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STA 302 Fall 2020

!See last slide for copyright information.



Overview

Unbiased Estimation

Gauss-Markov Theorem

Projections

2/32



Reading in In Rencher and Schaalje’s Linear Models In
Statistics

Much of this material is in Section 7.3.2 (pp. 145-149), except
m The Gauss-Markov Theorem is done better here.

m They discuss projections briefly in Chapter 9.
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Model: y = X3 + €

where

X is an n x (k + 1) matrix of observed constants with
linearly independent columns.

B is a (k+ 1) x 1 matrix of unknown constants
(parameters).

€ is an n x 1 random vector with E(e) = 0 and
cov(€) = o?1,,.

o2 is an unknown constant.

Least squares estimator of 3 is

B = (X'X) Xy
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Unbiased Estimation
y=XB+e€

E{B} = E{(X'X)"'X'y}
= (X'X)"'X'E{y}
- (X'X)"'X' X3
= p

for any 3 € R¥+1 so ,@ is an unbiased estimator of 3.



Covariance matrix
Using cov(Aw) = Acov(w)A’

cov (B) = cov (X'X)"'X'y)
= (X'X)'X'cov(y) (X'X)~1X")’
_ (X/X>_1X/ 0'2In X//<X/X>—1/
= (X'X) X' X(X'X)™
_ O_Z(X/X)—l



Unbiased Estimation

What are we estimating when we estimate 37

Human resources example: y = Bo + f1x1 + B2x2 + P3xs + €

m z1 = University GPA.
m 2o — Job interview score.
m xr3 = Test score.

m y = Percent salary increase after one year.

m E(y) = Bo + Bix1 + Baw2 + Baws.
m 31, B2 and (3 are links between predictor variables and
(expected) response variable value.

m [y is for curve fitting — no interpretation in this example.

m Question: Holding interview and test scores constant, how
much does GPA matter?

E(y) = Bo + Powa + Baxs + frz1.
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Gauss-Markov Theorem

Estimating linear combinations of 8 values
Yy = /jo + /311‘1 + ﬂzl?z aF /53;173 + €

CoBo + 0181 + -+ - + L. B

21 = University GPA, x9 = Interview score, x3 = Test score.
For fixed job interview score and test score, what’s the
connection between GPA and salary increase?

o

eg=0 10 0| |=p

Bs
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Gauss-Markov Theorem

Another linear combination

What’s the expected salary increase for a job candidate with a
university GPA of 2.5, an interview score of 80% and a test
score of 70%?

o
b
B
B

Estimated expected value is often used for prediction.

¢8=(1 25 80 70)
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Gauss-Markov Theorem

Natural Estimator

m Natural Estimator of £3 is £ A,/B\

= It’s unbiased: E{¢3} = ¢ E{B} = ¢3

m Small variance in an unbiased estimator is good. It’s the
variance of the sampling distribution.
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Tarkov Theorem

Linear Combination

m The natural estimator of £/3 is a linear combination of the

y; values.

£B = ¢(X'X) X'y = aly

m Let L =a1y1 + agys + - - - + anyn be another linear
combination of y; with E(L) = €3 for every B € RF+1,

m If we can find L, unbiased, with Var(L) < Va7:\(£’,@), we
should use that L to estimate £'3 instead of £ 3.



Gauss-Markov Theorem

A Serious L = a'y

8, = (X'WX) 'X'Wy

where W is an n X n matrix of rank at least k + 1.
E {Bw} = EB{(X'WX)'X'Wy}
= X'WX)'X'WE {y}
= X'WX)'X'WXg
= g

Let L =€,

Then E{L} = £ E{B,} = £ 3.

Should we seek W with Var(€3,) < Var(€B)?
The Gauss-Markov Theorem says don’t bother.



The Gauss-Markov Theorem

For the general linear model y = X3 + ¢, etc., let
E(a'y) = £ for all B € RFHL,

Then Var(€8) < Var(a'y), with equality only
when a = X(X’X)_lf (in which case a'y = £'3).



Gauss-Markov Theorem

Proof of the Gauss-Markov-Theorem

m The impressive part.

m The rest of the proof (just a calculation).
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The impressive part

E(aly) = a'E(y)
= a'Xp3
= £/IB

For all 3 € R¥!,
m This implies a’X = £'.
m But not by cancelling 3!



Gauss-Markov Theorem

a’Xp3 = £ for all B € RF!

maX=vislx(k+1).

mv = (1)0,1)1, ces ,Uk).

s VvV3=10p.

m For all B € R**! meaning even for very funny 3 vectors.
1 1
0 0 .
0 0
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Gauss-Markov Theorem

VB =13

For all B € RF*!

V/,@ = (Uo V1 U9
= ¢3
= (60 0 Uy
So vy = 4.

o)

l )

— O
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VB =13

For all B € RF*!

Gauss-Markov Theorem

So Vg = 62.

(b b Lo

o)
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Gauss-Markov Theorem

Continuing . ..
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Gauss-Markov Theorem

VB =13

For all B € RF*!

= (b €6 0

So Vi = Ek.

o)

)

20 /32



Gauss-Markov Theorem

Conclusion

aX=¥0«<¥t=Xa

m This condition is both necessary and sufficient for a’y to be
an unbiased estimator of £'3.

m We have proved necessary.



Gauss-Markov Theorem

Calculation part of the Proof
Using

Var(a'y) — VC”“(EIB) = cov(aly)— COU(E’,@)
= alcov(y)a — £'cov(B)L
= a'o’La—£o*(X'X)" e
= o?(al,a— £/(X'X)" 1)
= o2 (a’Ina — a’X(X’X)*lX’a)
= o2%ad (I,—H)a
= o’ (I,-H) (I, -H)a
0% (I, — H)a)' (I, — H)a

n
= O'2Z/Z:O'2§ 22
i=1

0.

Y

N
%]
w
%]



Gauss-Markov Theorem

Continuing

And using again

= Have Var(a'y) — Var(£B) = 022’z > 0,
m Where z = (I, — H)a.
m Variances are the same if and only if z = 0.

(I,—H)a=0

a= Ha
a=X(X'X)"'X'a
a=X(X'X)"l¢

ay =0 (X'X)"'X'y =¢3

I

o~

So £'3 is the unique minimum variance linear unbiased
. /
estimator of £' 3. |



Sometimes we say that B is the
Best
Linear

Unbiased

Estimator.



Projections

Projections

mLet V={veR":v=Xb,becR}
m The space spanned by the columns of X.

m All linear combinations of the columns of X. The elements
of b are the coefficients of the linear combination.

m Some important vectors are in V.

E(y) = = X3: B is a vector b.

y= Xﬁ ,8 is a vector b.
Every column of X is in V.
Isyev?



I[syeV={veR":v=XbbecR:!}?

m The k + 1 linearly independent columns of X span V.

m So V is of dimension k + 1 < n.

m And V is a set of volume zero in R"”.

m If ¢; have a continuous distribution (with a density), then
the distribution of the random vector y is also continuous.

m And the probability that y will fall into a set of volume
zero is equal to zero: P{y € V} = 0.




Projections

What point p € V is closest to y?

Euclidean distance is

Vg —p1)? + (g2 —p2)? + - + (o — pn)?
where p = Xb, some b € R¥t!. To find it, minimize
(y =p)'(y —p) = (y - Xb)/(y — Xb)
over all b € RF1,

m We've already done this!

m The answer is b = 3.
Ep=XB=y.
m The closest point in V to y is y.



Projections

Projection: y is the shadow of y on V




Projections

Projection Operator
H=XX'X)"'X’

y is the projection of y onto V.

H is the projection operator: Hy = y.
m H sends any point in R" to V.
Hp = X(X'X)"'X'p = Xb.

The projection is the closest point.

If p € V already, Hp = p.
Hp = X(X'X)"1X'Xb = Xb = p.
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Projections

Picture suggests € Ly

m In fact, € L vforallveV.

€ y
! vie = (Xb)'e
| = bX'e
| = b0=0
| m v €V includes
v v my =Xg.
m E(y) =Xg.

m Every column of X.
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Projections

Another way to arrive at the normal equations

€

y
»—
y

m Least squares task is to
minimize
Q=(y—-XB)(y—-XB).

m Find the X3 point in V that
is closest to y. Call it X3.

m Drop a perpendicular
(normal) from y to V.

This perpendicular is parallel
toy —XB ==¢

Soy — X,B' is at right angles
to all basis vectors of V.
Inner products are all zero.

That is, X'(y — X3) = 0.
= X'Xj3 = X'y.

These are the “normal
equations.”

Wikipedia says “In geometry,
a normal is an object such as
a line, ray, or vector that is
perpendicular to a given
object.”



Projections

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The IXTEX source code is available from the course
website:
http://www.utstat.toronto.edu/~brunner/oldclass/302£20
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