Following the book's notation

» Write the frequencies as x, ..., X,.

N
— Z ;-I'f.-"z',.,_j L(p) — p:{:l o ])/i"

1=1

« Later, x values with multiple subscripts will
refer to frequencies in a multi-dimensional
table, like x;; , will be the frequency in row /
and Columnj of sub-table k.

 Write likelihood function as

L(p) =pi" P =p1" oy Z/) X1t



Log likelihood: p-1 parameters

L(p) =pi" - pey (1 ZP D

((p) = InL(p)
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Set all k-1 derivatives to zero and solve for
P4 ..., P Verify that p. = x;/Nfori=1, ... k—
1 works: MLE is the sample mean.



Likelihood Ratio Tests

X1,...,Xn "K' Fy, 0 €0,
Hy:0€©yvs. Hy:0€6NOE,

2 — ol <max@€(_)n L(@))

maxgee L(0)

Under H,, G? has an approximate chi-square
distribution for large N. Degrees of freedom =
number of (non-redundant, linear) equalities
specified by H,. Reject when G? is large.



Degrees of Freedom

Express H, as a set of linear combinations of
the parameters, set equal to constants
(usually zeros).

Degrees of freedom = number of non-redundant
linear combinations.

Suppose 8 = (64,...607), with
Hy : 01 = 0, 96297,%(91+92+93):%(94+95+96)

df=3



Example

University administrators recognize that the percentage
of students who are unemployed after graduation will
vary depending upon economic conditions, but they
claim that still, about twice as many students will be
employed in a job related to their field of study,
compared to those who get an unrelated job. To test
this hypothesis, they select a random sample of 200
students from the most recent class, and observe 106
employed in a job related to their field of study, 74
employed in a job unrelated to their field of study, and
20 unemployed. Test the hypothesis using a large-
sample likelihood ratio test and significance level

= (0.05. State your conclusions in symbols and words.



 What is the model?
Xi...., XN Grt M (1, (p1,p2.p3))

* What is the null hypothesis, in symbols?
Hy : p1 = 2ps

* What are the degrees of freedom for
this test?

1



What is the restricted MLE? Your answer is a symbolic
expression. It's a vector. Show your work.

0

— (1 In(2p) + 2o Inp 4+ x3 In(1 — 3p))

Op
e A AT N VL)

» n 1 —3p
N r1 + xo _ 313

D 1 —3p

= (x1+ x2)(1 — 3p) = 3px3
= 11+ 19 = 3p(xy + 29 + 23) = 3pN
= p= Tr1 + T9

3N

3y o~ [ 2x14x2) zy4x0 T4
b() p — ( 3N ? 3N ' N )



« What is the unrestricted MLE? Your answer is
a numeric vector: 3 numbers.

106 74 20
2007 200" 200

) = (0.53,0.37,0.10)

« What is the restricted MLE? Your answer is a
numeric vector: 3 numbers.

2(106 + 74) 106 + 74 20 -
) , — (0.6,0.3,0.1
( 600 600 200) (0.6,0.3,0.1)

 What are the estimated expected frequencies
under the null hypothesis? Your answer is a
numeric vector: 3 numbers.

(200%0.6,200%0.3,200%0.10) = (120,60,20), because

.

m = (my,mo,ms) = (\/1\)11\,1\)2 1\/;;) = (Np1,Np2, Np3)



Calculate G2. Show your work.

L1 T2— I3
G2 — _9N Py Po "3
11 — L] — T2— I3
Ly Lo Xg

/)\ X AN €I
= =2 (ln [l_—l} + In {8—2] )
L1 L9

—2 (:1:1 In g—l + x5 In Z_)—2>

T1 To
— —21106In 60 | 74111@
0.53 0.37

= 4.739



State your conclusions

* In symbols: Reject H,: p,=2p, at alpha
=0.05

* In words: More graduates appear to be
employed in jobs unrelated to their
fields of study than expected.

Statement in words is justified because

Observed 106 74 20
Expected 120 60 20
Obs-Exp -14 14 O



For a general hypothesis about a multinomial

2 _Qlll(nmxu.r_(-)._, L(:H:))

maxXgee L(0)

Tk ~ T

. 7.
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' - Observed
Book calls it G?* = 2 Z(()bserve(.l) log ( ISErvec )

Expected



Two chi-square formulas
Likelihood Ratio

Observed
_ )Z (Observed) log (h\l)(( tul)

Pearson
V2 _ Z (Observed-Expected)?
o Expected
Summation is over all cells

By expected frequency, we mean estimated expected
frequency.

Asymptotically equivalent
Same degrees of freedom

Book's formula for df applies only to log-linear
models. Use the approach given here, for now.




Pearson Chi-square on the jobs data

Observed 106 74 20
Expected 120 60 20

Z (Observed-Expected)?
Expected

(106 —120)* (74 — 60)*

120 60

4.9 (Compare G* = 4.74)



Computing the Pearson chisquare
test of independence

Calculate (estimated) expected frequencies

LitL+y

N

mij —

Calculate 2 _ Z (Obse]f_ved—E:x;pectedl)2

Expected

Cells

For large samples, has an approximate
Chisquare distribution if H, is true

Degrees of freedom (I-1)(J-1)



Numerical example of Pearson chisquare

White Black

Victim Victim Total
White 151 9 160
Prisoner (105) (55)
Black 63 103 166
Prisoner (109) (57)
Total 214 112 326

Observed-Expected)?
X2 _ (
Z Expected

=20.2 4+ 383 + 194 + 37.1 = 115

Cells



Conclusions

X2 =115, df = (2-1) (2-1) =1
Critical value at alpha = 0.05 is 3.84
Reject H,

Conclude race of prisoner and race of
victim are not independent.

That’s not good enough! Murder
victims and the persons convicted of
murdering them tend to be of the same
race. (Say what happened!)



Two treatments for Kidney Stones

Treatment A Treatment B
Effective 273 289
Ineffective 77 61

X?=2.3106, df =1, p =0.1285

These results are consistent with no difference in

effectiveness between treatments.




Single categorical variable, k categories

1
[ = Z Z logm,;

logm; = p + p(j) where Z,u(j) = ()
j=1

Linear model for log of expected frequencies

No probability can equal zero!



This 1Is a Re-Parameterization

m.: 1 . 1 .
Pj = — L — _elogmy — ok TRG)

N N N

Substitute into likelihood function and do maximum likelihood

k—1

_Nk-1

LO) = 5t =g (1= 3 pp T
j=1

How many parameters, k or k-17



There are still k-7 parameters

| N
o p— O
g - Zf:l et ()

eH ()

D i—q €N

» All “effects” zero corresponds to equal probabilities



Maximum Likelihood
Lp) = [[»}

k k N\ Y
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For a table with / rows and J columns

1 <A
o = ﬁLLlOgmw

i=1 j=1
logm;; = p+ w1y + pog) + Hi2ij)

Compare
pig = p+ o + B + (af);

H1(7)

Variable Level



Linear Model for the Log Expected
Frequency

logmi; = w1+ p1) + pogy) + Hi2j)
1 I J
o= ﬁZZIOgmij

i=1 j=1
J I
1 1
H1(i) = Wi E logm;; — p H2(5) = 7 E logm; — p
j=1 i=1

Main effects are deviations of marginal mean log expected frequency from the
grand mean of the log expected frequencies.

I J I J
Z“l(i) - Z“Q(j) =0 Z,ulQ(ij) = 2#12(7;3') =0
1=1 J=1 i=1 j=1



Interaction terms Represent
Relationship between Variables

logmij = p+ p1y + o) + H12(i))
Interaction means the pattern of probabilities
for one variable depends on the value of the
other variable. This means they are related.

See how it works for a 2x2 table

Start with the cross-product ratio alpha (not
the same as the significance level, and not a
main effect).



The cross-product ratio is an index
of relationship

Mq4 mi, Pi1; Pi;

My, m,, P>; P,

mi1maz2  P11pP22
mi12M27 P12P21

O =

o = 1 means no relationship.



alpha=1 means no relationship

ab a (1-b) a
(1-a) b (1-a) (1-b) 1-a
b 1-b 1

o — P11P22 _ CLb(l — a)(l — b) _ 1

P12P21 &(1 — b)(l — a)b




Independence =>
alpha=1 <=> interaction =0

1

H12(11) = 4 log

L11L22

Q)
|

L12L2]



Representing the probability of an event by p
(Could be conditional)

Odds = -

e |If p=1/2, ocC
e |f p=2/3, o0
e |f p=3/5, oc

e |f p=1/5, oc

1—p

s=.5/(1-.5)=1 (to 1)
s=2(to1)
s=(3/5)/(2/5)=1.5(to 1)
s=.25(to 1)



Odds Ratio

P11

Pi;

P21

P2

Conditional odds of being in Col One given in

Row One

1 — p11/ (P11 + D12

p11/(p11 + p12)

) :P11/P12

Conditional odds of being in Col One given in
Row Two =p,./p,,

Ratio of these two quantities is

OddS Ratio — p11/p12 — P11P22 __ )

P21/p22

P12DP21



Admitted Not Admitted
Dept. A 601 332
Dept. B 370 215
Dept. C 322 596
Dept. D 269 523
Dept. E 147 437
Dept. F 46 668

The (estimated) odds of being accepted are

(601)(668)
*=E32)(16) 00

times as great in Department A, compared to Department F.



Some things to notice

The cross-product (odds) ratio is meaningful for large
tables; apply it to 2x2 sub-tables.

Re-arrange rows and columns as desired to get the
cell you want in the upper left position.

Combining rows or columns (especially columns) by
adding the frequencies is natural and valid.

If you hear something like “Chances of death
before age 50 are four times as great for

smokers,” most likely they are talking about an
odds ratio.



No relationship means parallel slopes in the log scale

P11 Pi
P>; %
o — P11/]012 —1
P21/P22

log p11 — logpi12 = log pa1 — log pas

Also applies to expected frequencies



The loglin Command

# Playing with how to do it in R -- loglin command
# Got X2 = 115 by hand
# help(loglin)
racetablel = rbind(c(151,9),
c(63,103))
tryl = loglin(racetablel,margin=1ist(1,2)); tryl
2 iterations: deviation O
$1rt
[1] 129.7977

vV + V V VvV V

$pearson
[1] 115.0083

$df
[1] 1

$margin
$margin[[1]]
[1] 1

$margin[[2]]
[1] 2



> # Look at estimated expected frequencies and parameter

> # estimates under HO

> try2 = loglin(racetablel,margin=1ist(1,2),fit=T,param=T); try2
2 iterations: deviation O

$1rt

[1] 129.7977

$pearson
[1] 115.0083

$daf
[1] 1

$margin
$margin[[1]]
[1] 1

$margin[[2]]
[1] 2



$fit

[,1] [,2]

[1,] 105.0307 54.96933 f?i"
L]

[2,] 108.9693 57.03067
$param
$param$ ‘ (Intercept) ¢ R
[1] 4.348921 4
$param$‘1° ~ o~
[1] -0.01840699 0.01840699 H1(1)s H1(2)
$param$2°¢ ~ ~
[1] 0.3237386 -0.3237386 H2(1), H2(2)

> # try2$fit are the usual expected frequencies



> sum(racetablel); sum(try2$fit) # Both = N
[1] 326
[1] 326

> # Remember the LR test formula from the Multinomial lecture?

Observed
Expected

G* =2 Z(Observed) log

> G2 = 2 *x sum(racetablel * log(racetablel/try2$fit)) ; G2
[1] 129.7977

> try28lrt

[1] 129.7977



A General Rule

* For any 2-dimensional table, maximum likelihood under the
null hypothesis of independence yields the same estimated
expected frequencies used by the Pearson chisquare test.

* So you can always use 5 Lit+ T4
ij =
’ N
* And calculate either test statistic with df = (I-1)(J-1)

G? =2 Z(Observed) log (O bserved)

Expected

X? =

Z (Observed-Expected)?
Expected

* Trust Pearson statistic more for smaller samples.



# Try a saturated model. Recall last command:

# try2 = loglin(racetablel,margin=1ist(1,2),fit=T,param=T)
try3 = loglin(racetablel,margin=1ist(c(1,2)),fit=T,param=T)
try3

2 iterations: deviation O

$1rt

[1] O

vV V V V

$pearson
[1] O

$daf
[1] O

$margin
$margin[[1]]
[1] 1 2



$fit

[,1]1 [,2]
[1,] 151 9
[2,] 63 103

$param
$param$‘ (Intercept)
[1] 3.998092

$param$1°
[1] -0.3908398 0.3908398

$param$‘2°
[1] 0.5821152 -0.5821152

$param$1.2°¢

[,1] [,2]
[1,] 0.8279124 -0.8279124
[2,] -0.8279124 0.8279124

Mij = T

) B)

N

H1(1)s H1(2)

H2(1)s H2(2)

412 5)



log m;; = WU+ H1(4) T H2(3) + H12(ig)

> log(151)

[1] 5.01728

> 3.998092 -0.3908398 + 0.5821152 + 0.8279124
[1] 5.01728

>

> alpha = (151%103)/(9%63); log(alpha)/4

[1] 0.8279124

>

MLESs and parameters obey the same relationships.



Log-linear model for a k-dimensional
table

Model for log of expected frequencies

Looks like model for a k-factor ANOVA, with log
expected frequency playing the role of the cell mean.

Main effects represent departure from equal marginal
probabilities

Two-factor interactions represent relationship
(association, lack of independence) between variables
in two-dimensional marginal tables.

Three-factor interaction means the nature of the
relationship depends on the value of the 3d variable.

Etc.



Log-linear model for a 3-dimensional
table

logmije = +  Hag) + Ha@) + K3(k)
T M12(i5) T H13(ik) T H23(k)

+  U123(ijk)

* 1t is the mean of all log expected frequencies.

* Main effects are deviations of the marginal
means from the grand mean, etc.

e Effects add to zero over any subscript in
parentheses.



We will stick to hierarchical models

* |f a higher-order term is in the model, all
lower-order terms involving those variables
must be in the model too.

 Non-hierarchical models are useful at times,
but interpretation can be very tricky.

logmije =+ W) + M2@) T U3k
T M12(4i5) T H13(ik) T H23(jk)

T H123(ijk)



Florida Prison Data

1. Prisoner’s Race (B-W)
2. Victim’s Race (B-W)
3. Death Penalty (Y-N)

logmije =+ W) + M2@) T U3k
T M12(4i5) T H13(ik) T H23(jk)

T H123(ijk)



Bracket Notation

Represent variables by numbers, or maybe
etters, like VR, PR, DP

-or each variable, enclose vars involving highest
order interaction in brackets

Main effects and lower order interactions are
implied, because the models are hierarchical.

For example, [PR VR] [VR DP] means Prisoner’s
race and Victim’s race are related, and Victim’s
race and Death penalty are related, but any
relationship between Prisoner’s race and Death
penalty comes from the other 2 relationships.
This is a model of conditional independence.



[PR VR] [VR DP] =[1 2] [2 3]

1. Prisoner’s Race (B-W)
2. Victim’s Race (B-W)
3. Death Penalty (Y-N)
logmije =+ Hig) + Hae) + B3k
T H12(i5) T H23(jk)

Obtain estimated expected frequencies by maximum likelihood,
test goodness of fit with X? or G?, approximately chisquare
if the model is true.



Table 3-4

Degrees of Freedom Associated with Various Loglinear Models for Three-Dimen-

U+ uy +u; + u;
+Uy3 + Uyrs

sional Tables
‘Model Abbreviation  # parameters fitted* d.f.*
u+ug+u, +uy [1][2][3] 4 4
[1+I-1)+J -1 [IJK-1-J- K+2]
+ (K - 1)]
u+u;, +u, +uy [12][3] 5 3
+ Uy, [T+ -1+ -1 [(K — 1)(IJ - 1)]
+ (K —-1)
+ (I - 1)(J —1)]
u+u, +u, +uy [12][23] 6 2
+ Uy + Ujs [T+ -1+ -1 [JUI — 1)(K — 1)]
+(K —1)
+ I —-1)(J-1)
+(J - 1)(K - 1)]
u+u, +u, +uy [12][23][13] 7 1
+ Uy + Uy [1+I-D+J -1 [d-DJ-1)K-1)]
+ Uy + (K —1)
+(I-1)(J-1)

+(J = 1)K - 1)
+(I = 1)(K - 1)]
[123] 8 0
1JK

*The first entry pertains to the 2 x 2 x 2 table. The second entry pertains to the

I x J x K table.



Conditional independence is Important!

 [12][2 3] means that variables 1 and 2 are related and
variables 2 and 3 are related, but any connection
between 1 and 3 appears only because they are both
related to 2.

* Given (thatis, conditionally upon) the value of variable
2, Variables 1 and 3 are independent.

e Controlling for (allowing for) variable 2, there is no
relationship between variables 1 and 3.

* Simpson’s paradox: Vars 1 and 3 seem to be related but
looking at it separately for each level of Var 2, the
relationship disappears or even reverses direction.

e Kidney stones: V1 = Treatment, V3=Effectiveness,
V2=Size of stones.



Fitting and testing models with the
loglin function

Hierarchical models only
Very close to bracket notation
Give it a table and a list of vectors

Vectors are vars in a bracket, like ¢(1,2,4)
means [1 2 4]

Iterative proportional model fitting

Returns estimated expected frequencies as an
option



loglin(table,margin,fit=F, param=F)

> lizards
, , opeciles = Sagrei

Diameter
Height 1le 2.5 gt 2.5
gt 5.0 15 18
le 5.0 48 34

, » opecies = Angusticeps

Diameter
Height 1le 2.5 gt 2.5
gt 5.0 21 1
le 5.0 3 2

> lizmodell <- loglin(lizards,list(1,c(2,3))) # [1] [23]
2 iterations: deviation O



> lizmodell
$1rt
[1] 43.87073

$pearson
[1] 47.46099

$daf
[1] 3

$margin
$margin[[1]]
[1] "Height"

$margin[[2]]

G2
;XTQ

logm = p+ py + p2 + p3 + p2s
8—5=23

[1] "Diameter" "Species"

> 1-pchisq(43.87073,df=3)

[1] 1.607684e-09

> 1-pchisq(lizmodell$lrt,df=1izmodel1$df)

[1] 1.607688e-09



Some options

> lizmodellb <- loglin(lizards,list(’Height’,c(’Diameter’,’Species’)),
+ fit=T,param=T)

2 iterations: deviation O

> lizmodellb$lrt

[1] 43.87073

> # Same as before, of course

> lizmodellb$fit # Estimated expected values

, , opecies = Sagrei

Diameter
Height le 2.5 gt 2.5
gt 5.0 18.04688 29.21875
le 5.0 44.95312 72.78125

, » opecles = Angusticeps

Diameter
Height le 2.5 gt 2.5
gt 5.0 6.875 0.859375
le 5.0 17.125 2.140625



Parameter estimates

> lizmodellb$param
$¢ (Intercept)
[1] 2.467355

$Height
gt 5.0 le 5.0
-0.4563239 0.4563239

$Diameter
le 2.5 gt 2.5
0.3994009 -0.3994009

$Species
Sagrei Angusticeps
1.122860 -1.122860

$Diameter.Species
Species
Diameter Sagrei Angusticeps
le 2.5 -0.6403199 0.6403199
gt 2.5 0.6403199 -0.6403199

L4

H1(1) H1(2)

H2(1)  H2(2)

H3(1)  H3(2)

H23(11)
H23(21)

H23(12)
H23(22)



Likelihood Ratio Test for nested models

 Compare “Full” (unrestricted) & “Reduced” (restricted)
models.

 Model 1, usually one in which you really believe. This is
the full model. If it has all the terms (saturated), it’s
equivalent to an unrestricted multinomial model.

* Model 2: A hierarchical log-linear model whose terms
are a subset of the ones in Model 1. This is the reduced
model. It is Model 1, but with some thing(s) missing.

 Test Model 1 versus 2. Model 2 is null, Model 1 is
alternative.



Now let ©1 be the parameter space under Model 1
and ©5 be the parameter space under Model 2:

®, C 6; C 6.

G2 —  _91n maxgee, L(H)
maxgeo, L(0)
— 9] <max9€@2 L(#)/ maxgce L(Q))
mMaXxgeco, L(Q)/ maxgce L(Q)
- G-
Observed Observed
= 2 b d)!l —9 1
Z(O served) log (Expecte d2) Z(Observed) og (Expectedl)
Expected;
= 2 b d)!
Z(O served) log (EXpectedQ)

That’s Equation (4.2) in the textbook.



Testing two nested models

Model 2 is a restricted version of Model 1

Likelihood ratio test statistic is the difference
between the two likelihood ratio tests for
goodness of fit: G2 = G2, — G2,

G2, is always bigger because the model is
more restricted.

Asymptotically chisquare, df = df, — df,



Florida Prison Data

> Prace <- factor(florida$Prace, labels=c(’White’,’Black’)) # In order 1,2
> Vrace <- factor(florida$Vrace, labels=c(’White’,’Black’))
> DeathPen <- factor(florida$DeathPen, labels=c(’Yes’,’No’))
> PR_by_DP = table(Prace, DeathPen); PR_by_DP
DeathPen

Prace Yes No

White 19 141

Black 17 149

> prop.table(PR_by_DP,1) # Row proportions
DeathPen
Prace Yes No
White 0.1187500 0.8812500
Black 0.1024096 0.8975904
> round (100*prop.table(PR_by_DP,1),2) # Row percentages
DeathPen
Prace Yes No
White 11.88 88.12
Black 10.24 89.76



> chisq.test(PR_by_DP,correct=F)
Pearson’s Chi-squared test

data: PR_by_DP
X-squared = 0.2214, df = 1, p-value = 0.638

> dp <- table(Prace, DeathPen, Vrace); dp
, , Vrace = White

DeathPen

Prace Yes No
White 19 132
Black 11 52

, , Vrace = Black

DeathPen

Prace Yes No
White 0 9
Black 6 97



Something interesting may be going on

> # Row percents
> round (100*prop.table(dpl,,1],1),2)
DeathPen
Prace Yes No
White 12.58 87.42
Black 17.46 82.54
> round (100*prop.table(dpl,,2],1),2)
DeathPen
Prace Yes No
White 0.00 100.00
Black 5.83 94.17

Prace and Deathpen CONTROLLING for (conditional upon) Vrace



Chisquare tests on sub-tables

> # Pearson
> chisq.test(dpl,,1],correct=F)

Pearson’s Chi-squared test

data: dpl, , 1]
X-squared = 0.8774, df = 1, p-value = 0.3489

> chisq.test(dpl,,2],correct=F)
Pearson’s Chi-squared test

data: dpl, , 2]
X-squared = 0.5539, df = 1, p-value

0.4567

Warning message:
Chi-squared approximation may be incorrect in:
chisq.test(dpl, , 2], correct = F)



What's the problem? Look at
expected frequencies.

> loglin(dpl[,,2] ,margin=1ist(1,2),fit=T)$fit
2 iterations: deviation 1.421085e-14
DeathPen
Prace Yes No
White 0.4821429 8.517857
Black 5.5178571 97.482143

Low expected frequencies tend to inflate chisquare.
No problem here.



Complete Independence

> ind <- loglin(dp,list(1,2,3)); ind
2 iterations: deviation 2.842171e-14
$1rt

[1] 137.9294

$pearson
[1] 122.3975

$af
[1] 4

$margin
$margin[[1]]
[1] "Prace"

$margin[[2]]
[1] "DeathPen"

$margin[[3]]
[1] "Vrace"



Model with all 2-factor relationships

> twoways <- loglin(dp,list(c(1,2),c(1,3),c(2,3))); twoways
5 iterations: deviation 0.05215771

$1rt

[1] 0.7007595

$pearson
[1] 0.3750283

$df
[1] 1

$margin
$margin[[1]]
[1] "Prace" "DeathPen"

$margin[[2]]
[1] "Prace" "Vrace"

$margin[[3]]
[1] "DeathPen" "Vrace"



How is G? being calculated?!

, , Vrace = White
DeathPen

Prace Yes No
White 19 132
Black 11 52

, , Vrace = Black
DeathPen

Prace Yes No
White 0 9
Black 6 97

G2

2 Z(Observed) log (

Observed

Expected

)



Zero cell is being dropped

* Conservative, for a test of fit. Chisquare is smaller, so it’s less
likely to force you to a more complicated model.

* Add a small constant to the observed frequency of zero, just
for computing G2, not for computing the expected
frequencies. How small? The smaller the better.

x
I 1 =0
0 (CB ©S Expected)

e No effect on LR tests of nested models.

Expected, )

2
Gio=2 Z(Observed) log (ExpectedQ



Look at 2-factor marginal tables

* Prisoner’s race by death penalty: Consistent
with no relationship.

* Prisoner’s race by victim’s race: Strong, we
think.

* Victim’s race by death penalty: Need to check
it.



Prisoner’s Race and Victim's Race

> PR_by_VR = table(Prace, Vrace); PR_by_VR

Vrace
Prace White Black
White 151 9

Black 63 103
> round (100*prop.table(PR_by_VR,1),2) # Row percentages
Vrace
Prace White Black
White 94.38 5.62
Black 37.95 62.05
> chisq.test (PR_by_VR,correct=F)

Pearson’s Chi-squared test

data: PR_by_VR
X-squared = 115.0083, df = 1, p-value < 2.2e-16

People tend to be in jail for killing someone of their own race.
Anything else interesting?



Victim's Race and Death Penalty

> VR_by_DP = table(Vrace, DeathPen); VR_by_DP
DeathPen
Vrace Yes No
White 30 184
Black 6 106
> round (100*prop.table(VR_by_DP,1),2) # Row percentages
DeathPen
Vrace Yes No
White 14.02 85.98
Black 5.36 94.64
> chisq.test (VR_by_DP,correct=F)

Pearson’s Chi-squared test

data: VR_by_DP
X-squared = 5.6149, df = 1, p-value = 0.01781

Suggests death penalty more likely if victim is White



It look like we want to add [PR, VR], but marginal
tables can be misleading — See Section 3.8. Choose
model with smallest G? (best fit)

> # 1=Prace, 2=DeathPen, 3=Vrace)

> loglin(dp,list(2,c(1,3)))$1rt # [DP] [PR, VR]
2 iterations: deviation O

[1] 8.131611

> loglin(dp,list(1,c(2,3)))$1rt # [PR] [VR, DP]
2 iterations: deviation O

[1] 131.6796

> loglin(dp,list(3,c(1,2)))$1rt # [VR] [PR, DP]
2 iterations: deviation O

[1] 137.7079



[DP] [PR, VR] is the best choice, by far

* |sitan improvement?
* Does it fit?

ModelA = ind

ModelB <- loglin(dp,list(2,c(1,3)))
iterations: deviation O

# Is it an improvement?

G2Change = ModelA$lrt-ModelB$lrt; G2Change
[1] 129.7977

> dfChange = ModelA$df-ModelB$df; dfChange
[1] 1

> pvalChange = 1-pchisq(G2Change, df=dfChange)
> pvalChange

[1] ©

vV V. N V V



Does it fit?

> # Does it fit”?

> G2B = ModelB$lrt; G2B

[1] 8.131611

> dfB = ModelB$df; dfB

[1] 3

> pvalB = 1-pchisq(G2B, df=dfB); pvalB

[1] 0.04336859

> ModelB$pearson; 1-pchisq(ModelB$pearson,df=ModelB$df)
[1] 6.977343

[1] 0.07262343

| say we proceed, but there could be argument.



Add another association
Either [PR,VR][PR,DP] or [PR,VR][VR,DP]

> # 1=Prace, 2=DeathPen, 3=Vrace

> loglin(dp,list(c(1,3),c(1,2)))$1lrt # [PR,VR] [PR,DP]
2 iterations: deviation O

[1] 7.91016

> loglin(dp,list(c(1,3),c(2,3)))$1lrt # [PR,VR][VR,DP]
2 1terations: deviation 1.42108b5e-14

[1] 1.881895



Choose [PR,VR][VR,DP]

> ModelC <- loglin(dp,list(c(1,3),c(2,3)))

2 iterations: deviation 1.421085e-14

> # Is it an improvement?

> G2Change = ModelB$lrt-ModelC$lrt; G2Change
[1] 6.249715

> dfChange = ModelB$df-ModelC$df; dfChange
[1] 1

> pvalChange = 1-pchisq(G2Change, df=dfChange)
> pvalChange

[1] 0.01242133

> # Does it fit?

> G2C = ModelC$lrt; G2C

[1] 1.881895

> dfC = ModelC$df; dfC

[1] 2

> pvalC = 1-pchisq(G2C, df=dfC); pvalC

[1] 0.3902578



Does it help to add [PR,DP]?

> ModelD <- twoways

> G2Change = ModelC$lrt-ModelD$1lrt; G2Change
[1] 1.181136

> dfChange = ModelC$df-ModelD$df; dfChange

[1] 1

> pvalChange = 1-pchisq(G2Change, df=dfChange)
> pvalChange

[1] 0.2771249



Hierarchy: Not planned in advance

Fit Change
Model Chisq df o Chisq df o
'VR] [PR] [DP] 137.93| 4 0.00
DP] [VR,PR] 8.13| 3 0.04 129.80| 1 0.00
VR,PR] [VR,DP] 1.88| 2 0.39 6.25| 1 0.01
VR,PR] [VR,DP] 0.70| 1 0.40 1.18| 1 0.28
PR,DP]




Model is [VR,PR] [VR,DP]

* Hierarchy of models was the result of
exploring the data

* Kind of forward stepwise method, could be
automated

* Guided by hypothesis tests, but please don’t
take them completely at face value. We did
quite a few tests, and the theory applies to
single tests performed in isolation.



Describe the findings in words

* Prisoners in jail for murder in Florida tended
to be convicted of killing people of the same
race.

* The death penalty was less likely when the
victim was Black.

(These conclusions are based on looking at the
marginal 2-way tables. Let’s check the
parameter estimates too.)



Checking the parameter estimates
Just part of the output

> loglin(dp,list(c(1,3),c(2,3)) ,param=T) $param
$Prace.Vrace
Vrace
Prace White Black
White 0.8279124 -0.8279124
Black -0.8279124 0.8279124

$DeathPen.Vrace
Vrace
DeathPen White Black
Yes 0.2644853 -0.2644853
No -0.2644853 0.2644853

* Prace.Vrace interaction says increased chance
of White-White and Black-Black

 DeathPen.Vrace interaction says increased
chance of Yes-White and No-Black



A little more about the interpretation
of [VR,PR] [VR,DP]

It’s a model of conditional independence

Allowing (controlling) for Victim’s Race,
Prisoner’s Race is unrelated to Death Penalty

Model says that in each sub-table (VR=Black,
VR=White), Prisoner’s Race is independent of
Death Penalty.

So the test of model fit should be like a
combined test of independence for both 2-

way tables.

Ho : pr12 = 123 = 0



Had G = 1.88, df=2, p = 0.39
Ho : p12 = p123 = 0

> dp > a = loglin(dpl,,1],margin=1ist(1,2))$1lrt; a
, , Vrace = White 2 iterations: deviation O
[1] 0.847478
DeathPen > b = loglin(dpl,,2],margin=1ist(1,2))$1lrt; b
Prace Yes No 2 iterations: deviation 1.421085e-14
White 19 132 [1] 1.034417
Black 11 52 > a+b

[1] 1.881895
, , Vrace = Black

DeathPen
Prace Yes No
White 0 9

Black 6 97 Control by sub-division: Very natural.

Works for Pearson X? too.



The lesson

Want to examine the relationship between A
and B, but A might be related to C and B might
be related to C.

So look at the relationship between A and B
controlling for C.

Examine (test) A by B separately for each level
of C: Sub-division.

Pool (combine) the tests by adding chi-squares
and adding degrees of freedom.

Identical to the chi-square test for fit of a log-
linear model of conditional independence!



Marginal Tables with R

* Data frame: Use xtabs
— UCB <- xtabs(Freqg ~ Dept + Gender + Admit, data = berkeley)
— GenderAdmit <- xtabs(Freq ~ Gender + Admit, data = berkeley)
— xtabs(Freq ~ Dept + Admit + Gender, data = berkeley)

* Factors: Use table
— deathrow <- table(Prace, DeathPen, Vrace)
— PR_by DP = table(Prace, DeathPen)
— table(Vrace, DeathPen, Prace)

* Data already in a table: Use margin.table



> lizards margin.table

, , opecies = Sagrei

Diameter
Height le 2.5 gt 2.5
gt 5.0 15 18
le 5.0 48 84

, » opecles = Angusticeps

Diameter
Height le 2.5 gt 2.5
gt 5.0 21 1
le 5.0 3 2

> species_by_height = margin.table(lizards,margin=c(3,1))
> species_by_height

Height
Species gt 5.0 1le 5.0
Sagrei 33 132
Angusticeps 22 5

> # spec_by_height_by_diam = margin.table(lizards,margin=c(3,1,2))



The Berkeley Graduate Admissions Data

> UCB
, , Admit = Admitted

Gender
Dept Female Male
A 89 512
B 17 353
C 202 120
D 131 138
E 94 53
F 24 22
, , Admit = Rejected
Gender
Dept Female Male
A 19 313
B 8 207
C 391 205
D 244 279
E 299 138
F 317 351

> is.table(UCB) # T
[1] TRUE
> summary(UCB) # X2 for complete independence = 2000.3, df=16
Call: xtabs(formula = Freq ~ Dept + Gender + Admit, data = berkeley)
Number of cases in table: 4526
Number of factors: 3
Test for independence of all factors:
Chisqg = 2000.3, df = 16, p-value = 0
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> all2ways <- loglin(UCB,margin=list(c(1l,2),c(1,3),c(2,3))); all2ways
7 iterations: deviation 0.04308377

Slrt

[1] 20.20428

Spearson
[1] 18.82298

$df
[1] 5

Smargin
Smargin[[1]]
[1] "Dept" "Gender"

Smargin[[2]]
[1] "Dept" "Admit"

Smargin[[3]]
[1] "Gender" "Admit"

> l-pchisqg(all2ways$lrt,df=all2ways$df) # p-value for HO: mul23=0

[1] 0.001144076

> # So the relationship between gender and admission DEPENDS on department
>

Let’s look at some 2-dimensional marginal tables
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> sex by admit = xtabs(Freq ~ Gender + Admit, data = berkeley)
> sex by admit
Admit
Gender Admitted Rejected
Female 557 1278
Male 1198 1493
> round(1l00*prop.table(sex by admit,1),2) # Row percentages
Admit
Gender Admitted Rejected
Female 30.35 69.65
Male 44.52 55.48
> summary(sex by admit)
Call: xtabs(formula = Freq ~ Gender + Admit, data = berkeley)
Number of cases in table: 4526
Number of factors: 2
Test for independence of all factors:
Chisqg = 92.21, df = 1, p-value = 7.814e-22

>
> sex by dept = xtabs(Freq ~ Gender + Dept, data = berkeley)
> sex by dept
Dept

Gender A B Cc D E F

Female 108 25 593 375 393 341

Male 825 560 325 417 191 373
> round(100*prop.table(sex by dept,1),2) # Row percentages

Dept

Gender A B Cc D E F

Female 5.89 1.36 32.32 20.44 21.42 18.58

Male 30.66 20.81 12.08 15.50 7.10 13.86
> summary(sex by dept)
Call: xtabs(formula = Freq ~ Gender + Dept, data = berkeley)
Number of cases in table: 4526
Number of factors: 2
Test for independence of all factors:

Chisqg = 1068.4, df = 5, p-value = 9.444e-229
>
> dept by admit = xtabs(Freq ~ Dept + Admit, data = berkeley)
> dept by admit

Admit

Dept Admitted Rejected
A 601 332
B 370 215
C 322 596
D 269 523
E 147 437
F 46 668
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> round(1l00*prop.table(dept by admit,1l),2) # Row percentages
Admit
Dept Admitted Rejected
64.42 35.58
63.25 36.75
35.08 64.92
33.96 66.04
25.17 74.83
6.44 93.56
> summary(dept by admit)
Call: xtabs(formula = Freq ~ Dept + Admit, data = berkeley)
Number of cases in table: 4526
Number of factors: 2
Test for independence of all factors:
Chisqg = 778.9, df = 5, p-value = 4.23e-166

HHEOQWP

>
> # What is going on here? Assemble a good table.
> admitper <- round(100*prop.table(dept by admit,1),2)
> genderper <- round(l00*prop.table(sex by dept,1l),2)
> cbind(admitper[,1l],t(genderper))
Female Male
A 64.42 5.89 30.66
B 63.25 1.36 20.81
C 35.08 32.32 12.08
D 33.96 20.44 15.50
E 25.17 21.42 7.10
F 6.44 18.58 13.86
>
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# Look at gender by admit controlling for department

ucb <- xtabs(Freq ~ Gender + Admit + Dept, data = berkeley)
# That's 6 2x2 tables -- hard to look at

dept <- dimnames (ucb)$Dept; dept

[11 "a" "B" "c" "D" "E" "F"

> totalgsqg <- 0

> for(k in 1:6)

vV V VYV

+ {
+ cat("\n", " Department ",dept[k],"\n")
+ cat (" = ——m————————— \n\n")
+ freq <- ucb[, ,k]
+ rowper <- round(l00*prop.table(freq,1l),2)
+ 1lm <- loglin(freqg,margin=list(1l,2),print=F) # Don't print iterations
+ g2 <- 1llm$lrt; df = 1llm$df; pval = l-pchisqg(g2,df)
+ cat (" Observed Frequencies \n\n")
+ print(freq)
+ cat("\n Row Percentages \n\n")
+ print (rowper)
+ cat("\n G-squared = ",g2,", df = ",df,", p = ",pval,"\n")
+ totalgsq = totalgsq + g2
+ }
Department A
Observed Frequencies
Admit

Gender Admitted Rejected

Female 89 19

Male 512 313

Row Percentages
Admit

Gender Admitted Rejected

Female 82.41 17.59

Male 62.06 37.94

G-squared = 19.05401 , df = 1 , p = 1.270705e-05
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Department B

Observed Frequencies

Admit
Gender Admitted Rejected
Female 17 8
Male 353 207

Row Percentages

Admit
Gender Admitted Rejected
Female 68.00 32.00
Male 63.04 36.96

G-squared = 0.2586429 , df = 1 , p = 0.611054

Department C

Observed Frequencies

Admit
Gender Admitted Rejected
Female 202 391
Male 120 205

Row Percentages
Admit
Gender Admitted Rejected
Female 34.06 65.94
Male 36.92 63.08

G-squared = 0.7509844 , df = 1 , p = 0.3861648
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Department D

Observed Frequencies

Admit
Gender Admitted Rejected
Female 131 244
Male 138 279

Row Percentages

Admit
Gender Admitted Rejected
Female 34.93 65.07
Male 33.09 66.91

G-squared = 0.2978665 , df = 1 , p = 0.585223

Department E

Observed Frequencies

Admit
Gender Admitted Rejected
Female 94 299
Male 53 138

Row Percentages

Admit
Gender Admitted Rejected
Female 23.92 76.08
Male 27.75 72.25

G-squared = 0.9903864 , df = 1 , p = 0.3196480
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Department F

Observed Frequencies

Admit
Gender Admitted Rejected
Female 24 317
Male 22 351

Row Percentages

Admit
Gender Admitted Rejected
Female 7.04 92.96
Male 5.90 94.10

G-squared = 0.3836167 , df = 1 , p = 0.535674

# Model of conditional independence should not fit, with

# G-squared = totalgsq

loglin(ucb,margin=1list(c("Gender", "Dept"),c("Dept", "Admit")))S1lrt
2 iterations: deviation 5.684342e-14

[1] 21.73551

> totalgsqg

[1] 21.73551

> l-pchisqg(totalgsqg,6)

[1] 0.001351993

vV V VYV
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Detergent Data (Table 5-1)

> # Navigate to the location of the data using the Misc menu

> soapdata <- read.table("DetergentFrame.txt"); soapdata
Softness Prev_Use Temp Pref Freq
1 1=Soft 1=Yes 1=High 1=X 19
2 1=Soft 1=Yes 1=High 2=M 29
3 1=Soft l1=Yes 2=Low 1=X 57
4 1=Soft l=Yes 2=Low 2=M 49
5 1=Soft 2=No 1=High 1=X 29
6 1=Soft 2=No 1=High 2=M 27
7 1=Soft 2=No 2=Low 1=X 63
8 1=Soft 2=No 2=Low 2=M 53
9 2=Medm 1=Yes 1=High 1=X 23
10 2=Medm 1=Yes 1=High 2=M 47
11 2=Medm l1=Yes 2=Low 1=X 47
12 2=Medm l=Yes 2=Low 2=M 55
13 2=Medm 2=No 1=High 1=X 33
14 2=Medm 2=No 1=High 2=M 23
15 2=Medm 2=No 2=Low 1=X 66
16 2=Medm 2=No 2=Low 2=M 50
17 3=Hard 1=Yes 1=High 1=X 24
18 3=Hard 1=Yes 1=High 2=M 43
19 3=Hard l=Yes 2=Low 1=X 37
20 3=Hard l=Yes 2=Low 2=M 52
21 3=Hard 2=No 1=High 1=X 42
22 3=Hard 2=No 1=High 2=M 30
23 3=Hard 2=No 2=Low 1=X 68
24 3=Hard 2=No 2=Low 2=M 42
> soap <- xtabs(Freq ~ Softness+Prev_Use+Temp+Pref, data=soapdata)

> summary (soap)
Call: xtabs(formula = Freq ~ Softness + Prev_Use + Temp + Pref, data = soapdata)
Number of cases in table: 1008
Number of factors: 4
Test for independence of all factors:
Chisq = 43.9, df = 18, p-value = 0.0005957
> loglin(soap,list(1,2,3,4))$1lrt # Matches text, p. 76
2 iterations: deviation 1.136868e-13
[1] 42.92866
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# Strategy: Find a model for the explanatory variables, using

# marginal table. Then check links of explanatory to response.
soapex = xtabs(Freq ~ Softness+Prev_Use+Temp, data=soapdata);

, + Temp = 1=High

vV V V

Prev_Use
Softness 1=Yes 2=No
1=Soft 48 56
2=Medm 70 56
3=Hard 67 72

, + Temp = 2=Low

Prev_Use
Softness 1=Yes 2=No
1=Soft 106 116
2=Medm 102 116
3=Hard 89 110

> summary (soapex)
Call: xtabs(formula = Freq ~ Softness + Prev_Use + Temp, data =
Number of cases in table: 1008
Number of factors: 3
Test for independence of all factors:
Chisq = 10.019, df = 7, p-value = 0.1875
> soapexA = loglin(soapex,list(1,2,3)) # Complete independence
2 iterations: deviation 1.136868e-13
> soapexAS$lrt

[1] 10.10304
>
> # Check 2-d marginal tables anyway
> softemp = xtabs(Freq ~ Softness+Temp, data=soapdata); softemp
Temp
Softness 1=High 2=Low
1=Soft 104 222

2=Medm 126 218

3=Hard 139 199
> round(1l00*prop.table(softemp,1l),2) # Row percents

Temp

Softness 1=High 2=Low

1=Soft 31.90 68.10

2=Medm 36.63 63.37

3=Hard 41.12 58.88
> summary(softemp)
Call: xtabs(formula = Freq ~ Softness + Temp, data = soapdata)
Number of cases in table: 1008
Number of factors: 2
Test for independence of all factors:

Chisq = 6.082, df = 2, p-value = 0.04778

> # Harder water goes with higher temp, sort of
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> softprev = xtabs(Freq ~ Softness+Prev_Use, data=soapdata); softprev
Prev_Use
Softness 1=Yes 2=No
1=Soft 154 172
2=Medm 172 172
3=Hard 156 182
> round(l00*prop.table(softprev,1l),2) # Row percents
Prev_Use
Softness 1=Yes 2=No
1=Soft 47.24 52.76
2=Medm 50.00 50.00
3=Hard 46.15 53.85
> summary(softprev)
Call: xtabs(formula = Freq ~ Softness + Prev_Use, data = soapdata)
Number of cases in table: 1008
Number of factors: 2
Test for independence of all factors:
Chisq = 1.0753, df = 2, p-value
> # Not much

0.5841

> prevtemp = xtabs(Freq ~ Prev_Use+Temp, data=soapdata); prevtemp

Temp
Prev_Use 1l=High 2=Low
1=Yes 185 297
2=No 184 342

> summary (prevtemp)
Call: xtabs(formula = Freq ~ Prev_Use + Temp, data = soapdata)
Number of cases in table: 1008
Number of factors: 2
Test for independence of all factors:
Chisq = 1.2535, df = 1, p-value = 0.2629

> # Not much

>

> JustSoftemp = loglin(soapex,list(2,c(1,3)))
2 iterations: deviation 0

> JustSoftemps$lrt; JustSoftempsdf

[1] 4.003931

[1] 5

> l-pchisqg(JustSoftemp$lrt, JustSoftemp$df)

[1] 0.5488501

> # Fits fine. Any better than complete independence?
> G2Change = soapexAS$lrt-JustSoftemps$lrt; G2Change

[1] 6.099104
> dfChange = soapexA$df-JustSoftempsdf; dfChange
(11 2

> pvalChange = l-pchisq(G2Change, df=dfChange)
> pvalChange

[1] 0.04738014

> # Okay, keep [Softness Temperature]

>
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> # Any IV, DV link at all?

> ModelA = loglin(soap,list(2,4,c(1,3))); ModelA
2 iterations: deviation 5.684342e-14

Slrt

[1] 36.82955

$pearson
[1] 37.76417

$df
[1] 16

$margin
Smargin[[1]]
[1] "Prev_Use"

Smargin[[2]]
[1] "Pref"

$Smargin[[3]]
[1] "Softness" "Temp"

> l-pchisg(ModelAS$lrt,ModelAs$df)

[1] 0.002216038

> # Something is going on. Try model with all 2-way links

> # between explanatory and response variables.

> 1ink2 = loglin(soap,list(c(1,3),c(1,4),c(2,4),c(3,4))); link2
3 iterations: deviation 0.06630545

Slrt

[1] 11.54287

$pearson
[1] 11.45839

$df
[1] 12

$margin
Smargin[[1]]
[1] "Softness" "Temp"

Smargin[[2]]
[1] "Softness" "Pref"

$Smargin[[3]]
[1] "Prev_Use" "Pref"

Smargin[[4]]
[1] "Temp" "Pref"

> # Fits well. Try adding each link separately, and compare
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> loglin(soap,list(2,c(1,3),c(1,4)))$1lrt
2 iterations: deviation 1.136868e-13

[1] 36.43426

> loglin(soap,list(c(1,3),c(2,4)))s$lrt

2 iterations: deviation 5.684342e-14

[1] 16.24809

> loglin(soap,list(2,c(1,3),c(3,4)))$1lrt
2 iterations: deviation 5.684342e-14

[1] 32.46795

> ModelB = loglin(soap,list(c(1,3),c(2,4))) # [Soft Temp] [PrevUse Pref]
2 iterations: deviation 5.684342e-14

> # Does it fit?

> ModelBS$S1lrt; ModelBS$df

[1] 16.24809

[1] 15

> l-pchisq(ModelB$1lrt, ModelBS$df)

[1] 0.365758

> # Improvement?
> G2Change = ModelAS$lrt-ModelB$lrt; G2Change

[1] 20.58147
> dfChange = ModelA$df-ModelB$df; dfChange
(111

> pvalChange = l-pchisqg(G2Change, df=dfChange); pvalChange

[1] 5.71467e-06

> # I like this one. But just check to see if another link is justified.
>

> loglin(soap,list(c(1,3),c(2,4),c(1l,4)))Slrt # Add [Soft Pref]?

2 iterations: deviation 2.842171le-14

[1] 15.85279

> loglin(soap,list(c(1,3),c(2,4),c(3,4)))S$lrt # Add [Temp Pref]?

2 iterations: deviation 5.684342e-14

[1] 11.88649

> ModelC = loglin(soap,list(c(1,3),c(2,4),c(3,4))) # Adding [Temp Pref]
2 iterations: deviation 5.684342e-14

> G2Change = ModelBS$lrt-ModelC$lrt; G2Change

[1] 4.361601
> dfChange = ModelB$df-ModelCs$df; dfChange
(111

> pvalChange = l-pchisqg(G2Change, df=dfChange); pvalChange
[1] 0.03675775

> # I have to take it. Is link2 an improvement over this?
>

> ModelD = link2

> G2Change = ModelC$lrt-ModelD$lrt; G2Change

[1] 0.3436218

> dfChange = ModelCs$df-ModelD$df; dfChange

[1] 2

> pvalChange = l-pchisqg(G2Change, df=dfChange); pvalChange
[1] 0.8421384

> # Okay, Model C looks like the choice.

> # [1 3] [2 4] [3 4] = [Soft Temp] [PrevUse Pref] [Temp Pref]

Page 5 of 7



>
> # Look at marginal tables and parameter estimates to see what's happening
> PrevusePref = xtabs(Freq ~ Prev_Use+Pref, data=soapdata); PrevusePref
Pref
Prev_Use 1=X 2=M
l1=Yes 207 275
2=No 301 225
> round(l00*prop.table(PrevusePref,1),2) # Row percents
Pref
Prev_Use 1=X 2=M
l1=Yes 42.95 57.05
2=No 57.22 42.78
> summary (PrevusePref)
Call: xtabs(formula = Freq ~ Prev_Use + Pref, data = soapdata)
Number of cases in table: 1008
Number of factors: 2
Test for independence of all factors:
Chisq = 20.512, df = 1, p-value = 5.925e-06
> # Those who used M before tend to prefer it
> TempPref = xtabs(Freq ~ Temp+Pref, data=soapdata); TempPref
Pref
Temp 1=X 2=M
1=High 170 199
2=Low 338 301
> round(l00*prop.table(TempPref,1),2) # Row percents
Pref
Temp 1=X 2=M
1=High 46.07 53.93
2=Low 52.90 47.10
> summary (TempPref)
Call: xtabs(formula = Freq ~ Temp + Pref, data = soapdata)
Number of cases in table: 1008
Number of factors: 2
Test for independence of all factors:
Chisq = 4.358, df = 1, p-value = 0.03683
> # High temp goes with pref for M
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> # Parameter estimates for Model C
> loglin(soap,list(c(1,3),c(2,4),c(3,4)),param=T)S$param
2 iterations: deviation 5.684342e-14

$Softness.Temp
Temp
Softness 1=High 2=Low
1=Soft -0.101588153 0.101588153
2=Medm 0.003448510 -0.003448510
3=Hard 0.098139643 -0.098139643

$Prev_Use.Pref
Pref
Prev_Use 1=X 2=M
1=Yes -0.1437655 0.1437655
2=No 0.1437655 -0.1437655

$Temp.Pref
Pref
Temp 1=X 2=M
1=High -0.0683605 0.0683605
2=Low 0.0683605 -0.0683605

Conclusions
Consumers with harder water tend to use higher temperature
Those who used Brand M before tend to prefer it

Use of High temperature water goes with preference for M

Book arrives at the same model
But if the conclusions are actually stated in the book, I missed it.

VVVVVVVVYV
iR S S R R SRS
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Logistic Regression

For a binary dependent variable:
1=Yes, 0=No
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Linear regression model for
the log odds of the event Y=1

(P(Y = 1|X = x)
In

— 3 Bix R S B
szmxzm> 70 TP T D1



Equivalent Statements

m(Hqusz)

_ = (o + Ci1x e+ By 12—
szmxzm> 0 T ATLE e T Pp1Tp

P(Y =1|1X = x)

6;3() +81z1+...+8p—1Tp—1
P(Y = 0|X = x)

Ba . 31x 3 1T,
_ 6'06‘1 l...e.plpl

6"“3” +81z1+...+8p—1Tp—1

PY =1|x,...,2,_1) = —— .
( | L A o 1) 1 + e',{g()—f-ﬁl.’,l,‘l+...+‘,{'3p_1.’1,‘1-,_1



F(x) = 1_‘?; is called the logistic distribution.

* Could use any cumulative distribution
function:

P(Y = 1‘331, . ,lep_l) = F(ﬁo + B1x1+ ...+ 6p—1$p—1)
 CDF of the standard normal used to be
popular
» Called probit analysis

« Can be closely approximated with a
logistic regression.



In terms of log odds, logistic
regression is like regular
regression

(P(Y = 1|X = x)
In

= 3 Bix R S B
PW:mX=@> o + P11 - - - ¥ Pp-1Tp-1



In terms of plain odds,

 Logistic regression coefficients
represent odds ratios

* For example, “Among 50 year old men,
the odds of being dead before age 60
are three times as great for smokers.”

Odds of death given smoker

==

Odds of death given nonsmoker



Logistic regression

X=1 means smoker, X=0 means non-
smoker

Y=1 means dead, Y=0 means alive

Log odds of death = 0o + b1x

-~

B3a _OB1x
Odds of death = ¢”%e”*"



Odds of Death = e”0e/1*

Group r | Odds of Death

Smokers 1 | ePoebr

Non-smokers | 0 | e

Odds of death eiven smoker eBo P )

5 3,
: = - = ¢
Odds of death given nonsmoker eo




Cancer Therapy Example

Log Survival Odds = 5y + 51dy + Bads + B3x

Treatment

d 1

Odds of Survival = ¢70efidigtadz 05

Chemotherapy | 1 | 0 %0 b1 3T
Radiation 0 | 1 ePo P2 o3z
Both 0| 0 oP0 oB3x




For any given disease severity X,

Survival odds with Chemo  ePoef1 el
Survival odds with Both ePo efBsx

3 1




In general,

* When x, is increased by one unit and all other
iIndependent variables are held constant, the
odds of Y=1 are multiplied by 0«

 Thatis, eP* is an odds ratio --- the ratio of
the odds of Y=1 when x, is increased by one

unit, to the odds of Y=1 when everything is
left alone.

* As in ordinary regression, we speak of
“controlling” for the other variables.



The conditional probability of
Y=1

eBot+Bizi+...+Bp-1Tp1
P(Y — 1|£l?1, . o

IR xp_l) - 1+ eBotBizi+...+Bp-1Zp1

This formula can be used to calculate a predicted P(Y=1)
Just replace betas by their estimates

It can also be used to calculate the probability of getting
The sample data values we actually did observe, as a
function of the betas.



Maximum likelihood estimation

* Likelihood = Conditional probability of
getting the data values we did observe,

 As a function of the betas

* Maximize the (log) likelihood with
respect to betas.

* Maximize numerically (“lteratively re-
weighted least squares”)

* Likelihood ratio tests as usual



Wald tests

MLEs have an approximate multivariate
normal sampling distribution for large
samples (Thanks Mr. Wald.)

Approximate mean vector = the true
parameter values for large samples

Asymptotic variance-covariance matrix
IS easy to estimate

H,: €0 = h (Linear hypothesis)
For logistic regression, 8 = 8



H()ZCHZh

CO — h is multivariate normal as n — oo

Leads to a straightforward chisquare test

e Called a Wald test

» Based on the full (maybe even saturated)
model

» Asymptotically equivalent to the LR test
* Not as good as LR for smaller samples
* Very convenient, especially with SAS



6
7= ——=
\/ Var(6)
Approximately standard normal for large
samples if 6,=0.

Can use to form large-sample
confidence intervals

Denominator is the square root of a
diagonal element of the asymptotic
variance-covariance matrix of @

Square it to get a Wald test with 1 df.



Wald statistics and asymptotic

standard errors
 Exist for the classical (non-conditional)
log-linear models

* This is what the text is talking about In
Section 5.4

* Not easy to get from R

* For logistic regression, straightforward
with R as well as SAS



Detergent Data (Table 5-1)

> # Navigate to the location of the data using the Misc menu

> soapdata <- read.table("DetergentFrame.txt"); soapdata
Softness Prev_Use Temp Pref Freq
1 1=Soft 1=Yes 1=High 1=X 19
2 1=Soft 1=Yes 1=High 2=M 29
3 1=Soft l1=Yes 2=Low 1=X 57
4 1=Soft l=Yes 2=Low 2=M 49
5 1=Soft 2=No 1=High 1=X 29
6 1=Soft 2=No 1=High 2=M 27
7 1=Soft 2=No 2=Low 1=X 63
8 1=Soft 2=No 2=Low 2=M 53
9 2=Medm 1=Yes 1=High 1=X 23
10 2=Medm 1=Yes 1=High 2=M 47
11 2=Medm l1=Yes 2=Low 1=X 47
12 2=Medm l=Yes 2=Low 2=M 55
13 2=Medm 2=No 1=High 1=X 33
14 2=Medm 2=No 1=High 2=M 23
15 2=Medm 2=No 2=Low 1=X 66
16 2=Medm 2=No 2=Low 2=M 50
17 3=Hard 1=Yes 1=High 1=X 24
18 3=Hard 1=Yes 1=High 2=M 43
19 3=Hard l=Yes 2=Low 1=X 37
20 3=Hard l=Yes 2=Low 2=M 52
21 3=Hard 2=No 1=High 1=X 42
22 3=Hard 2=No 1=High 2=M 30
23 3=Hard 2=No 2=Low 1=X 68
24 3=Hard 2=No 2=Low 2=M 42
> soap <- xtabs(Freq ~ Softness+Prev_Use+Temp+Pref, data=soapdata)

> summary (soap)
Call: xtabs(formula = Freq ~ Softness + Prev_Use + Temp + Pref, data = soapdata)
Number of cases in table: 1008
Number of factors: 4
Test for independence of all factors:
Chisq = 43.9, df = 18, p-value = 0.0005957
> loglin(soap,list(1,2,3,4))$1lrt # Matches text, p. 76
2 iterations: deviation 1.136868e-13
[1] 42.92866
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# Strategy: Find a model for the explanatory variables, using

# marginal table. Then check links of explanatory to response.
soapex = xtabs(Freq ~ Softness+Prev_Use+Temp, data=soapdata);

, + Temp = 1=High

vV V V

Prev_Use
Softness 1=Yes 2=No
1=Soft 48 56
2=Medm 70 56
3=Hard 67 72

, + Temp = 2=Low

Prev_Use
Softness 1=Yes 2=No
1=Soft 106 116
2=Medm 102 116
3=Hard 89 110

> summary (soapex)
Call: xtabs(formula = Freq ~ Softness + Prev_Use + Temp, data =
Number of cases in table: 1008
Number of factors: 3
Test for independence of all factors:
Chisq = 10.019, df = 7, p-value = 0.1875
> soapexA = loglin(soapex,list(1,2,3)) # Complete independence
2 iterations: deviation 1.136868e-13
> soapexAS$lrt

[1] 10.10304
>
> # Check 2-d marginal tables anyway
> softemp = xtabs(Freq ~ Softness+Temp, data=soapdata); softemp
Temp
Softness 1=High 2=Low
1=Soft 104 222

2=Medm 126 218

3=Hard 139 199
> round(1l00*prop.table(softemp,1l),2) # Row percents

Temp

Softness 1=High 2=Low

1=Soft 31.90 68.10

2=Medm 36.63 63.37

3=Hard 41.12 58.88
> summary(softemp)
Call: xtabs(formula = Freq ~ Softness + Temp, data = soapdata)
Number of cases in table: 1008
Number of factors: 2
Test for independence of all factors:

Chisq = 6.082, df = 2, p-value = 0.04778

> # Harder water goes with higher temp, sort of
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> softprev = xtabs(Freq ~ Softness+Prev_Use, data=soapdata); softprev
Prev_Use
Softness 1=Yes 2=No
1=Soft 154 172
2=Medm 172 172
3=Hard 156 182
> round(l00*prop.table(softprev,1l),2) # Row percents
Prev_Use
Softness 1=Yes 2=No
1=Soft 47.24 52.76
2=Medm 50.00 50.00
3=Hard 46.15 53.85
> summary(softprev)
Call: xtabs(formula = Freq ~ Softness + Prev_Use, data = soapdata)
Number of cases in table: 1008
Number of factors: 2
Test for independence of all factors:
Chisq = 1.0753, df = 2, p-value
> # Not much

0.5841

> prevtemp = xtabs(Freq ~ Prev_Use+Temp, data=soapdata); prevtemp

Temp
Prev_Use 1l=High 2=Low
1=Yes 185 297
2=No 184 342

> summary (prevtemp)
Call: xtabs(formula = Freq ~ Prev_Use + Temp, data = soapdata)
Number of cases in table: 1008
Number of factors: 2
Test for independence of all factors:
Chisq = 1.2535, df = 1, p-value = 0.2629

> # Not much

>

> JustSoftemp = loglin(soapex,list(2,c(1,3)))
2 iterations: deviation 0

> JustSoftemps$lrt; JustSoftempsdf

[1] 4.003931

[1] 5

> l-pchisqg(JustSoftemp$lrt, JustSoftemp$df)

[1] 0.5488501

> # Fits fine. Any better than complete independence?
> G2Change = soapexAS$lrt-JustSoftemps$lrt; G2Change

[1] 6.099104
> dfChange = soapexA$df-JustSoftempsdf; dfChange
(11 2

> pvalChange = l-pchisq(G2Change, df=dfChange)
> pvalChange

[1] 0.04738014

> # Okay, keep [Softness Temperature]

>
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> # Any IV, DV link at all?

> ModelA = loglin(soap,list(2,4,c(1,3))); ModelA
2 iterations: deviation 5.684342e-14

Slrt

[1] 36.82955

$pearson
[1] 37.76417

$df
[1] 16

$margin
Smargin[[1]]
[1] "Prev_Use"

Smargin[[2]]
[1] "Pref"

$Smargin[[3]]
[1] "Softness" "Temp"

> l-pchisg(ModelAS$lrt,ModelAs$df)

[1] 0.002216038

> # Something is going on. Try model with all 2-way links

> # between explanatory and response variables.

> 1ink2 = loglin(soap,list(c(1,3),c(1,4),c(2,4),c(3,4))); link2
3 iterations: deviation 0.06630545

Slrt

[1] 11.54287

$pearson
[1] 11.45839

$df
[1] 12

$margin
Smargin[[1]]
[1] "Softness" "Temp"

Smargin[[2]]
[1] "Softness" "Pref"

$Smargin[[3]]
[1] "Prev_Use" "Pref"

Smargin[[4]]
[1] "Temp" "Pref"

> # Fits well. Try adding each link separately, and compare
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> loglin(soap,list(2,c(1,3),c(1,4)))$1lrt
2 iterations: deviation 1.136868e-13

[1] 36.43426

> loglin(soap,list(c(1,3),c(2,4)))s$lrt

2 iterations: deviation 5.684342e-14

[1] 16.24809

> loglin(soap,list(2,c(1,3),c(3,4)))$1lrt
2 iterations: deviation 5.684342e-14

[1] 32.46795

> ModelB = loglin(soap,list(c(1,3),c(2,4))) # [Soft Temp] [PrevUse Pref]
2 iterations: deviation 5.684342e-14

> # Does it fit?

> ModelBS$S1lrt; ModelBS$df

[1] 16.24809

[1] 15

> l-pchisq(ModelB$1lrt, ModelBS$df)

[1] 0.365758

> # Improvement?
> G2Change = ModelAS$lrt-ModelB$lrt; G2Change

[1] 20.58147
> dfChange = ModelA$df-ModelB$df; dfChange
(111

> pvalChange = l-pchisqg(G2Change, df=dfChange); pvalChange

[1] 5.71467e-06

> # I like this one. But just check to see if another link is justified.
>

> loglin(soap,list(c(1,3),c(2,4),c(1l,4)))Slrt # Add [Soft Pref]?

2 iterations: deviation 2.842171le-14

[1] 15.85279

> loglin(soap,list(c(1,3),c(2,4),c(3,4)))S$lrt # Add [Temp Pref]?

2 iterations: deviation 5.684342e-14

[1] 11.88649

> ModelC = loglin(soap,list(c(1,3),c(2,4),c(3,4))) # Adding [Temp Pref]
2 iterations: deviation 5.684342e-14

> G2Change = ModelBS$lrt-ModelC$lrt; G2Change

[1] 4.361601
> dfChange = ModelB$df-ModelCs$df; dfChange
(111

> pvalChange = l-pchisqg(G2Change, df=dfChange); pvalChange
[1] 0.03675775

> # I have to take it. Is link2 an improvement over this?
>

> ModelD = link2

> G2Change = ModelC$lrt-ModelD$lrt; G2Change

[1] 0.3436218

> dfChange = ModelCs$df-ModelD$df; dfChange

[1] 2

> pvalChange = l-pchisqg(G2Change, df=dfChange); pvalChange
[1] 0.8421384

> # Okay, Model C looks like the choice.

> # [1 3] [2 4] [3 4] = [Soft Temp] [PrevUse Pref] [Temp Pref]
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>
> # Look at marginal tables and parameter estimates to see what's happening
> PrevusePref = xtabs(Freq ~ Prev_Use+Pref, data=soapdata); PrevusePref
Pref
Prev_Use 1=X 2=M
l1=Yes 207 275
2=No 301 225
> round(l00*prop.table(PrevusePref,1),2) # Row percents
Pref
Prev_Use 1=X 2=M
l1=Yes 42.95 57.05
2=No 57.22 42.78
> summary (PrevusePref)
Call: xtabs(formula = Freq ~ Prev_Use + Pref, data = soapdata)
Number of cases in table: 1008
Number of factors: 2
Test for independence of all factors:
Chisq = 20.512, df = 1, p-value = 5.925e-06
> # Those who used M before tend to prefer it
> TempPref = xtabs(Freq ~ Temp+Pref, data=soapdata); TempPref
Pref
Temp 1=X 2=M
1=High 170 199
2=Low 338 301
> round(l00*prop.table(TempPref,1),2) # Row percents
Pref
Temp 1=X 2=M
1=High 46.07 53.93
2=Low 52.90 47.10
> summary (TempPref)
Call: xtabs(formula = Freq ~ Temp + Pref, data = soapdata)
Number of cases in table: 1008
Number of factors: 2
Test for independence of all factors:
Chisq = 4.358, df = 1, p-value = 0.03683
> # High temp goes with pref for M
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> # Parameter estimates for Model C
> loglin(soap,list(c(1,3),c(2,4),c(3,4)),param=T)S$param
2 iterations: deviation 5.684342e-14

$Softness.Temp
Temp
Softness 1=High 2=Low
1=Soft -0.101588153 0.101588153
2=Medm 0.003448510 -0.003448510
3=Hard 0.098139643 -0.098139643

$Prev_Use.Pref
Pref
Prev_Use 1=X 2=M
1=Yes -0.1437655 0.1437655
2=No 0.1437655 -0.1437655

$Temp.Pref
Pref
Temp 1=X 2=M
1=High -0.0683605 0.0683605
2=Low 0.0683605 -0.0683605

Conclusions
Consumers with harder water tend to use higher temperature
Those who used Brand M before tend to prefer it

Use of High temperature water goes with preference for M

Book arrives at the same model
But if the conclusions are actually stated in the book, I missed it.

VVVVVVVVYV
iR S S R R SRS
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Logistic Regression

For a binary dependent variable:
1=Yes, 0=No
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Linear regression model for
the log odds of the event Y=1

(P(Y = 1|X = x)
In

— 3 Bix R S B
szmxzm> 70 TP T D1



Equivalent Statements

m(Hqusz)

_ = (o + Ci1x e+ By 12—
szmxzm> 0 T ATLE e T Pp1Tp

P(Y =1|1X = x)

6;3() +81z1+...+8p—1Tp—1
P(Y = 0|X = x)

Ba . 31x 3 1T,
_ 6'06‘1 l...e.plpl

6"“3” +81z1+...+8p—1Tp—1

PY =1|x,...,2,_1) = —— .
( | L A o 1) 1 + e',{g()—f-ﬁl.’,l,‘l+...+‘,{'3p_1.’1,‘1-,_1



F(x) = 1_‘?; is called the logistic distribution.

* Could use any cumulative distribution
function:

P(Y = 1‘331, . ,lep_l) = F(ﬁo + B1x1+ ...+ 6p—1$p—1)
 CDF of the standard normal used to be
popular
» Called probit analysis

« Can be closely approximated with a
logistic regression.



In terms of log odds, logistic
regression is like regular
regression

(P(Y = 1|X = x)
In

= 3 Bix R S B
PW:mX=@> o + P11 - - - ¥ Pp-1Tp-1



In terms of plain odds,

 Logistic regression coefficients
represent odds ratios

* For example, “Among 50 year old men,
the odds of being dead before age 60
are three times as great for smokers.”

Odds of death given smoker

==

Odds of death given nonsmoker



Logistic regression

X=1 means smoker, X=0 means non-
smoker

Y=1 means dead, Y=0 means alive

Log odds of death = 0o + b1x

-~

B3a _OB1x
Odds of death = ¢”%e”*"



Odds of Death = e”0e/1*

Group r | Odds of Death

Smokers 1 | ePoebr

Non-smokers | 0 | e

Odds of death eiven smoker eBo P )

5 3,
: = - = ¢
Odds of death given nonsmoker eo




Cancer Therapy Example

Log Survival Odds = 5y + 51dy + Bads + B3x

Treatment

d 1

Odds of Survival = ¢70efidigtadz 05

Chemotherapy | 1 | 0 %0 b1 3T
Radiation 0 | 1 ePo P2 o3z
Both 0| 0 oP0 oB3x




For any given disease severity X,

Survival odds with Chemo  ePoef1 el
Survival odds with Both ePo efBsx

3 1




In general,

* When x, is increased by one unit and all other
iIndependent variables are held constant, the
odds of Y=1 are multiplied by 0«

 Thatis, eP* is an odds ratio --- the ratio of
the odds of Y=1 when x, is increased by one

unit, to the odds of Y=1 when everything is
left alone.

* As in ordinary regression, we speak of
“controlling” for the other variables.



The conditional probability of
Y=1

eBot+Bizi+...+Bp-1Tp1
P(Y — 1|£l?1, . o

IR xp_l) - 1+ eBotBizi+...+Bp-1Zp1

This formula can be used to calculate a predicted P(Y=1)
Just replace betas by their estimates

It can also be used to calculate the probability of getting
The sample data values we actually did observe, as a
function of the betas.



Maximum likelihood estimation

* Likelihood = Conditional probability of
getting the data values we did observe,

 As a function of the betas

* Maximize the (log) likelihood with
respect to betas.

* Maximize numerically (“lteratively re-
weighted least squares”)

* Likelihood ratio tests as usual



Wald tests

MLEs have an approximate multivariate
normal sampling distribution for large
samples (Thanks Mr. Wald.)

Approximate mean vector = the true
parameter values for large samples

Asymptotic variance-covariance matrix
IS easy to estimate

H,: €0 = h (Linear hypothesis)
For logistic regression, 8 = 8



H()ZCHZh

CO — h is multivariate normal as n — oo

Leads to a straightforward chisquare test

e Called a Wald test

» Based on the full (maybe even saturated)
model

» Asymptotically equivalent to the LR test
* Not as good as LR for smaller samples
* Very convenient, especially with SAS



6
7= ——=
\/ Var(6)
Approximately standard normal for large
samples if 6,=0.

Can use to form large-sample
confidence intervals

Denominator is the square root of a
diagonal element of the asymptotic
variance-covariance matrix of @

Square it to get a Wald test with 1 df.



Wald statistics and asymptotic

standard errors
 Exist for the classical (non-conditional)
log-linear models

* This is what the text is talking about In
Section 5.4

* Not easy to get from R

* For logistic regression, straightforward
with R as well as SAS



Low Birth Weight Study

bweight.data

Col 1 = Identification Code

Col 2 = Low Birth Weight Baby (1=Yes under 2500g, 0=No)
Col 3 = Mother's age in years

Col 4 = Weight at Last Period

Col 5 = Race (1=White, 2=Black, 3=0Other)

Col 6 = Smoke during Pregnancy (1=Yes, 0=No)

Col 7 = History of Premature Labour (# of times)

Col 8 = History of Hypertension (1=Yes, 0=No)

Col 9 = Presence of Uterine Irritability (1=Yes, 0=No)
Col 10 = Visits to Doctor During Ist trimester

Col 11 = Baby's birth Weight in Grams

> bweight = read.table("http://www.utstat.toronto.edu/~brunner/312f10/code_n_data/

bweight.data")
> bweight[1l:5,]
low age lwt race smoke ptl ht ui ftv bwt

85 0 19 182 2 0 0 0 1 0 2523
86 0 33 155 3 0 0 0 0 3 2551
87 0 20 105 1 1 0 0 O 1 2557
88 0 21 108 1 1 0 0 1 2 2594
89 0 18 107 1 1 0 0 1 0 2600
> # The following is just to save some typing

> low <- bweight$low ; age <- bweightS$age ; lwt <- bweight$lwt
> race <- bweight$race ; smoke <- bweight$smoke; ptl <- bweight$ptl
> ht <- bweight$ht; ui <- bweight$ui; ftv <- bweight$ftv
> # Crude descriptive stats
> table(low)
low
0 1
130 59
> summary (age)
Min. 1st Qu. Median Mean 3rd Qu. Max.

14.00 19.00 23.00 23.24 26.00 45.00
> summary (lwt)
Min. 1lst Qu. Median Mean 3rd Qu. Max.
80.0 110.0 121.0 129.8 140.0 250.0
> table(race) # 1l=White, 2=Black, 3=Other
race
1 2 3
96 26 67
> table(smoke)
smoke
0 1
115 74
> table(ptl)
ptl
0 1 2 3
159 24 5 1
> ptl[ptl>1]=1 # Collapsing categories
> table(ptl)

ptl
0 1
159 30



> table(ht)

ht
0 1
177 12
> table(ui)
ui
0 1
161 28
> table(ftv)
ftv

0 1 2 3 4 6
100 47 30 7 4 1

> # Don't collapse ftv for now

# First,

modell <- glm(low ~ age
summary (modell)

VVVYV

Call:

glm(formula = low ~ age +

Deviance Residuals:

some simple examples to illustrate the methods
# Two continuous independent variables

+ lwt, family=binomial)

lwt, family = binomial)

Min 10 Median 30 Max
-1.1352 -0.9088 -0.7480 1.3392 2.0595
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.748773 0.997097 1.754 0.0795
age -0.039788 0.032287 -1.232 0.2178
1wt -0.012775 0.006211 -2.057 0.0397 =*
Signif. codes: 0 ‘***’ (0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

(Dispersion parameter for

234.67
227.12

Null deviance:
Residual deviance:
AIC: 233.12

binomial family taken to be 1)

on 188
on 186

degrees of freedom
degrees of freedom

Number of Fisher Scoring iterations: 4

Tl

Deviance = Z(—Elng P{Y; = y;i|lxi, 5})

i—1

: - )
Deviance Residual: ¢!

Tl

Z il

i—1

-

= sign (y; — P{Y; = yi|xi, ?} -,,.;?

¥

Null deviance is the deviance of a model with just the intercept.



> summary(modell)

Call:
glm(formula = low ~ age + lwt, family = binomial)

Deviance Residuals:
Min 10 Median 30 Max
-1.1352 -0.9088 -0.7480 1.3392 2.0595

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.748773 0.997097 1.754 0.0795

age -0.039788 0.032287 -1.232 0.2178
1wt -0.012775 0.006211 -2.057 0.0397 =*
Signif. codes: 0 ‘***’ (0.001 “**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 227.12 on 186 degrees of freedom
AIC: 233.12

Number of Fisher Scoring iterations: 4

> modellS$coefficients

(Intercept) age 1wt
1.74877349 -0.03978793 -0.01277541

> modell$deviance

[1] 227.1234
> modell$null.deviance
[1] 234.672

> # G-squared = Deviance(Reduced)-Deviance(Full)
> # df = difference in number of betas

> G2 = modell$null.deviance-modell$deviance; G2
[1] 7.548608

> 1l-pchisq(G2,df=1)

[1] 0.006005646

> anova(modell)

Analysis of Deviance Table

Model: binomial, link: logit
Response: low

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 188 234.672
age 1 2.760 187 231.912
1wt 1 4.789 186 227.123
>

> l-pchisq(4.789,1) # LR test of weight controlling for age

[1] 0.02864205

> 1l-pchisq(2.057"2,1) # Wald test of weight controlling for age
[1] 0.03968623

>
> # Estimate probability of low birth weight for a 19 year old
> # mother weighing 120 pounds

> x =¢(1,19,120); xb = sum(x*modellScoefficients)

> phat = exp(xb)/(l+exp(xb)); phat

[1] 0.3681301



> # For constant age, increase of weight by one pound multiplies
> # odds of low birth weight baby by ...
> exp(modell$coefficients[3])
1wt
0.9873058

> # Represent race with 2 indicator dummy variables. First the hard way:
> n = length(race); n

[1] 189

> rl=numeric(n);
> rl[race==2]=1;
> table(rl,race)

r2 = numeric(n)
r2[race==3]=1

race
rl 1 2 3
0 96 0 67
1 026 O
> table(r2,race)
race
r2 1 2 3
0 96 26 O
1 0 0 67

>
> model2a = glm(low ~ rl + r2, family=binomial); summary(model2a)

Call:
glm(formula = low ~ rl + r2, family = binomial)

Deviance Residuals:
Min 10 Median 30 Max
-1.0489 -0.9665 -0.7401 1.4041 1.6905

Coefficients:
Estimate Std. Error z value Pr(>|z])
(Intercept) -1.1550 0.2391 -4.830 1.36e-06 ***
rl 0.8448 0.4634 1.823 0.0683 .
r2 0.6362 0.3478 1.829 0.0674 .
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * * 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 229.66 on 186 degrees of freedom
AIC: 235.66

Number of Fisher Scoring iterations: 4

>
> G2a = model2aS$null.deviance-model2aSdeviance; G2a
[1] 5.010366
> l-pchisqg(G2a,2)
[1] 0.08166065
> racelow = table(race,low); racelow
low
race 0 1
1 73 23
2 15 11
3 42 25
> loglin(racelow,margin=1list(1,2))$1lrt
2 iterations: deviation 0
[1] 5.010366



>
> racefac <- factor(bweightS$race,label=c("White","Black","Other"))
> contrasts(racefac)

Black Other

White 0 0
Black 1 0
Other 0 1

> # So the default is indicator dummy variable coding
> model2b = glm(low ~ racefac, family=binomial)
> # summary(model2b) is 100% identical to summary(model2a)

> # Estimated odds of low birth weight baby are _ times as
> # great for Blacks as Whites: Do it 2 ways
> # First directly with alpha
> racelow
low

3 42 25
> 73%11/(23*15)
[1] 2.327536
> # Now with logistic regression concepts
> exp(model2bscoefficients[2])
racefacBlack

2.327536

>
> # Control for a continuous variable
> model3 = glm(low ~ lwt + racefac, family=binomial); summary(model3)

Call:
glm(formula = low ~ lwt + racefac, family = binomial)

Deviance Residuals:
Min 10 Median 30 Max
-1.3491 -0.8919 -0.7196 1.2526 2.0993

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.805753 0.845167 0.953 0.3404
lwt -0.015223 0.006439 -2.364 0.0181 =
racefacBlack 1.081066 0.488052 2.215 0.0268 =*
racefacOther 0.480603 0.356674 1.347 0.1778
Signif. codes: 0 ‘***' (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 223.26 on 185 degrees of freedom
AIC: 231.26

Number of Fisher Scoring iterations: 4



> G2change = model2b$deviance-model3$deviance; G2change
[1] 6.40254

> # What is HO?

> l-pchisqg(G2change, 1)

[1] 0.01139572

> # Another way, using anova to compare 2 models
> anova(model2b,model3)
Analysis of Deviance Table

Model 1: low ~ racefac
Model 2: low ~ lwt + racefac
Resid. Df Resid. Dev Df Deviance

1 186 229.662
2 185 223.259 1 6.403
>

> # What about race controlling for weight?

> # Could fit a reduced model with just weight, but
> anova(model3)

Analysis of Deviance Table

Model: binomial, link: logit

Response: low

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 188 234.672
1wt 1 5.981 187 228.691
racefac 2 5.432 185 223.259

> l-pchisqg(5.432,2)
[1] 0.06613878

> # Still not statistically significant. It's time to get serious
> # about model building.
> bweight[1:5,]

low age lwt race smoke ptl ht ui ftv bwt

85 0 19 182 2 0 0 0 1 0 2523
86 0 33 155 3 0 0 0 O 3 2551
87 0 20 105 1 1 0 0 O 1 2557
88 0 21 108 1 1 0 0 1 2 2594
89 0 18 107 1 1 0 0 1 0 2600

> fullmod = glm(low ~ age+lwt+racefac+smoke+ptl+ht+ui+ftv,family=binomial)



> summary(fullmod)

Call:
glm(formula = low ~ age + lwt + racefac + smoke + ptl + ht +
ui + ftv, family = binomial)

Deviance Residuals:
Min 10 Median 30 Max
-1.6305 -0.7894 -0.5094 0.9119 2.2257

Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 0.644476 1.223889 0.527 0.59849
age -0.039548 0.038305 -1.032 0.30186
lwt -0.015078 0.007034 -2.143 0.03207 *
racefacBlack 1.218791 0.533168 2.286 0.02226 *
racefacOther 0.819439 0.450466 1.819 0.06890 .
smoke 0.859459 0.409836 2.097 0.03599 =
ptl 1.218512 0.463015 2.632 0.00850 ==
ht 1.860429 0.708161 2.627 0.00861 =**
ui 0.719299 0.463419 1.552 0.12062
ftv 0.050900 0.175456 0.290 0.77174

Signif. codes: 0 ‘**x’ (0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * " 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 196.75 on 179 degrees of freedom
AIC: 216.75

Number of Fisher Scoring iterations: 4

# Try dropping age, ui, ftv: Test simultaneously

# What is HO?

redmodl = glm(low ~ lwt+racefac+smoke+ptl+ht,family=binomial)
G2changel = redmodls$deviance-fullmod$deviance; G2changel

[1] 3.732170

> l-pchisqg(G2changel, 3)

[1] 0.2918750

> # No problem discarding these.

> # Controlling for the other vars, they do nothing.

> summary (redmodl)

VVYVYV

Call:
glm(formula = low ~ lwt + racefac + smoke + ptl + ht, family = binomial)

Deviance Residuals:
Min 10 Median 30 Max
-1.8188 -0.8035 -0.5457 0.9667 2.1530

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept)  0.09462 0.95704  0.099 0.92124

1wt -0.01673 0.00695 =-2.407 0.01608 *
racefacBlack 1.26372 0.52933 2.387 0.01697 *
racefacOther 0.86418 0.43509 1.986 0.04701 *

smoke 0.87611 0.40071 2.186 0.02879 *

ptl 1.23144 0.44625 2.760 0.00579 **

ht 1.76744 0.70841  2.495 0.01260 *

Signif. codes: 0 ‘**%’ 0.001 ‘**’ 0.0l ‘*’ 0.05 “.’ 0.1 / ’ 1

(Dispersion parameter for binomial family taken to be 1)



Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 200.48 on 182 degrees of freedom
ATIC: 214.48

Number of Fisher Scoring iterations: 4

> # Test all the variables at once.

> G2 = redmodlS$null.deviance-redmodl$deviance; G2

[1] 34.18974

> 1-pchisq(G2,6)

[1] 6.182967e-06

> # What about race controlling for the other variables?
> redmod2 = glm(low ~ lwt+smoke+ptl+ht,family=binomial)
> G2race = redmod2S$deviance-redmodlS$deviance; G2race
[1] 7.47308

> 1l-pchisqg(G2race,?2)

[1] 0.02383643

>

> # Controlling for other variables, the estimated odds

> # of a low birth weight baby are  times as great

> # for a Black mother as compared to a White mother.

> redmodlScoefficients
(Intercept) lwt racefacBlack racefacOther smoke
0.09461948 -0.01672867 1.26372441 0.86417633 0.87610630

ptl ht

1.23143674 1.76744247
> exp(redmodl$coefficients[3])

racefacBlack
3.538576
>
> # Controlling for other variables, the estimated odds
> # of a low birth weight baby are @ times as great
> # for an Other mother as compared to a White mother.
> exp(redmodls$coefficients[4])
racefacOther
2.373051

> # Controlling for other variables, are the odds of
> # a low birth weight baby different for Other and Black mothers?

loe odds o+ Oiltw + Garl + Gar2 + Gysmoke + G5pt] + Gghit

o+ Siltw + Falrl+r2) + Jysmoke + Gsptl + Fsht

> r = rl+r2

> redmod3 = glm(low ~ lwt+r+smoke+ptl+ht,family=binomial)
> G2change = redmod3$deviance-redmodl$deviance; G2change
[1] 0.5313281

> 1l-pchisqg(G2change, 1)

[1] 0.4660491

> # Consistent with no difference.



Bweight2: Comparing log-linear models and logistic
regression

> bweight = read.table("http://www.utstat.toronto.edu/~brunner/312£10/code n data/
bweight.data")
> bweight[1l:5,]

low age lwt race smoke ptl ht ui ftv bwt

85 0 19 182 2 0 0 0 1 0 2523
86 0 33 155 3 0 0 0 O 3 2551
87 0 20 105 1 1 0 0 O 1 2557
88 0 21 108 1 1 0 0 1 2 2594
89 0 18 107 1 1 0 0 1 0 2600
>

> # Confine attention to smoking, race, low birth weight
> race <- factor(bweightS$race,label=c("White","Black","Other"))
> contrasts(race)

Black Other

White 0 0
Black 1

0
Other 0 1
> contrasts(race)
> contrasts(race)

<- contr.sum # Effect coding

[,1]1 [,2]
White 1 0
Black 0 1
Other -1 -1

> smoke <- factor(bweight$smoke,label=c("No","Yes"))
> contrasts(smoke) <- contr.sum
> contrasts(smoke)
[,1]
No 1
Yes -1
> low <- factor(bweight$low,label=c("No","Yes"))
contrasts(low) <- contr.sum

threeD = table(smoke,race,low)
margin.table(threeD,c(1,3,2))
, , race = White

>
>
>
>

low
smoke No Yes
No 40 4
Yes 33 19

, , race = Black

low
smoke No Yes
No 11 5
Yes 4 6

, , race = Other

low
smoke No Yes
No 35 20
Yes 7 5



# The equivalent logistic regression model is the null model
logregfull = glm(low ~ smoke + race + smoke:race, family=binomial)
# low ~ smoke*race is equivalent

summary (logregfull)

> # Conditional log-linear model with no association between
> # explanatory and response variables

> loglinl = loglin(threeD,list(c(1,2),3))
2 iterations: deviation 2.842171le-14

> G2 = loglinl$lrt; df = loglinl$df

> G2; df; l-pchisqg(G2,df)

[1] 17.85422

[1] 5

[1] 0.003134764

>

>

>

>

Call:
glm(formula = low ~ smoke + race + smoke:race, family = binomial)

Deviance Residuals:
Min 10 Median 30 Max
-1.3537 -0.9508 -0.4366 1.4190 2.1899

Coefficients:

Estimate Std. Error z value (>|z])

smokel:racel -0.34733
smokel:race2 -0.06903

.26668 -1.302
.31665 -0.218

.192778
.827425

(Intercept) -0.68896 0.20323 -3.390 0.000699 =**x*
smokel -0.52793 0
racel -0.73837 0.26668 =-2.769 0.005627 **
race2 0.49746 0.31665 1.571 0.116178

0

0

Pr
0
.20323 -2.598 0.009384 =*=*
0
0
0
0

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * * 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 216.82 on 183 degrees of freedom
AIC: 228.82

Number of Fisher Scoring iterations: 4

> anova(logregfull)
Analysis of Deviance Table

Model: binomial, link: logit
Response: low

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 188 234.672
smoke 1 4.867 187 229.805
race 2 9.830 185 219.975
smoke:race 2 3.157 183 216.818

> G2b = logregfull$null.deviance-logregfull$deviance
> G2b; G2

[1] 17.85422

[1] 17.85422

>

> # Connection between MLEs for the 2 kinds of model:
> # Messy for 3 and higher-D tables

>
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VVVVVVVVVVVVVVVVYVYV

Z-tests for loglinfull suggest a logistic regression model

without the smoke by race interaction. This is equivalent to a
log-linear model without the smoke by race by low interaction.

In general, a main effect in logistic regression corresponds to

an interaction between that variable and the response variable

in a log-linear model -- provided, of course, that the log-linear
model also has all interactions among explanatory variables.

A k-factor interaction in logistic regression corresponds to a
k+l-factor interaction in a log-linear model, The k+l-factor interaction
has all the explanatory variables in the k-factor interaction, plus
the response variable. Again, this is assuming that the log-linear
model has all interactions among explanatory variables.

Conduct this two-df test both ways, using LR tests.
First with logistic regression:

logregreduced = glm(low ~ smoke + race, family=binomial)
anodev = anova(logregreduced,logregfull); anodev

Analysis of Deviance Table

Model 1: low ~ smoke + race
Model 2: low ~ smoke + race + smoke:race
Resid. Df Resid. Dev Df Deviance

1 185 219.975

2 183 216.818 2 3.157

> anodev[2,3]; anodev[2,4]

[1]

[1] 3.156937

> # Now a log-linear model. Only mul23 is missing
> loglin2 = loglin(threeD,list(c(1,2),c(1,3),c(2,3)))
5 iterations: deviation 0.08003072

> loglin2

Slrt

[1] 3.157074

Spearson

[1] 3.113864

sdf

[1] 2

$Smargin

Smargin[[1]]

[11]

"smoke" "race"

Smargin[[2]]

[11]

" Smokeu " 1OW"

$margin[[3]]

[11]

> 1-

[1]

> 1-

[1]
> #
> #

||race|| "].OW"

pchisg(loglin2$lrt,loglin2$df)

0.2062767

pchisg(anodev[2,4],anodev[2,3])

0.2062908

The no-interaction logistic regression model is fine
[smoke race] [smoke low] [race low]



> summary (logregreduced)

Call:

glm(formula = low ~ smoke + race, family

Deviance Residuals:

Min 10 Median 30

Coefficients:
Estimate Std. Error z value

(Intercept) -0.5517 0.1833 -3.009
smokel -0.5580 0.1846 -3.023
racel -0.7309 0.2490 -2.936
race2 0.3532 0.2992 1.181

Signif. codes: 0 ‘**x’ (0,001 ‘**’ 0.01

Max
-1.3442 -0.8862 -0.5428 1.4964 1.9939

Pr(>|z]|)
0.00262
0.00251
0.00333
0.23776

1%

0.05

* %
* %
* %

1

binomial)

r

0.1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 219.97 on 185 degrees of freedom

AIC: 227.97

Number of Fisher Scoring iterations: 4

# Why is the coefficient for smoke negative?

>
>
> # Test race controlling for smoke
>

anodev2 = anova(logregreduced); anodev2

Analysis of Deviance Table
Model: binomial, link: logit
Response: low

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 188 234.672
smoke 1 4.867 187 229.805
race 2 9.830 185 219.975

> l-pchisqg(anodev2[3,2],anodev2[3,1])
[1] 0.007336125
> # Or,

> loglin3 = loglin(threeD,list(c(1,2),c(1,3)))

2 iterations: deviation 0

> G2change = loglin3$lrt-loglin2$lrt; G2change

[1] 9.829752

> dfchange = loglin3$df-loglin2$df; dfchange

[1] 2
> l-pchisqg(G2change,dfchange)
[1] 0.007336629

1

’

1



# For ease of interpretation, prefer indicator dummy vars
# when there are no interactions.
race <- factor(bweight$race,label=c("White","Black","Other"))
contrasts(race)
Black Other
White 0 0
Black 1 0
Other 0 1
> smoke <- factor(bweight$smoke,label=c("No","Yes"))
> contrasts(smoke)

VVYVYV

Yes
No 0
Yes 1

> # Could have done: contrasts(smoke) <- contr.treatment
# But labels were lost when we moved to effect coding
logregreduced = glm(low ~ smoke + race, family=binomial)
summary (logregreduced)

vV VYV

Call:
glm(formula = low ~ smoke + race, family = binomial)

Deviance Residuals:
Min 10 Median 30 Max
-1.3442 -0.8862 -0.5428 1.4964 1.9939

Coefficients:
Estimate Std. Error z value Pr(>|z])
(Intercept) -1.8405 0.3529 -5.216 1.83e-07 ***
smokeYes 1.1160 0.3692 3.023 0.00251 =**
raceBlack 1.0841 0.4900 2.212 0.02693 *
raceOther 1.1086 0.4003 2.769 0.00562 **
Signif. codes: 0 ‘***’ (0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 219.97 on 185 degrees of freedom
AIC: 227.97

Number of Fisher Scoring iterations: 4



Using the glm function on data that come in table format

# Help says:

# "For binomial and quasibinomial families the response can also be
# specified as ... a two-column matrix with the columns giving the
# numbers of successes and failures."

VVVVVYV

margin.table(threeD,c(2,3,1))
, , smoke = No

low
race No Yes
White 40 4
Black 11 5
Other 35 20

, , smoke = Yes

low
race No Yes
White 33 19
Black 4 6
Other 7 5

> # Make a data frame from the output, and ...
testdata <- read.table("TestFrame.txt"); testdata
smoke race No Yes

\%

1 No White 40 4

2 No Black 11 5

3 No Other 35 20

4 Yes White 33 19

5 Yes Black 4 6

6 Yes Other 7 5

> Smoke <- factor(testdata$smoke); contrasts(Smoke)
Yes

No 0

Yes 1

> Race <- factor(testdataS$race,levels=c("White","Black","Other"))
> # Otherwise, alphabetical order makes Black the reference category
> contrasts(Race)

Black Other

White 0 0
Black 1 0
Other 0 1

> # Recall we had trouble earlier controlling order of categories
> # in tables. The levels parameter will do the trick.
> LowBW <- cbind(testdataS$Yes,testdata$No); LowBW

# Notice order must be Yes, No!

[,11 [,2]
[1,] 4 40
[2,] 5 11
[3,1] 20 35
(4,1 19 33
[5,1 6 4
[6,] 5 7
>
>
>
>

summary (glm(LowBW ~ Smoke + Race, family=binomial))



> summary(glm(LowBW ~ Smoke + Race, family=binomial))

Call:
glm(formula = LowBW ~ Smoke + Race, family = binomial

Deviance Residuals:
1 2 3 4 5

)

6

-0.93864 -0.05946 0.60978 0.59394 0.07123 -1.24205

Coefficients:
Estimate Std. Error z value Pr(>|z])

(Intercept) -1.8405 0.3529 -5.216 1.83e-07 ***
SmokeYes 1.1160 0.3692 3.023 0.00251 *x*
RaceBlack 1.0841 0.4900 2.212 0.02693 *

RaceOther 1.1086 0.4003 2.769 0.00562 *=*

Signif. codes: 0 ‘#***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
(Dispersion parameter for binomial family taken to be

Null deviance: 17.8542 on 5 degrees of freedom
Residual deviance: 3.1569 on 2 degrees of freedom
AIC: 31.886

Number of Fisher Scoring iterations: 4

> # Compare:
> summary (logregreduced)

Call:
glm(formula = low ~ smoke + race, family = binomial)

Deviance Residuals:
Min 10 Median 30 Max
-1.3442 -0.8862 -0.5428 1.4964 1.9939

Coefficients:
Estimate Std. Error z value Pr(>|z])

(Intercept) -1.8405 0.3529 -5.216 1.83e-07 ***
smokeYes 1.1160 0.3692 3.023 0.00251 *=*
raceBlack 1.0841 0.4900 2.212 0.02693 *

raceOther 1.1086 0.4003 2.769 0.00562 *=*

Signif. codes: 0 ‘#***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
(Dispersion parameter for binomial family taken to be

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 219.97 on 185 degrees of freedom
AIC: 227.97

Number of Fisher Scoring iterations: 4

> 17.8542-3.1569

[1] 14.6973

> logregreduced$null.deviance-logregreduced$deviance
[1] 14.69729

>

0.1
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0.1
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1

1
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