The Multivariate Normal Distribution

The $p \times 1$ random vector **X** is said to have a *multivariate normal distribution*, and we write $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if **X** has (joint) density

$$f(\mathbf{x}) = \frac{1}{|\mathbf{\Sigma}|^{\frac{1}{2}} (2\pi)^{\frac{p}{2}}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right],$$

where $\boldsymbol{\mu}$ is $p \times 1$ and $\boldsymbol{\Sigma}$ is $p \times p$ symmetric and positive definite. We won't explicitly use the positive definite property in this class.

The multivariate normal reduces to the univariate normal when p = 1. Properties of the multivariate mormal include the following.

- 1. $E[\mathbf{X}] = \boldsymbol{\mu}$
- 2. $\sigma^2 \{ \mathbf{X} \} = \boldsymbol{\Sigma}$
- 3. If **c** is a vector of constants, $\mathbf{X} + \mathbf{c} \sim N(\mathbf{c} + \boldsymbol{\mu}, \boldsymbol{\Sigma})$
- 4. If **A** is a matrix of constants, $\mathbf{A}\mathbf{X} \sim N(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}')$
- 5. All the marginals (dimension less than p) of **X** are (multivariate) normal, but it is possible to have a collection of univariate normals whose joint distribution is not multivariate normal.
- 6. For the multivariate normal, zero covariance implies independence. The multivariate normal is the only distribution with this property.
- 7. The random variable $(\mathbf{X} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{X} \boldsymbol{\mu})$ has a chi-square distribution with p degrees of freedom.