Log-linear 3.5 (Model Selection)



Likelihood Ratio Test for nested models

 Compare “Full” (unrestricted) & “Reduced” (restricted)
models.

 Model 1, usually one in which you really believe. This is
the full model. If it has all the terms (saturated), it’s
equivalent to an unrestricted multinomial model.

* Model 2: A hierarchical log-linear model whose terms
are a subset of the ones in Model 1. This is the reduced
model. It is Model 1, but with some thing(s) missing.

 Test Model 1 versus 2. Model 2 is null, Model 1 is
alternative.



For example

Model 1: [12] [13] [23]
Model 2: [12] [23

Another Model 2 could be [1] [23]

Can have a sequence of models, each nested
within the last. More later.



Likelihood Ratio Test for Goodness of Fit
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Now let ©1 be the parameter space under Model 1
and ©5 be the parameter space under Model 2:
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That’s Equation (4.2) in the textbook.



Testing two nested models

Model 2 is a restricted version of Model 1

Likelihood ratio test statistic is the difference
between the two likelihood ratio tests for
goodness of fit: G2 = G2, — G2,

G2, is always bigger because the model is
more restricted.

Asymptotically chisquare, df = df, — df,



Nested hierarchy of models

1] [2] [3]
2] [13,
12] [13]
. [12] [13] [23]
123
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Different hierarchies are possible.
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“Partitioning” of chisquare.



There is no single best way to discover
a good model|

* Our text’s approach: Plan a hierarchy in
advance and work your way down.

* Forward stepwise (automatic, or not)
e Backward stepwise (automatic, or not)

* Exploration: Discover a good hierarchy,
looking at the data as well as testing

* Other possibilities ...



An approach to model building

* First test fit of the model of complete
independence. If the null hypothesis cannot
be rejected at alpha = 0.05, give up and go
home.

* Next, try testing the fit of a model with only 2-
factor interactions — that is, only pairwise
associations between variables. The author of
our text, who knows a lot, suggests that this
will often be good enough. If it fits, a lot of
complications can be ruled out.



If the model with all 2-variable associations fits

e Start adding relationships between variables to
the model, Beginning with the strongest or most
obvious. Consider each marginal 2-way table, and
test with an X? or G? test of independence. Look
at the table (compute row, column proportions
or percents) and decide what seems to be going
on. It is often helpful to look at sub-tables, too.

* Each time a relationship (2-factor interaction) is
added,

— Test against the preceding model: Is it an
improvement?

— Test overall fit



This does not cover all the
possibilities



Florida Prison Data

> Prace <- factor(florida$Prace, labels=c(’White’,’Black’)) # In order 1,2
> Vrace <- factor(florida$Vrace, labels=c(’White’,’Black’))
> DeathPen <- factor(florida$DeathPen, labels=c(’Yes’,’No’))
> PR_by_DP = table(Prace, DeathPen); PR_by_DP
DeathPen

Prace Yes No

White 19 141

Black 17 149

> prop.table(PR_by_DP,1) # Row proportions
DeathPen
Prace Yes No
White 0.1187500 0.8812500
Black 0.1024096 0.8975904
> round (100*prop.table(PR_by_DP,1),2) # Row percentages
DeathPen
Prace Yes No
White 11.88 88.12
Black 10.24 89.76



> chisq.test(PR_by_DP,correct=F)
Pearson’s Chi-squared test

data: PR_by_DP
X-squared = 0.2214, df = 1, p-value = 0.638

> dp <- table(Prace, DeathPen, Vrace); dp
, , Vrace = White

DeathPen

Prace Yes No
White 19 132
Black 11 52

, , Vrace = Black

DeathPen

Prace Yes No
White 0 9
Black 6 97



Something interesting may be going on

> # Row percents
> round (100*prop.table(dpl,,1],1),2)
DeathPen
Prace Yes No
White 12.58 87.42
Black 17.46 82.54
> round (100*prop.table(dpl,,2],1),2)
DeathPen
Prace Yes No
White 0.00 100.00
Black 5.83 94.17

Prace and Deathpen CONTROLLING for (conditional upon) Vrace



Chisquare tests on sub-tables

> # Pearson
> chisq.test(dpl,,1],correct=F)

Pearson’s Chi-squared test

data: dpl, , 1]
X-squared = 0.8774, df = 1, p-value = 0.3489

> chisq.test(dpl,,2],correct=F)
Pearson’s Chi-squared test

data: dpl, , 2]
X-squared = 0.5539, df = 1, p-value

0.4567

Warning message:
Chi-squared approximation may be incorrect in:
chisq.test(dpl, , 2], correct = F)



What's the problem? Look at
expected frequencies.

> loglin(dpl[,,2] ,margin=1ist(1,2),fit=T)$fit
2 iterations: deviation 1.421085e-14
DeathPen
Prace Yes No
White 0.4821429 8.517857
Black 5.5178571 97.482143

Low expected frequencies tend to inflate chisquare.
No problem here.



Complete Independence

> ind <- loglin(dp,list(1,2,3)); ind
2 iterations: deviation 2.842171e-14
$1rt

[1] 137.9294

$pearson
[1] 122.3975

$af
[1] 4

$margin
$margin[[1]]
[1] "Prace"

$margin[[2]]
[1] "DeathPen"

$margin[[3]]
[1] "Vrace"



Model with all 2-factor relationships

> twoways <- loglin(dp,list(c(1,2),c(1,3),c(2,3))); twoways
5 iterations: deviation 0.05215771

$1rt

[1] 0.7007595

$pearson
[1] 0.3750283

$df
[1] 1

$margin
$margin[[1]]
[1] "Prace" "DeathPen"

$margin[[2]]
[1] "Prace" "Vrace"

$margin[[3]]
[1] "DeathPen" "Vrace"



How is G? being calculated?!

, , Vrace = White
DeathPen

Prace Yes No
White 19 132
Black 11 52

, , Vrace = Black
DeathPen

Prace Yes No
White 0 9
Black 6 97

G2

2 Z(Observed) log (

Observed

Expected

)



Zero cell is being dropped

* Conservative, for a test of fit. Chisquare is smaller, so it’s less
likely to force you to a more complicated model.

* Add a small constant to the observed frequency of zero, just
for computing G2, not for computing the expected
frequencies. How small? The smaller the better.

x
I 1 =0
0 (CB ©S Expected)

e No effect on LR tests of nested models.

Expected, )

2
Gio=2 Z(Observed) log (ExpectedQ



Look at 2-factor marginal tables

* Prisoner’s race by death penalty: Consistent
with no relationship.

* Prisoner’s race by victim’s race: Strong, we
think.

* Victim’s race by death penalty: Need to check
it.



Prisoner’s Race and Victim's Race

> PR_by_VR = table(Prace, Vrace); PR_by_VR

Vrace
Prace White Black
White 151 9

Black 63 103
> round (100*prop.table(PR_by_VR,1),2) # Row percentages
Vrace
Prace White Black
White 94.38 5.62
Black 37.95 62.05
> chisq.test (PR_by_VR,correct=F)

Pearson’s Chi-squared test

data: PR_by_VR
X-squared = 115.0083, df = 1, p-value < 2.2e-16

People tend to be in jail for killing someone of their own race.
Anything else interesting?



Victim's Race and Death Penalty

> VR_by_DP = table(Vrace, DeathPen); VR_by_DP
DeathPen
Vrace Yes No
White 30 184
Black 6 106
> round (100*prop.table(VR_by_DP,1),2) # Row percentages
DeathPen
Vrace Yes No
White 14.02 85.98
Black 5.36 94.64
> chisq.test (VR_by_DP,correct=F)

Pearson’s Chi-squared test

data: VR_by_DP
X-squared = 5.6149, df = 1, p-value = 0.01781

Suggests death penalty more likely if victim is White



It look like we want to add [PR, VR], but marginal
tables can be misleading — See Section 3.8. Choose
model with smallest G? (best fit)

> # 1=Prace, 2=DeathPen, 3=Vrace)

> loglin(dp,list(2,c(1,3)))$1rt # [DP] [PR, VR]
2 iterations: deviation O

[1] 8.131611

> loglin(dp,list(1,c(2,3)))$1rt # [PR] [VR, DP]
2 iterations: deviation O

[1] 131.6796

> loglin(dp,list(3,c(1,2)))$1rt # [VR] [PR, DP]
2 iterations: deviation O

[1] 137.7079



[DP] [PR, VR] is the best choice, by far

* |sitan improvement?
* Does it fit?

ModelA = ind

ModelB <- loglin(dp,list(2,c(1,3)))
iterations: deviation O

# Is it an improvement?

G2Change = ModelA$lrt-ModelB$lrt; G2Change
[1] 129.7977

> dfChange = ModelA$df-ModelB$df; dfChange
[1] 1

> pvalChange = 1-pchisq(G2Change, df=dfChange)
> pvalChange

[1] ©

vV V. N V V



Does it fit?

> # Does it fit”?

> G2B = ModelB$lrt; G2B

[1] 8.131611

> dfB = ModelB$df; dfB

[1] 3

> pvalB = 1-pchisq(G2B, df=dfB); pvalB

[1] 0.04336859

> ModelB$pearson; 1-pchisq(ModelB$pearson,df=ModelB$df)
[1] 6.977343

[1] 0.07262343

| say we proceed, but there could be argument.



Add another association
Compare [PR,VR][PR,DP] with [PR,VR][VR,DP]

> # 1=Prace, 2=DeathPen, 3=Vrace

> loglin(dp,list(c(1,3),c(1,2)))$1lrt # [PR,VR] [PR,DP]
2 iterations: deviation O

[1] 7.91016

> loglin(dp,list(c(1,3),c(2,3)))$1lrt # [PR,VR][VR,DP]
2 1terations: deviation 1.42108b5e-14

[1] 1.881895



Choose [PR,VR][VR,DP]

> ModelC <- loglin(dp,list(c(1,3),c(2,3)))

2 iterations: deviation 1.421085e-14

> # Is it an improvement?

> G2Change = ModelB$lrt-ModelC$lrt; G2Change
[1] 6.249715

> dfChange = ModelB$df-ModelC$df; dfChange
[1] 1

> pvalChange = 1-pchisq(G2Change, df=dfChange)
> pvalChange

[1] 0.01242133

> # Does it fit?

> G2C = ModelC$lrt; G2C

[1] 1.881895

> dfC = ModelC$df; dfC

[1] 2

> pvalC = 1-pchisq(G2C, df=dfC); pvalC

[1] 0.3902578



Does it help to add [PR,DP]?

> ModelD <- twoways

> G2Change = ModelC$lrt-ModelD$1lrt; G2Change
[1] 1.181136

> dfChange = ModelC$df-ModelD$df; dfChange

[1] 1

> pvalChange = 1-pchisq(G2Change, df=dfChange)
> pvalChange

[1] 0.2771249



Hierarchy: Not planned in advance

Fit Change
Model Chisq df o Chisq df o
'VR] [PR] [DP] 137.93| 4 0.00
DP] [VR,PR] 8.13| 3 0.07 129.80| 1 0.00
VR,PR] [VR,DP] 1.88| 2 0.39 6.25| 1 0.01
VR,PR] [VR,DP] 0.70| 1 0.40 1.18| 1 0.28
PR,DP]




Model is [VR,PR] [VR,DP]

* Hierarchy of models was the result of
exploring the data

* Kind of forward stepwise method, could be
automated

* Guided by hypothesis tests, but please don’t
take them completely at face value. We did
quite a few tests, and the theory applies to
single tests performed in isolation.



Describe the findings in words

* Prisoners in jail for murder in Florida tended
to be convicted of killing people of the same
race.

* The death penalty was less likely when the
victim was Black.

(These conclusions are based on looking at the
marginal 2-way tables. Let’s check the
parameter estimates too.)



Checking the parameter estimates
Just part of the output

> loglin(dp,list(c(1,3),c(2,3)) ,param=T) $param
$Prace.Vrace
Vrace
Prace White Black
White 0.8279124 -0.8279124
Black -0.8279124 0.8279124

$DeathPen.Vrace
Vrace
DeathPen White Black
Yes 0.2644853 -0.2644853
No -0.2644853 0.2644853

* Prace.Vrace interaction says increased chance
of White-White and Black-Black

 DeathPen.Vrace interaction says increased
chance of Yes-White and No-Black



A little more about the interpretation
of [VR,PR] [VR,DP]

It’s a model of conditional independence

Allowing (controlling) for Victim’s Race,
Prisoner’s Race is unrelated to Death Penalty

Model says that in each sub-table (VR=Black,
VR=White), Prisoner’s Race is independent of
Death Penalty.

So the test of model fit should be like a
combined test of independence for both 2-

way tables.

Ho : pr12 = 123 = 0



Had G = 1.88, df=2, p = 0.39
Ho : p12 = p123 = 0

> dp > a = loglin(dpl,,1],margin=1ist(1,2))$1lrt; a
, , Vrace = White 2 iterations: deviation O
[1] 0.847478
DeathPen > b = loglin(dpl,,2],margin=1ist(1,2))$1lrt; b
Prace Yes No 2 iterations: deviation 1.421085e-14
White 19 132 [1] 1.034417
Black 11 52 > a+b

[1] 1.881895
, , Vrace = Black

DeathPen
Prace Yes No
White 0 9

Black 6 97 Control by sub-division: Very natural.

Works for Pearson X? too.



The lesson

Want to examine the relationship between A
and B, but A might be related to C and B might
be related to C.

So look at the relationship between A and B
controlling for C.

Examine (test) A by B separately for each level
of C: Sub-division.

Pool (combine) the tests by adding chi-squares
and adding degrees of freedom.

Identical to the chi-square test for fit of a log-
linear model of conditional independence!



