections per thousand individuals contains
the true infection rate.

The goodness of fit statistics for the constant risk model are statistically significant
(p < 0.0001), indicating that the assumption of constant risk of infection is not cor-
rect. You can fit a more extensive model by allowing a separate risk of infection for
each age group. Supposeµi is the mean number of infections per year for theith
age group. The probability of seropositive for theith group with age midpointAi is
pi = 1− exp(−µiAi), so that

log(− log(1− pi)) = log(µi) + log(Ai)

In the following statements, a complementary log-log model is fit containingGroup
as an explanatory classification variable with the GLM coding (so that a dummy vari-
able is created for each age group), no intercept term, and X=log(A) as an offset
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term. The ODS OUTPUT statement saves the estimates and their 95% profile like-
lihood confidence limits toClparmPL data set. Note thatlog(µi) is the regression
parameter associated withGroup= i.

proc logistic data=sero;
ods output ClparmPL=ClparmPL;
class Group / param=glm;
model R/N=Group / noint

offset=X
link=cloglog
clparm=pl;

title ’Infectious Rates and 95% Confidence Intervals’;
run;

Output 42.11.2. Modeling Separate Risk of Infection

Infectious Rates and 95% Confidence Intervals

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Group 1 1 -3.1048 0.3536 77.0877 <.0001
Group 2 1 -4.4542 0.4083 119.0164 <.0001
Group 3 1 -4.2769 0.2358 328.9593 <.0001
Group 4 1 -4.7761 0.2674 319.0600 <.0001
Group 5 1 -4.7165 0.2238 443.9920 <.0001
Group 6 1 -4.5012 0.1606 785.1350 <.0001
Group 7 1 -5.4252 0.2296 558.1114 <.0001
Group 8 1 -4.9987 0.2008 619.4666 <.0001
Group 9 1 -4.1965 0.1559 724.3157 <.0001
X 1 1.0000 0 . .

Profile Likelihood Confidence
Interval for Parameters

Parameter Estimate 95% Confidence Limits

Group 1 -3.1048 -3.8880 -2.4833
Group 2 -4.4542 -5.3769 -3.7478
Group 3 -4.2769 -4.7775 -3.8477
Group 4 -4.7761 -5.3501 -4.2940
Group 5 -4.7165 -5.1896 -4.3075
Group 6 -4.5012 -4.8333 -4.2019
Group 7 -5.4252 -5.9116 -5.0063
Group 8 -4.9987 -5.4195 -4.6289
Group 9 -4.1965 -4.5164 -3.9037

Results of fitting the model with a separate risk of infection are shown inOutput
42.11.2. For the first age group (Group=1), the point estimate oflog(µ1) is−3.1048,
which transforms into an infection rate of1 − exp(− exp(−3.1048)) = 0.0438. A
95% confidence interval for this infection rate is obtained by transforming the 95%
confidence interval forlog(µ1). For the first age group, the lower and upper confi-
dence limits are1−exp(− exp(−3.8880) = 0.0203 and1−exp(− exp(−2.4833)) =
0.0801, respectively; that is, there is a 95% chance that, in repeated sampling, the in-
terval of 20 to 80 infections per thousand individuals contains the true infection rate.
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The following statements perform this transformation on the estimates and confidence
limits saved in theClparmPL data set; the resulting estimated infection rates in one
year’s time for each age group are displayed inTable 42.5. Note that the infection
rate for the first age group is high compared to the other age groups.

data ClparmPL;
set ClparmPL;
Estimate=round( 1000*( 1-exp(-exp(Estimate)) ) );
LowerCL =round( 1000*( 1-exp(-exp(LowerCL )) ) );
UpperCL =round( 1000*( 1-exp(-exp(UpperCL )) ) );

run;

Table 42.5. Infection Rate in One Year
Number Infected per 1,000 People

Age Point 95% Confidence Limits
Group Estimate Lower Upper

1 44 20 80
2 12 5 23
3 14 8 21
4 8 5 14
5 9 6 13
6 11 8 15
7 4 3 7
8 7 4 10
9 15 11 20

Example 42.12. Complementary Log-Log Model for Interval-
Censored Survival Times

Often survival times are not observed more precisely than the interval (for instance,
a day) within which the event occurred. Survival data of this form are known as
grouped or interval-censored data. A discrete analogue of the continuous proportional
hazards model (Prentice and Gloeckler 1978; Allison 1982) is used to investigate the
relationship between these survival times and a set of explanatory variables.

SupposeTi is the discrete survival time variable of theith subject with covariatesxi.
The discrete-time hazard rateλit is defined as

λit = Pr(Ti = t | Ti ≥ t,xi), t = 1, 2, . . .

Using elementary properties of conditional probabilities, it can be shown that

Pr(Ti = t) = λit

t−1∏
j=1

(1− λij) and Pr(Ti > t) =
t∏

j=1

(1− λij)
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Supposeti is the observed survival time of theith subject. Supposeδi = 1 if Ti = ti
is an event time and 0 otherwise. The likelihood for the grouped survival data is given
by

L =
∏

i

[Pr(Ti = ti)]δi [Pr(Ti > ti)]1−δi

=
∏

i

(
λiti

1− λiti

)δi ti∏
j=1

(1− λij)

=
∏

i

ti∏
j=1

(
λij

1− λij

)yij

(1− λij)

whereyij = 1 if the ith subject experienced an event at timeTi = j and 0 otherwise.

Note that the likelihoodL for the grouped survival data is the same as the likelihood
of a binary response model with event probabilitiesλij . If the data are generated by
a continuous-time proportional hazards model, Prentice and Gloeckler (1978) have
shown that

λij = 1− exp(− exp(αj + β′xi))

where the coefficient vectorβ is identical to that of the continuous-time proportional
hazards model, andαj is a constant related to the conditional survival probability
in the interval defined byTi = j at xi = 0. The grouped data survival model
is therefore equivalent to the binary response model with complementary log-log
link function. To fit the grouped survival model using PROC LOGISTIC, you must
treat each discrete time unit for each subject as a separate observation. For each of
these observations, the response is dichotomous, corresponding to whether or not the
subject died in the time unit.

Consider a study of the effect of insecticide on flour-beetles. Four different con-
centrations of an insecticide were sprayed on separate groups of flour-beetles. The
numbers of male and female flour-beetles dying in successive intervals were saved in
the data setbeetles.

data beetles(keep=time sex conc freq);
input time m20 f20 m32 f32 m50 f50 m80 f80;
conc=.20;
freq= m20; sex=1; output;
freq= f20; sex=2; output;
conc=.32;
freq= m32; sex=1; output;
freq= f32; sex=2; output;
conc=.50;
freq= m50; sex=1; output;
freq= f50; sex=2; output;
conc=.80;
freq= m80; sex=1; output;
freq= f80; sex=2; output;
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datalines;
1 3 0 7 1 5 0 4 2
2 11 2 10 5 8 4 10 7
3 10 4 11 11 11 6 8 15
4 7 8 16 10 15 6 14 9
5 4 9 3 5 4 3 8 3
6 3 3 2 1 2 1 2 4
7 2 0 1 0 1 1 1 1
8 1 0 0 1 1 4 0 1
9 0 0 1 1 0 0 0 0

10 0 0 0 0 0 0 1 1
11 0 0 0 0 1 1 0 0
12 1 0 0 0 0 1 0 0
13 1 0 0 0 0 1 0 0
14 101 126 19 47 7 17 2 4
;

The data setbeetles contains four variables:time, sex, conc, andfreq. time repre-
sents the interval death time; for example,time=2 is the interval between day 1 and
day 2. Insects surviving the duration (13 days) of the experiment are given atime
value of 14. The variablesex represents the sex of the insects (1=male, 2=female),
conc represents the concentration of the insecticide (mg/cm2), andfreq represents
the frequency of the observations.

To use PROC LOGISTIC with the grouped survival data, you must expand the data
so that each beetle has a separate record for each day of survival. A beetle that died
in the third day (time=3) would contribute three observations to the analysis, one for
each day it was alive at the beginning of the day. A beetle that survives the 13-day
duration of the experiment (time=14) would contribute 13 observations.

A new data setdays that contains the beetle-day observations is created from the data
setbeetles. In addition to the variablessex, conc andfreq, the data set contains an
outcome variabley and 13 indicator variablesday1, day2, . . ., day13. y has a value
of 1 if the observation corresponds to the day that the beetle died and has a value of
0 otherwise. An observation for the first day will have a value of 1 forday1 and a
value of 0 forday2–day13; an observation for the second day will have a value of 1
for day2 and a value of 0 forday1 andday2–day13. For instance,Output 42.12.1
shows an observation in thebeetles data set withtime=3, andOutput 42.12.2shows
the corresponding beetle-day observations in the data setdays.
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data days;
retain day1-day13 0;
array dd[13] day1-day13;
set beetles;
if time = 14 then do day=1 to 13;

y=0; dd[day]=1;
output;
dd[day]=0;

end;
else do day=1 to time;

if day=time then y=1;
else y=0;
dd[day]=1;
output;
dd[day]=0;

end;

Output 42.12.1. An Observation with Time=3 in Data Set Beetles

Obs time conc freq sex

17 3 0.2 10 1

Output 42.12.2. Corresponding Beetle-day Observations in Days

d d d d
t c f d d d d d d d d d a a a a

O i o r s d a a a a a a a a a y y y y
b m n e e a y y y y y y y y y 1 1 1 1
s e c q x y y 1 2 3 4 5 6 7 8 9 0 1 2 3

25 3 0.2 10 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
26 3 0.2 10 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0
27 3 0.2 10 1 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0

The following SAS statements invoke PROC LOGISTIC to fit a complementary
log-log model for binary data with response variable Y and explanatory variables
day1–day13, sex, andconc. Specifying theEVENT= option ensures that the event
(y=1) probability is modeled. The coefficients ofday1–day13 can be used to esti-
mate the baseline survival function. TheNOINT option is specified to prevent any
redundancy in estimating the coefficients ofday1–day13. The Newton-Raphson al-
gorithm is used for the maximum likelihood estimation of the parameters.

proc logistic data=days outest=est1;
model y(event=’1’)= day1-day13 sex conc

/ noint link=cloglog technique=newton;
freq freq;

run;
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Output 42.12.3. Parameter Estimates for the Grouped Proportional Hazards
Model

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

day1 1 -3.9314 0.2934 179.5602 <.0001
day2 1 -2.8751 0.2412 142.0596 <.0001
day3 1 -2.3985 0.2299 108.8833 <.0001
day4 1 -1.9953 0.2239 79.3960 <.0001
day5 1 -2.4920 0.2515 98.1470 <.0001
day6 1 -3.1060 0.3037 104.5799 <.0001
day7 1 -3.9704 0.4230 88.1107 <.0001
day8 1 -3.7917 0.4007 89.5233 <.0001
day9 1 -5.1540 0.7316 49.6329 <.0001
day10 1 -5.1350 0.7315 49.2805 <.0001
day11 1 -5.1131 0.7313 48.8834 <.0001
day12 1 -5.1029 0.7313 48.6920 <.0001
day13 1 -5.0951 0.7313 48.5467 <.0001
sex 1 -0.5651 0.1141 24.5477 <.0001
conc 1 3.0918 0.2288 182.5665 <.0001

Results of the model fit are given inOutput 42.12.3. Bothsex andconc are statisti-
cally significant for the survival of beetles sprayed by the insecticide. Female beetles
are more resilient to the chemical than male beetles, and increased concentration in-
creases the effectiveness of the insecticide.

The coefficients of day1–day13 are the maximum likelihood estimates of
α1, . . . , α13, respectively. The baseline survivor functionS0(t) is estimated by

Ŝ0(t) = P̂r(T > t) =
∏
j≤t

exp(− exp(α̂j))

and the survivor function for a given covariate pattern (sex=x1 and conc=x2) is
estimated by

yŜ(t) = [Ŝ0(t)]exp(−0.5651x1+3.0918x2)
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The following statements compute the survivor curves for male and female flour-
beetles exposed to the insecticide of concentrations 0.20 mg/cm2 and 0.80 mg/cm2.
The GPLOT procedure in SAS/GRAPH software is used to plot the survival curves.
Instead of plotting them as step functions, the SPLINE option is used to smooth the
curves. These smoothed survival curves are displayed inOutput 42.12.4.

legend1 label=none frame cframe=white cborder=black position=center
value=(justify=center);

run;
axis1 label=(angle=90 ’Survival Function’);
proc gplot data=one;

plot (s_m20 s_f20 s_m80 s_f80) * day
/ overlay legend=legend1 vaxis=axis1;

symbol1 v=circle i=spline c=black height=.8;
symbol2 v=diamond i=spline c=black height=.8;
symbol3 v=triangle i=spline c=black height=.8;
symbol4 v=square i=spline c=black height=.8;

run;

The probability of survival is displayed on the vertical axis. Notice that most of the
insecticide effect occurs by day 6 for both the high and low concentrations.

Output 42.12.4. Predicted Survival at Concentrations of 0.20 and 0.80 mg/cm2
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Example 42.13. Scoring Data Sets with the SCORE Statement

This example first illustrates the syntax used for scoring data sets, then uses a pre-
viously scored data set to score a new data set. A generalized logit model is fit to
the remote-sensing data set used inExample 25.4on page 1231 ofChapter 25, “The
DISCRIM Procedure,”to illustrate discrimination and classification methods. The
response variable isCrop and the prognostic factors arex1 throughx4.

data Crops;
length Crop $ 10;
infile datalines truncover;
input Crop $ @@;
do i=1 to 3;

input x1-x4 @@;
if (x1 ^= .) then output;

end;
input;
datalines;

Corn 16 27 31 33 15 23 30 30 16 27 27 26
Corn 18 20 25 23 15 15 31 32 15 32 32 15
Corn 12 15 16 73
Soybeans 20 23 23 25 24 24 25 32 21 25 23 24
Soybeans 27 45 24 12 12 13 15 42 22 32 31 43
Cotton 31 32 33 34 29 24 26 28 34 32 28 45
Cotton 26 25 23 24 53 48 75 26 34 35 25 78
Sugarbeets 22 23 25 42 25 25 24 26 34 25 16 52
Sugarbeets 54 23 21 54 25 43 32 15 26 54 2 54
Clover 12 45 32 54 24 58 25 34 87 54 61 21
Clover 51 31 31 16 96 48 54 62 31 31 11 11
Clover 56 13 13 71 32 13 27 32 36 26 54 32
Clover 53 08 06 54 32 32 62 16
;

You can specify aSCOREstatement to score theCrops data using the fitted model.
The data together with the predicted values are saved into the data setScore1.

proc logistic data=Crops;
model Crop=x1-x4 / link=glogit;
score out=Score1;

run;

The OUTMODEL= option saves the fitted model information in a data set. In the
following statements, the model is again fit, the data and the predicted values are
saved into the data setScore2, and the model information is saved in the permanent
SAS data setsasuser.CropModel.

proc logistic data=Crops outmodel=sasuser.CropModel;
model Crop=x1-x4 / link=glogit;
score data=Crops out=Score2;

run;
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To score data without refitting the model, specify theINMODEL= option to identify a
previously saved SAS data set of model information. In the following statements, the
model is read from thesasuser.CropModel data set, and the data and the predicted
values are saved into the data setScore3.

proc logistic inmodel=sasuser.CropModel;
score data=Crops out=Score3;

run;

To set prior probabilities on the responses, specify thePRIOR=option to identify a
SAS data set containing the response levels and their priors. In the following state-
ments, thePrior data set contains the values of the response variable (because this
example uses single-trial MODEL syntax) and a–PRIOR– variable containing val-
ues proportional to the default priors. The model is fit, then the data and the predicted
values are saved into the data setScore4.

data Prior;
input Crop $ 1-10 _PRIOR_;
datalines;

Clover 11
Corn 7
Cotton 6
Soybeans 6
Sugarbeets 6
;

proc logistic inmodel=sasuser.CropModel;
score data=Crops prior=prior out=Score4;

run;

The data setsScore1, Score2, Score3, andScore4 are identical.

The following statements display the results of scoring theCrops data set inOutput
42.13.1.

proc freq data=Score1;
table F_Crop*I_Crop / nocol nocum nopercent;

run;
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Output 42.13.1. Classification of Data used for Scoring

The FREQ Procedure

Table of F_Crop by I_Crop

F_Crop(From: Crop) I_Crop(Into: Crop)

Frequency |
Row Pct |Clover |Corn |Cotton |Soybeans|Sugarbee| Total

| | | | |ts |
-----------+--------+--------+--------+--------+--------+
Clover | 6 | 0 | 2 | 2 | 1 | 11

| 54.55 | 0.00 | 18.18 | 18.18 | 9.09 |
-----------+--------+--------+--------+--------+--------+
Corn | 0 | 7 | 0 | 0 | 0 | 7

| 0.00 | 100.00 | 0.00 | 0.00 | 0.00 |
-----------+--------+--------+--------+--------+--------+
Cotton | 4 | 0 | 1 | 1 | 0 | 6

| 66.67 | 0.00 | 16.67 | 16.67 | 0.00 |
-----------+--------+--------+--------+--------+--------+
Soybeans | 1 | 1 | 1 | 3 | 0 | 6

| 16.67 | 16.67 | 16.67 | 50.00 | 0.00 |
-----------+--------+--------+--------+--------+--------+
Sugarbeets | 2 | 0 | 0 | 2 | 2 | 6

| 33.33 | 0.00 | 0.00 | 33.33 | 33.33 |
-----------+--------+--------+--------+--------+--------+
Total 13 8 4 8 3 36

Now the previously fit data setsasuser.CropModel is used to score the new obser-
vations in theTest data set. The following statements save the results of scoring the
test data in theScoredTest data set and producesOutput 42.13.2.

data Test;
input Crop $ 1-10 x1-x4;
datalines;

Corn 16 27 31 33
Soybeans 21 25 23 24
Cotton 29 24 26 28
Sugarbeets 54 23 21 54
Clover 32 32 62 16
;

proc logistic noprint inmodel=sasuser.CropModel;
score data=Test out=ScoredTest;

proc print data=ScoredTest label noobs;
var F_Crop I_Crop P_Clover P_Corn P_Cotton P_Soybeans P_Sugarbeets;

run;



References � 2465

Output 42.13.2. Classification of Test Data

Predicted Predicted
Into: Probability: Probability:

From: Crop Crop Crop=Clover Crop=Corn

Corn Corn 0.00342 0.90067
Soybeans Soybeans 0.04801 0.03157
Cotton Clover 0.43180 0.00015
Sugarbeets Clover 0.66681 0.00000
Clover Cotton 0.41301 0.13386

Predicted Predicted Predicted
Probability: Probability: Probability:

Crop=Cotton Crop=Soybeans Crop=Sugarbeets

0.00500 0.08675 0.00416
0.02865 0.82933 0.06243
0.21267 0.07623 0.27914
0.17364 0.00000 0.15955
0.43649 0.00033 0.01631
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