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Joint Moment-generating Functions

Joint moment-generating function
Of a p-dimensional random vector x

Mx(t)
def
= E

(
et
′x
)

Compare Mx(t) = E(ext).

For example,

M
(x1,x2,x3)

(t1, t2, t3) = E
(
ex1t1+x2t2+x3t3

)
=

∫∫∫
ex1t1+x2t2+x3t3f(x1, x2, x3) dx1dx2dx3

Just write M(t) if there is no ambiguity.

Section 4.3 of Linear models in statistics has some material on
moment-generating functions (optional).

3 / 43



Joint Moment-generating Functions

Uniqueness
Proof omitted

Joint moment-generating functions correspond uniquely to joint
probability distributions.

M(t) is a function of F (x).

Step One: f(x) = ∂
∂x1
· · · ∂

∂xp
F (x).

For example, ∂
∂x1

∂
∂x2

∫ x2

−∞
∫ x1

−∞ f(y1, y2) dy1dy2

Step Two: M(t) =
∫
· · ·
∫
et

′xf(x) dx
Could write M(t) = g (F (x)).

Uniqueness says the function g is one-to-one, so that
F (x) = g−1 (M(t)).
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Joint Moment-generating Functions

g−1 (M(t)) = F (x)
A two-variable example

g−1 (M(t)) = F (x)

g−1
(∫∞
−∞

∫∞
−∞ ex1t1+x2t2f(x1, x2) dx1dx2

)
=

∫ x2

−∞
∫ x1

−∞ f(y1, y2) dy1dy2
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Joint Moment-generating Functions

Theorem

Two random vectors x1 and x2 are independent if and only if the
moment-generating function of their joint distribution is the product of
their moment-generating functions.
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Joint Moment-generating Functions

Proof
Two random vectors are independent if and only if the moment-generating function
of their joint distribution is the product of their moment-generating functions.

Independence therefore the MGFs factor is an exercise.

Mx1,x2(t1, t2) = Mx1(t1)Mx2(t2)

=

(∫ ∞
−∞

ex1t1fx1(x1) dx1

)(∫ ∞
−∞

ex2t2fx2(x2) dx2

)
=

∫ ∞
−∞

∫ ∞
−∞

ex1t1ex2t2fx1(x1)fx2(x2) dx1dx2

=

∫ ∞
−∞

∫ ∞
−∞

ex1t1+x2t2fx1(x1)fx2(x2) dx1dx2
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Joint Moment-generating Functions

Proof continued

Have Mx1,x2(t1, t2) =
∫∞
−∞

∫∞
−∞ e

x1t1+x2t2fx1(x1)fx2(x2) dx1dx2.

Using F (x) = g−1 (M(t)),

F (x1, x2) = g−1
(∫ ∞
−∞

∫ ∞
−∞

ex1t1+x2t2fx1(x1)fx2(x2) dx1dx2

)
=

∫ x2

−∞

∫ x1

−∞
fx1(y1)fx2(y2) dy1dy2

=

∫ x2

−∞
fx2(y2)

(∫ x1

−∞
fx1(y1) dy1

)
dy2

=

∫ x2

−∞
fx2(y2)Fx1(x1) dy2

= Fx1(x1)

∫ x2

−∞
fx2(y2) dy2

= Fx1(x1)Fx2(x2)

So that x1 and x2 are independent. �
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Joint Moment-generating Functions

A helpful distinction

If x1 and x2 are independent,

Mx1+x2
(t) = Mx1

(t)Mx2
(t)

x1 and x2 are independent if and only if

Mx1,x2
(t1, t2) = Mx1

(t1)Mx2
(t2)
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Joint Moment-generating Functions

Theorem: Functions of independent random vectors are
independent

Show x1 and x2 independent implies that y1 = g1(x1) and y2 = g2(x2) are
independent.

Let y =

(
y1

y2

)
=

(
g1(x1)

g2(x2)

)
and t =

(
t1

t2

)
. Then

My(t) = E
(
et

′y
)

= E

e(t′1|t′2)

(
y1

y2

)
= E

(
et

′
1y1+t′2y2

)
= E

(
et

′
1y1et

′
2y2

)
= E

(
et

′
1g1(x1)et

′
2g2(x2)

)
=

∫ ∫
et

′
1g1(x1)et

′
2g2(x2)fx1 (x1)fx2 (x2) dx1dx2

=

∫
et

′
2g2(x2)fx2 (x2)

(∫
et

′
1g1(x1)fx1 (x1) dx1

)
dx2

=

∫
et

′
2g2(x2)fx2 (x2)Mg1(x1)(t1)dx2

= Mg1(x1)(t1)Mg2(x2)(t2) =My1 (t1)My2 (t2)

So y1 and y2 are independent. �
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Joint Moment-generating Functions

MAx(t) = Mx(A′t)
Analogue of Max(t) = Mx(at)

Recalling Mx(t)
def
= E

(
et
′x
)

,

MAx(t) = E
(
et′Ax

)
= E

(
e(A

′t)
′
x
)

= Mx(A
′t)

Note that t is the same length as y = Ax: The number of rows in A.
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Joint Moment-generating Functions

Mx+c(t) = et′cMx(t)
Analogue of Mx+c(t) = ectMx(t)

Mx+c(t) = E
(
et′(x+c)

)
= E

(
et′x+t′c

)
= et′cE

(
et′x
)

= et′cMx(t)
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Definition of the Multivariate Normal Distribution

Definition of the Multivariate Normal Distribution

Not in the text.
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Definition of the Multivariate Normal Distribution

Distributions may be defined in terms of
moment-generating functions

Build up the multivariate normal from univariate normals.

If y ∼ N(µ, σ2), then My(t) = eµt+
1
2
σ2t2

Moment-generating functions correspond uniquely to probability
distributions.

So define a normal random variable with expected value µ and
variance σ2 as a random variable with moment-generating function
eµt+

1
2
σ2t2 .

This has one surprising consequence . . .
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Definition of the Multivariate Normal Distribution

Degenerate random variables

A degenerate random variable has all the probability concentrated at a

single value, say Pr{y = y0} = 1. Then

My(t) = E(eyt)

=
∑

{y: p(y)>0}

eytp(y)

= ey0t · p(y0)

= ey0t · 1
= ey0t
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Definition of the Multivariate Normal Distribution

If Pr{y = y0} = 1, then M
y
(t) = ey0t

This is of the form eµt+
1
2
σ2t2 with µ = y0 and σ2 = 0.

So y ∼ N(y0, 0).

That is, degenerate random variables are “normal” with variance
zero.

Call them singular normals.

This will be surprisingly handy later.
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Definition of the Multivariate Normal Distribution

Independent standard normals

Let z1, . . . , zp
i.i.d.∼ N(0, 1).

z =

 z1
...

zp



E(z) = 0 cov(z) = Ip
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Definition of the Multivariate Normal Distribution

Moment-generating function of z
Using Mx(t) = eµt+

1
2
σ2t2

Mz(t) =

p∏
j=1

Mzj (tj)

=

p∏
j=1

e
1
2
t2j

= e
1
2

∑p
j=1 t

2
j

= e
1
2
t′t
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Definition of the Multivariate Normal Distribution

Transform z to get a general multivariate normal
Remember: A non-negative definite means v′Av ≥ 0

Let Σ be a p× p symmetric non-negative definite matrix and µ ∈ Rp.
Let y = Σ1/2z + µ.

The elements of y are linear combinations of independent standard
normals.

Linear combinations of independent normals are normal.

y has a multivariate distribution.

We’d like to call y a multivariate normal.
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Definition of the Multivariate Normal Distribution

Moment-generating function of y = Σ1/2z + µ
Remember: MAx(t) = Mx(A′t) and Mx+c(t) = et

′cMx(t) and Mz(t) = e
1
2
t′t

My(t) = M
Σ1/2z+µ

(t)

= et
′µM

Σ1/2z
(t)

= et
′µMz(Σ1/2 ′t)

= et
′µMz(Σ1/2t)

= et
′µ e

1
2
(Σ1/2t)′(Σ1/2t)

= et
′µ e

1
2
t′Σ1/2Σ1/2t

= et
′µ e

1
2
t′Σt

= et
′µ+ 1

2
t′Σt

So define a multivariate normal random variable y as one with
moment-generating function My(t) = et

′µ+ 1
2
t′Σt.
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Definition of the Multivariate Normal Distribution

Compare univariate and multivariate normal
moment-generating functions

Univariate My(t) = eµt+
1
2
σ2t2

Multivariate My(t) = et
′µ+ 1

2
t′Σt

So the univariate normal is a special case of the multivariate normal
with p = 1.
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Properties of the Multivariate Normal

Mean and covariance matrix
For a univariate normal, E(y) = µ and V ar(y) = σ2

Recall y = Σ1/2z + µ.

E(y) = µ

cov(y) = Σ1/2cov(z)Σ1/2′

= Σ1/2 I Σ1/2

= Σ

We will say y is multivariate normal with expected value µ and
variance-covariance matrix Σ, and write y ∼ Np(µ,Σ).

Note that because My(t) = et
′µ+ 1

2
t′Σt, µ and Σ completely determine

the distribution.
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Properties of the Multivariate Normal

Probability density function of y ∼ Np(µ,Σ)
Remember, Σ is only positive semi-definite.

It is easy to write down the density of z ∼ Np(0, I) as a product of
standard normals.

If Σ is strictly positive definite (and not otherwise), the density of
y = Σ1/2z + µ can be obtained using the Jacobian Theorem as

f(y) =
1

|Σ|
1
2 (2π)

p
2

exp

{
−1

2
(y − µ)′Σ−1(y − µ)

}
This is usually how the multivariate normal is defined.
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Properties of the Multivariate Normal

Bivariate Normal Density (p = 2)
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Properties of the Multivariate Normal

Σ positive definite?

Positive definite means that for any non-zero p× 1 vector a, we
have a′Σa > 0.

Since the one-dimensional random variable w =
∑p

i=1 aiyi may be
written as w = a′y and V ar(w) = cov(a′y) = a′Σa, it is natural to
require that Σ be positive definite.

All it means is that every non-zero linear combination of y values
has a positive variance. Often, this is what you want.
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Properties of the Multivariate Normal

Singular normal: Σ is positive semi-definite.
Or “non-negative definite”

Suppose there is a 6= 0 with a′Σa = 0. Let w = a′y.

Then V ar(w) = cov(a′y) = a′Σa = 0. That is, w has a degenerate
distribution (but it’s still still normal).

In this case we describe the distribution of y as a singular
multivariate normal.

Including the singular case saves a lot of extra work in later proofs.

We will insist that a singular multivariate normal is still
multivariate normal, even though it has no density.
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Properties of the Multivariate Normal

Distribution of Ay
Recall y ∼ Np(µ,Σ) means My (t) = et

′µ+ 1
2
t′Σt

Let y ∼ Np(µ,Σ), and w = Ay, where A is an r × p matrix.

Mw(t) = M
Ay
(t)

= My(A
′t)

= e(A′t)′µ e
1
2(A′t)′Σ(A′t)

= et′(Aµ) e
1
2t′(AΣA′)t

= et′(Aµ)+1
2t′(AΣA′)t

Recognize moment-generating function and conclude

w ∼ Nr(Aµ,AΣA′)
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Properties of the Multivariate Normal

Exercise
Use moment-generating functions, of course.

Let y ∼ Np(µ,Σ).

Show y + c ∼ Np(µ + c,Σ).
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Properties of the Multivariate Normal

Zero covariance implies independence for the
multivariate normal.

Independence always implies zero covariance.

For the multivariate normal, zero covariance also implies
independence.

The multivariate normal is the only continuous distribution with
this property.
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Properties of the Multivariate Normal

Show zero covariance implies independence
By showing My(t) = My1(t1)My2(t2)

Let y ∼ N(µ,Σ), with

y =

(
y1

y2

)
µ =

(
µ1

µ2

)
Σ =

(
Σ1 0

0 Σ2

)
t =

(
t1
t2

)

My(t) = E
(
et
′y
)

= E

e
 t1

t2

′y


= . . .
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Properties of the Multivariate Normal

Continuing the calculation: M
y
(t) = et′µ+ 1

2t′Σt

y =

(
y1

y2

)
µ =

(
µ1

µ2

)
Σ =

(
Σ1 0

0 Σ2

)
t =

(
t1

t2

)

My(t) = E

e
 t1

t2

′

y


= exp

{
(t′1|t′2)

(
µ1

µ2

)}
exp

{
1

2
(t′1|t′2)

(
Σ1 0

0 Σ2

)(
t1

t2

)}
= et

′
1µ1+t′2µ2 exp

{
1

2

(
t′1Σ1|t′2Σ2

)( t1

t2

)}
= et

′
1µ1+t′2µ2 exp

{
1

2

(
t′1Σ1t1 + t′2Σ2t2

)}
= et

′
1µ1 et

′
2µ2 e

1
2

(t′1Σ1t1) e
1
2

(t′2Σ2t2)

= et
′
1µ1+ 1

2
(t′1Σ1t1) et

′
2µ2+ 1

2
(t′2Σ2t2)

= My1(t1)My2(t2)

So y1 and y2 are independent. � 31 / 43



Properties of the Multivariate Normal

An easy example
If you do it the easy way

Let y1 ∼ N(1, 2), y2 ∼ N(2, 4) and y3 ∼ N(6, 3) be independent, with
w1 = y1 + y2 and w2 = y2 + y3. Find the joint distribution of w1 and
w2.

(
w1

w2

)
=

(
1 1 0
0 1 1

) y1
y2
y3



w = Ay ∼ N(Aµ,AΣA′)

32 / 43



Properties of the Multivariate Normal

w = Ay ∼ N(Aµ,AΣA′)
y1 ∼ N(1, 2), y2 ∼ N(2, 4) and y3 ∼ N(6, 3) are independent

Aµ =

(
1 1 0
0 1 1

) 1
2
6

 =

(
3
8

)

AΣA′ =

(
1 1 0
0 1 1

) 2 0 0
0 4 0
0 0 3

 1 0
1 1
0 1


=

(
6 4
4 7

)
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Properties of the Multivariate Normal

Marginal distributions are multivariate normal
y ∼ Np(µ,Σ), so w = Ay ∼ N(Aµ,AΣA′)

Find the distribution of

(
0 1 0 0

0 0 0 1

)
y1

y2

y3

y4

 =

(
y2

y4

)

Bivariate normal. The expected value is easy.
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Properties of the Multivariate Normal

Covariance matrix
Of Ay

cov(Ay) = AΣA′

=

(
0 1 0 0
0 0 0 1

)
σ21 σ1,2 σ1,3 σ1,4
σ1,2 σ22 σ2,3 σ2,4
σ1,3 σ2,3 σ23 σ3,4
σ1,4 σ2,4 σ3,4 σ24




0 0
1 0
0 0
0 1



=

(
σ1,2 σ22 σ2,3 σ2,4
σ1,4 σ2,4 σ3,4 σ24

)
0 0
1 0
0 0
0 1


=

(
σ22 σ2,4
σ2,4 σ24

)
Marginal distributions of a multivariate normal are multivariate
normal, with the original means, variances and covariances.
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Properties of the Multivariate Normal

Summary

If c is a vector of constants, x + c ∼ N(c + µ,Σ).

If A is a matrix of constants, Ax ∼ N(Aµ,AΣA′).

Linear combinations of multivariate normals are multivariate
normal.

All the marginals (dimension less than p) of x are (multivariate)
normal, but it is possible in theory to have a collection of
univariate normals whose joint distribution is not multivariate
normal.

For the multivariate normal, zero covariance implies independence.
The multivariate normal is the only continuous distribution with
this property.
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χ2 and t Distributions

χ2 and t Distributions

Need the multivariate normal for this.
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χ2 and t Distributions

Showing w = (x− µ)′Σ−1(x− µ) ∼ χ2(p)
Σ has to be positive definite this time

x ∼ N (µ,Σ)

y = x− µ ∼ N (0, Σ)

z = Σ−
1
2 y ∼ N

(
0,Σ−

1
2 ΣΣ−

1
2

)
= N

(
0,Σ−

1
2 Σ

1
2 Σ

1
2 Σ−

1
2

)
= N (0, Ip)

So z is a vector of p independent standard normals, and

w = (x− µ)′Σ−1(x− µ)

= y′Σ−1y = y′Σ−1/2′Σ−1/2y

= (Σ−
1
2 y)′(Σ−

1
2 y)

= z′z

=

p∑
j=1

z2
i ∼ χ2(p) �
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χ2 and t Distributions

Show x and s2 independent
x1, . . . , xn

i.i.d∼ N(µ, σ2)

x =

 x1
...
xn

 ∼ N (µj, σ2I
)

y =


x1 − x

...
xn − x

x

 = Ax

Note A is (n+ 1)× n, so cov(Ax) = σ2AA′ is (n+ 1)× (n+ 1),
singular.
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χ2 and t Distributions

The argument

y = Ax =


x1 − x

...
xn − x

x

 =


y2

x


y is multivariate normal because x is multivariate normal.

Cov (x, xj − x) = 0 (Exercise)

So x and y2 are independent.

So x and s2 = g(y2) are independent. �
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χ2 and t Distributions

Leads to the t distribution

If

z ∼ N(0, 1) and

y ∼ χ2(ν) and

z and y are independent, then we say

t =
z√
y/ν
∼ t(ν)
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χ2 and t Distributions

Random sample from a normal distribution

Let x1, . . . , xn
i.i.d.∼ N(µ, σ2). Then

√
n(x−µ)
σ ∼ N(0, 1) and

(n−1)s2
σ2 ∼ χ2(n− 1) and

These quantities are independent, so

t =

√
n(x− µ)/σ√

(n−1)s2
σ2 /(n− 1)

=

√
n(x− µ)

s
∼ t(n− 1)
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χ2 and t Distributions

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The LATEX source
code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/302f20
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